1
|
Khallouf H, Grabowska AK and Riemer AB:
Therapeutic vaccine strategies against human papillomavirus.
Vaccines (Basel). 2:422–462. 2014.PubMed/NCBI View Article : Google Scholar
|
2
|
Stanley MA: Epithelial cell responses to
infection with human papillomavirus. Clin Microbiol Rev.
25:215–222. 2012.PubMed/NCBI View Article : Google Scholar
|
3
|
Chabeda A, Yanez RJR, Lamprecht R, Meyers
AE, Rybicki EP and Hitzeroth II: Therapeutic vaccines for high-risk
HPV-associated diseases. Papillomavirus Res. 5:46–58.
2018.PubMed/NCBI View Article : Google Scholar
|
4
|
Akhatova A, Chan CK, Azizan A and
Aimagambetova G: The efficacy of therapeutic DNA vaccines
expressing the human papillomavirus E6 and E7 oncoproteins for
treatment of cervical cancer: Systematic review. Vaccines (Basel).
10(53)2021.PubMed/NCBI View Article : Google Scholar
|
5
|
De Sanjose S, Quint WG, Alemany L, Geraets
DT, Klaustermeier JE, Lloveras B, Tous S, Felix A, Bravo LE, Shin
HR, et al: Human papillomavirus genotype attribution in invasive
cervical cancer: A retrospective cross-sectional worldwide study.
Lancet Oncol. 11:1048–1056. 2010.PubMed/NCBI View Article : Google Scholar
|
6
|
Barrios K and Celis E: TriVax-HPV: An
improved peptide-based therapeutic vaccination strategy against
human papillomavirus-induced cancers. Cancer Immunol Immunother.
61:1307–1317. 2012.PubMed/NCBI View Article : Google Scholar
|
7
|
Kyrgiou M, Athanasiou A, Paraskevaidi M,
Mitra A, Kalliala I, Martin-Hirsch P, Arbyn M, Bennett P and
Paraskevaidis E: Adverse obstetric outcomes after local treatment
for cervical preinvasive and early invasive disease according to
cone depth: Systematic review and meta-analysis. BMJ.
354(i3633)2016.PubMed/NCBI View Article : Google Scholar
|
8
|
Schiffman M and Wentzensen N: From human
papillomavirus to cervical cancer. Obstet Gynecol. 116:177–185.
2010.PubMed/NCBI View Article : Google Scholar
|
9
|
Çuburu N, Khan S, Thompson CD, Kim R,
Vellinga J, Zahn R, Lowy DR, Scheper G and Schiller JT: Adenovirus
vector-based prime-boost vaccination via heterologous routes
induces cervicovaginal CD8+ T cell responses against
HPV16 oncoproteins. Int J Cancer. 142:1467–1479. 2018.PubMed/NCBI View Article : Google Scholar
|
10
|
Narisawa-Saito M and Kiyono T: Basic
mechanisms of high-risk human papillomavirus-induced
carcinogenesis: Roles of E6 and E7 proteins. Cancer Sci.
98:1505–1511. 2007.PubMed/NCBI View Article : Google Scholar
|
11
|
Tindle RW: Immune evasion in human
papillomavirus-associated cervical cancer. Nat Rev Cancer. 2:59–64.
2002.PubMed/NCBI View
Article : Google Scholar
|
12
|
Sewell DA, Pan ZK and Paterson Y:
Listeria-based HPV-16 E7 vaccines limit autochthonous tumor
growth in a transgenic mouse model for HPV-16 transformed tumors.
Vaccine. 26:5315–5320. 2008.PubMed/NCBI View Article : Google Scholar
|
13
|
Yang A, Farmer E, Lin J, Wu TC and Hung
CF: The current state of therapeutic and T cell-based vaccines
against human papillomaviruses. Virus Res. 231:148–165.
2017.PubMed/NCBI View Article : Google Scholar
|
14
|
Kash N, Lee MA, Kollipara R, Downing C,
Guidry J and Tyring SK: Safety and efficacy data on vaccines and
immunization to human papillomavirus. J Clin Med. 4:614–633.
2015.PubMed/NCBI View Article : Google Scholar
|
15
|
Di Bonito P, Accardi L, Galati L,
Ferrantelli F and Federico M: Anti-cancer vaccine for
HPV-associated neoplasms: Focus on a therapeutic HPV vaccine based
on a novel tumor antigen delivery method using endogenously
engineered exosomes. Cancers (Basel). 11(138)2019.PubMed/NCBI View Article : Google Scholar
|
16
|
Kabir IM, Dutsinma UA, Bala JA, Yusuf L,
Abubakar SD, Kumurya AS, Bulama HA, Bello ZM and Aliyu IA: The need
for therapeutic HPV vaccines as a means of curbing the menace of
cervical cancer. Indian J Gynecol Oncol. 19(96)2021.
|
17
|
Gupta G, Glueck R and Patel PR: HPV
vaccines: Global perspectives. Hum Vaccin Immunother. 13:1421–1424.
2017.PubMed/NCBI View Article : Google Scholar
|
18
|
Rafael TS, Rotman J, Brouwer OR, van der
Poel HG, Mom CH, Kenter GG, de Gruijl TD and Jordanova ES:
Immunotherapeutic approaches for the treatment of HPV-associated
(pre-)cancer of the cervix, vulva and penis. J Clin Med.
11(1101)2022.PubMed/NCBI View Article : Google Scholar
|
19
|
Frazer IH, Leggatt GR and Mattarollo SR:
Prevention and treatment of papillomavirus-related cancers through
immunization. Annu Rev Immunol. 29:111–138. 2011.PubMed/NCBI View Article : Google Scholar
|
20
|
Yang A, Jeang J, Cheng K, Cheng T, Yang B,
Wu TC and Hung CF: Current state in the development of candidate
therapeutic HPV vaccines. Expert Rev Vaccines. 15:989–1007.
2016.PubMed/NCBI View Article : Google Scholar
|
21
|
Skeate JG, Woodham AW, Einstein MH, Da
Silva DM and Kast WM: Current therapeutic vaccination and
immunotherapy strategies for HPV-related diseases. Hum Vaccin
Immunother. 12:1418–1429. 2016.PubMed/NCBI View Article : Google Scholar
|
22
|
Yao Y, Huang W, Yang X, Sun W, Liu X, Cun
W and Ma Y: HPV-16 E6 and E7 protein T cell epitopes prediction
analysis based on distributions of HLA-A loci across populations:
An in silico approach. Vaccine. 31:2289–2294. 2013.PubMed/NCBI View Article : Google Scholar
|
23
|
Kumar A, Hussain S, Yadav IS, Gissmann L,
Natarajan K, Das BC and Bharadwaj M: Identification of human
papillomavirus-16 E6 variation in cervical cancer and their impact
on T and B cell epitopes. J Virol Methods. 218:51–58.
2015.PubMed/NCBI View Article : Google Scholar
|
24
|
Ma B, Maraj B, Tran NP, Knoff J, Chen A,
Alvarez RD, Hung CF and Wu TC: Emerging human papillomavirus
vaccines. Expert Opin Emerg Drugs. 17:469–492. 2012.PubMed/NCBI View Article : Google Scholar
|
25
|
Bermúdez-Humarán LG, Cortes-Perez NG, Le
Loir Y, Alcocer-González JM, Tamez-Guerra RS, de Oca-Luna RM and
Langella P: An inducible surface presentation system improves
cellular immunity against human papillomavirus type 16 E7 antigen
in mice after nasal administration with recombinant lactococci. J
Med Microbiol. 53:427–433. 2004.PubMed/NCBI View Article : Google Scholar
|
26
|
Adachi K, Kawana K, Yokoyama T, Fujii T,
Tomio A, Miura S, Tomio K, Kojima S, Oda K, Sewaki T, et al: Oral
immunization with a Lactobacillus casei vaccine expressing
human papillomavirus (HPV) type 16 E7 is an effective strategy to
induce mucosal cytotoxic lymphocytes against HPV16 E7. Vaccine.
28:2810–2817. 2010.PubMed/NCBI View Article : Google Scholar
|
27
|
Peters C and Paterson Y: Enhancing the
immunogenicity of bioengineered Listeria monocytogenes by
passaging through live animal hosts. Vaccine. 21:1187–1194.
2003.PubMed/NCBI View Article : Google Scholar
|
28
|
Darji A, Guzmán CA, Gerstel B, Wachholz P,
Timmis KN, Wehland J, Chakraborty T and Weiss S: Oral somatic
transgene vaccination using attenuated S. typhimurium. Cell.
91:765–775. 1997.PubMed/NCBI View Article : Google Scholar
|
29
|
Krul MR, Tijhaar EJ, Kleijne JA, Van Loon
AM, Nievers MG, Schipper H, Geerse L, Van der Kolk M, Steerenberg
PA, Mooi FR and Den Otter W: Induction of an antibody response in
mice against human papillomavirus (HPV) type 16 after immunization
with HPV recombinant Salmonella strains. Cancer Immunol
Immunother. 43:44–48. 1996.PubMed/NCBI View Article : Google Scholar
|
30
|
Liu DW, Tsao YP, Kung JT, Ding YA, Sytwu
HK, Xiao X and Chen SL: Recombinant adeno-associated virus
expressing human papillomavirus type 16 E7 peptide DNA fused with
heat shock protein DNA as a potential vaccine for cervical cancer.
J Virol. 74:2888–2894. 2000.PubMed/NCBI View Article : Google Scholar
|
31
|
Hsieh CJ, Kim TW, Hung CF, Juang J, Moniz
M, Boyd DA, He L, Chen PJ, Chen CH and Wu TC: Enhancement of
vaccinia vaccine potency by linkage of tumor antigen gene to gene
encoding calreticulin. Vaccine. 22:3993–4001. 2004.PubMed/NCBI View Article : Google Scholar
|
32
|
Gomez-Gutierrez JG, Elpek KG, Montes de
Oca-Luna R, Shirwan H, Sam Zhou H and McMasters KM: Vaccination
with an adenoviral vector expressing calreticulin-human
papillomavirus 16 E7 fusion protein eradicates E7 expressing
established tumors in mice. Cancer Immunol Immunother. 56:997–1007.
2007.PubMed/NCBI View Article : Google Scholar
|
33
|
Cassetti MC, McElhiney SP, Shahabi V,
Pullen JK, Le Poole IC, Eiben GL, Smith LR and Kast WM: Antitumor
efficacy of Venezuelan equine encephalitis virus replicon particles
encoding mutated HPV16 E6 and E7 genes. Vaccine. 22:520–527.
2004.PubMed/NCBI View Article : Google Scholar
|
34
|
Borysiewicz LK, Fiander A, Nimako M, Man
S, Wilkinson GW, Westmoreland D, Evans AS, Adams M, Stacey SN,
Boursnell ME, et al: A recombinant vaccinia virus encoding human
papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy
for cervical cancer. Lancet. 347:1523–1527. 1996.PubMed/NCBI View Article : Google Scholar
|
35
|
Hsu KF, Hung CF, Cheng WF, He L, Slater
LA, Ling M and Wu TC: Enhancement of suicidal DNA vaccine potency
by linking Mycobacterium tuberculosis heat shock protein 70 to an
antigen. Gene Ther. 8:376–383. 2001.PubMed/NCBI View Article : Google Scholar
|
36
|
Lamikanra A, Pan ZK, Isaacs SN, Wu TC and
Paterson Y: Regression of established human papillomavirus type 16
(HPV-16) immortalized tumors in vivo by vaccinia viruses expressing
different forms of HPV-16 E7 correlates with enhanced CD8(+) T-cell
responses that home to the tumor site. J Virol. 75:9654–9664.
2001.PubMed/NCBI View Article : Google Scholar
|
37
|
Zurkova K, Babiarova K, Hainz P,
Krystofova J, Kutinova L, Otahal P and Nemeckova S: The expression
of the soluble isoform of hFlt3 ligand by recombinant vaccinia
virus enhances immunogenicity of the vector. Oncol Rep.
21:1335–1343. 2009.PubMed/NCBI View Article : Google Scholar
|
38
|
Chang CL, Ma B, Pang X, Wu TC and Hung CF:
Treatment with cyclooxygenase-2 inhibitors enables repeated
administration of vaccinia virus for control of ovarian cancer. Mol
Ther. 17:1365–1372. 2009.PubMed/NCBI View Article : Google Scholar
|
39
|
Ginaldi L, Loreto MF, Corsi MP, Modesti M
and De Martinis M: Immunosenescence and infectious diseases.
Microbes Infect. 3:851–857. 2001.PubMed/NCBI View Article : Google Scholar
|
40
|
Lin K, Doolan K, Hung CF and Wu T:
Perspectives for preventive and therapeutic HPV vaccines. J Formos
Med Assoc. 109:4–24. 2010.PubMed/NCBI View Article : Google Scholar
|
41
|
Rosales R and Rosales C: Immune therapy
for human papillomaviruses-related cancers. World J Clin Oncol.
5:1002–1019. 2014.PubMed/NCBI View Article : Google Scholar
|
42
|
Su JH, Wu A, Scotney E, Ma B, Monie A,
Hung CF and Wu TC: Immunotherapy for cervical cancer: Research
status and clinical potential. BioDrugs. 24:109–129.
2010.PubMed/NCBI View Article : Google Scholar
|
43
|
Kim J, Hung C, Juang J, He L, Kim TW,
Armstrong D, Pai SI, Chen PJ, Lin CT, Boyd DA and Wu TC: Comparison
of HPV DNA vaccines employing intracellular targeting strategies.
Gene Ther. 11:1011–1018. 2004.PubMed/NCBI View Article : Google Scholar
|
44
|
Fu TM, Ulmer JB, Caulfield MJ, Deck RR,
Friedman A, Wang S, Liu X, Donnelly JJ and Liu MA: Priming of
cytotoxic T lymphocytes by DNA vaccines: Requirement for
professional antigen presenting cells and evidence for antigen
transfer from myocytes. Mol Med. 3:362–371. 1997.PubMed/NCBI
|
45
|
Porgador A, Irvine KR, Iwasaki A, Barber
BH, Restifo NP and Germain RN: Predominant role for directly
transfected dendritic cells in antigen presentation to CD8+ T cells
after gene gun immunization. J Exp Med. 188:1075–1082.
1998.PubMed/NCBI View Article : Google Scholar
|
46
|
Chattergoon MA, Robinson TM, Boyer JD and
Weiner DB: Specific immune induction following DNA-based
immunization through in vivo transfection and activation of
macrophages/antigen-presenting cells. J Immunol. 160:5707–5718.
1998.PubMed/NCBI
|
47
|
Dupuis M, Denis-Mize K, Woo C, Goldbeck C,
Selby MJ, Chen M, Otten GR, Ulmer JB, Donnelly JJ, Ott G and
McDonald DM: Distribution of DNA vaccines determines their
immunogenicity after intramuscular injection in mice. J Immunol.
165:2850–2858. 2000.PubMed/NCBI View Article : Google Scholar
|
48
|
Tsen SWD, Paik AH, Hung CF and Wu TC:
Enhancing DNA vaccine potency by modifying the properties of
antigen-presenting cells. Expert Rev Vaccines. 6:227–239.
2007.PubMed/NCBI View Article : Google Scholar
|
49
|
Berglund P, Quesada-Rolander M, Putkonen
P, Biberfeld G, Thorstensson R and Liljeström P: Outcome of
immunization of cynomolgus monkeys with recombinant Semliki Forest
virus encoding human immunodeficiency virus type 1 envelope protein
and challenge with a high dose of SHIV-4 virus. AIDS Res Hum
Retroviruses. 13:1487–1495. 1997.PubMed/NCBI View Article : Google Scholar
|
50
|
Cheng WF, Hung CF, Hsu KF, Chai CY, He L,
Polo JM, Slater LA, Ling M and Wu TC: Cancer immunotherapy using
Sindbis virus replicon particles encoding a VP22-antigen fusion.
Hum Gene Ther. 13:553–568. 2002.PubMed/NCBI View Article : Google Scholar
|
51
|
Varnavski AN, Young PR and Khromykh AA:
Stable high-level expression of heterologous genes in vitro and in
vivo by noncytopathic DNA-based Kunjin virus replicon vectors. J
Virol. 74:4394–4403. 2000.PubMed/NCBI View Article : Google Scholar
|
52
|
Mackova J, Kutinova L, Hainz P, Krystofova
J, Sroller V, Otahal P, Gabriel P and Nemeckova S: Adjuvant effect
of dendritic cells transduced with recombinant vaccinia virus
expressing HPV16-E7 is inhibited by co-expression of IL12. Int J
Oncol. 24:1581–1588. 2004.PubMed/NCBI
|
53
|
Benencia F, Courrèges MC and Coukos G:
Whole tumor antigen vaccination using dendritic cells: Comparison
of RNA electroporation and pulsing with UV-irradiated tumor cells.
J Transl Med. 6(21)2008.PubMed/NCBI View Article : Google Scholar
|
54
|
Wang T, Ling M, Shih I, Pham T, Pai S, Lu
Z, Kurman RJ, Pardoll DM and Wu TC: Intramuscular administration of
E7-transfected dendritic cells generates the most potent
E7-specific anti-tumor immunity. Gene Ther. 7:726–733.
2000.PubMed/NCBI View Article : Google Scholar
|
55
|
Kim JH, Kang TH, Noh KH, Bae HC, Kim SH,
Yoo YD, Seong SY and Kim TW: Enhancement of dendritic cell-based
vaccine potency by anti-apoptotic siRNAs targeting key
pro-apoptotic proteins in cytotoxic CD8(+) T cell-mediated cell
death. Immunol Lett. 122:58–67. 2009.PubMed/NCBI View Article : Google Scholar
|
56
|
Peng S, Kim TW, Lee JH, Yang M, He L, Hung
CF and Wu TC: Vaccination with dendritic cells transfected with BAK
and BAX siRNA enhances antigen-specific immune responses by
prolonging dendritic cell life. Hum Gene Ther. 16:584–593.
2005.PubMed/NCBI View Article : Google Scholar
|
57
|
Ahn YH, Hong SO, Kim JH, Noh KH, Song KH,
Lee YH, Jeon JH, Kim DW, Seo JH and Kim TW: The siRNA cocktail
targeting interleukin 10 receptor and transforming growth factor-β
receptor on dendritic cells potentiates tumour antigen-specific
CD8(+) T cell immunity. Clin Exp Immunol. 181:164–178.
2015.PubMed/NCBI View Article : Google Scholar
|
58
|
Mikysková R, Indrová M, Símová J, Jandlová
T, Bieblová J, Jinoch P, Bubeník J and Vonka V: Treatment of
minimal residual disease after surgery or chemotherapy in mice
carrying HPV16-associated tumours: Cytokine and gene therapy with
IL-2 and GM-CSF. Int J Oncol. 24:161–167. 2004.PubMed/NCBI
|
59
|
Chang EY, Chen CH, Ji H, Wang TL, Hung K,
Lee BP, Huang AY, Kurman RJ, Pardoll DM and Wu T: Antigen-specific
cancer immunotherapy using a GM-CSF secreting allogeneic tumor
cell-based vaccine. Int J Cancer. 86:725–730. 2000.PubMed/NCBI View Article : Google Scholar
|
60
|
Hibma MH: The immune response to
papillomavirus during infection persistence and regression. Open
Virol J. 6:241–248. 2012.PubMed/NCBI View Article : Google Scholar
|
61
|
Vici P, Mariani L, Pizzuti L, Sergi D, Di
Lauro L, Vizza E, Tomao F, Tomao S, Cavallotti C, Paolini F and
Venuti A: Immunologic treatments for precancerous lesions and
uterine cervical cancer. J Exp Clin Cancer Res.
33(29)2014.PubMed/NCBI View Article : Google Scholar
|
62
|
de Freitas AC, de Oliveira THA, Barros MR
and Venuti A: hrHPV E5 oncoprotein: Immune evasion and related
immunotherapies. J Exp Clin Cancer Res. 36(71)2017.PubMed/NCBI View Article : Google Scholar
|
63
|
Spurgeon ME and Lambert PF: Human
papillomavirus and the stroma: Bidirectional crosstalk during the
virus life cycle and carcinogenesis. Viruses. 9(219)2017.PubMed/NCBI View Article : Google Scholar
|
64
|
Langers I, Renoux V, Reschner A, Touzé A,
Coursaget P, Boniver J, Koch J, Delvenne P and Jacobs N: Natural
killer and dendritic cells collaborate in the immune response
induced by the vaccine against uterine cervical cancer. Eur J
Immunol. 44:3585–3595. 2014.PubMed/NCBI View Article : Google Scholar
|
65
|
Veluchamy JP, Heeren AM, Spanholtz J, van
Eendenburg JDH, Heideman DA, Kenter GG, Verheul HM, van der Vliet
HJ, Jordanova ES and de Gruijl TD: High-efficiency lysis of
cervical cancer by allogeneic NK cells derived from umbilical cord
progenitors is independent of HLA status. Cancer Immunol
Immunother. 66:51–61. 2017.PubMed/NCBI View Article : Google Scholar
|
66
|
Bergot AS, Kassianos A, Frazer IH and
Mittal D: New approaches to immunotherapy for HPV associated
cancers. Cancers (Basel). 3:3461–3495. 2011.PubMed/NCBI View Article : Google Scholar
|
67
|
Barros MR Jr, de Melo CML, Barros MLCMGR,
de Cássia Pereira de Lima R, de Freitas AC and Venuti A: Activities
of stromal and immune cells in HPV-related cancers. J Exp Clin
Cancer Res. 37(137)2018.PubMed/NCBI View Article : Google Scholar
|
68
|
Park JS, Lee SJ, Hur SY, Kim TJ, Hong SR,
Lee JK, Cho CH, Suh YS, Woo JW and Sung YC: 27 GX-188E, A
therapeutic HPV vaccine, in combination with imiquimod or IL-7-HYFC
for treatment of HPV-16 or HPV-18 related cin 3: Results from phase
2 study. Int J Gynecol Cancer. 29 (Suppl 3):A16.2–A16. 2019.
|
69
|
Choi CH, Choi HJ, Lee JW, Kang ES, Cho D,
Park BK, Kim YM, Kim DY, Seo H, Park M, et al: Phase I study of a B
cell-based and monocyte-based immunotherapeutic vaccine, BVAC-C in
human papillomavirus type 16-or 18-positive recurrent cervical
cancer. J Clin Med. 9(147)2020.PubMed/NCBI View Article : Google Scholar
|
70
|
Choi CG, Choi HJ, Lee JW, Kang ES, Cho D,
Kim YM, Kim D, Seo H, Park M, Kim W, et al: 960PPhase I study of
BVAC-C in HPV type 16 or 18 positive recurrent cervical carcinoma:
Safety, clinical activity and immunologic correlates. Ann Oncol. 29
(Suppl 8)(viii343)2018.
|
71
|
Harper DM, Nieminen P, Donders G, Einstein
MH, Garcia F, Huh WK, Stoler MH, Glavini K, Attley G, Limacher JM,
et al: The efficacy and safety of Tipapkinogen Sovacivec
therapeutic HPV vaccine in cervical intraepithelial neoplasia
grades 2 and 3: Randomized controlled phase II trial with 2.5 years
of follow-up. Gynecol Oncol. 153:521–529. 2019.PubMed/NCBI View Article : Google Scholar
|
72
|
Rahma OE, Herrin VE, Ibrahim RA, Toubaji
A, Bernstein S, Dakheel O, Steinberg SM, Abu Eid R, Mkrtichyan M,
Berzofsky JA and Khleif SN: Pre-immature dendritic cells (PIDC)
pulsed with HPV16 E6 or E7 peptide are capable of eliciting
specific immune response in patients with advanced cervical cancer.
J Transl Med. 12(353)2014.PubMed/NCBI View Article : Google Scholar
|
73
|
Trimble CL, Morrow MP, Kraynyak KA, Shen
X, Dallas M, Yan J, Edwards L, Parker RL, Denny L, Giffear M, et
al: Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic
synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6
and E7 proteins for cervical intraepithelial neoplasia 2/3: A
randomised, double-blind, placebo-controlled phase 2b trial.
Lancet. 386:2078–2088. 2015.PubMed/NCBI View Article : Google Scholar
|
74
|
Kim TJ, Jin HT, Hur SY, Yang HG, Seo YB,
Hong SR, Lee CW, Kim S, Woo JW, Park KS, et al: Clearance of
persistent HPV infection and cervical lesion by therapeutic DNA
vaccine in CIN3 patients. Nat Commun. 5(5317)2014.PubMed/NCBI View Article : Google Scholar
|
75
|
Daayana S, Elkord E, Winters U, Pawlita M,
Roden R, Stern PL and Kitchener HC: Phase II trial of imiquimod and
HPV therapeutic vaccination in patients with vulval intraepithelial
neoplasia. Br J Cancer. 102:1129–1136. 2010.PubMed/NCBI View Article : Google Scholar
|
76
|
Kenter GG, Welters MJ, Valentijn AR, Lowik
MJ, Berends-van der Meer DM, Vloon AP, Essahsah F, Fathers LM,
Offringa R, Drijfhout JW, et al: Vaccination against HPV-16
oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med.
361:1838–1847. 2009.PubMed/NCBI View Article : Google Scholar
|
77
|
Stevanović S, Draper LM, Langhan MM,
Campbell TE, Kwong ML, Wunderlich JR, Dudley ME, Yang JC, Sherry
RM, Kammula US, et al: Complete regression of metastatic cervical
cancer after treatment with human papillomavirus-targeted
tumor-infiltrating T cells. J Clin Oncol. 33:1543–1550.
2015.PubMed/NCBI View Article : Google Scholar
|
78
|
Mo Y, Ma J, Zhang H, Shen J, Chen J, Hong
J, Xu Y and Qian C: Prophylactic and therapeutic HPV vaccines:
Current scenario and perspectives. Front Cell Infect Microbiol.
12(909223)2022.PubMed/NCBI View Article : Google Scholar
|
79
|
Maciag PC, Radulovic S and Rothman J: The
first clinical use of a live-attenuated Listeria
monocytogenes vaccine: A phase I safety study of Lm-LLO-E7 in
patients with advanced carcinoma of the cervix. Vaccine.
27:3975–3983. 2009.PubMed/NCBI View Article : Google Scholar
|
80
|
van Poelgeest MI, Welters MJ, van Esch EM,
Stynenbosch LF, Kerpershoek G, van Persijn van Meerten EL, Van den
Hende M, Löwik MJ, Berends-van der Meer DM, Fathers LM, et al:
HPV16 synthetic long peptide (HPV16-SLP) vaccination therapy of
patients with advanced or recurrent HPV16-induced gynecological
carcinoma, a phase II trial. J Transl Med. 11(88)2013.PubMed/NCBI View Article : Google Scholar
|
81
|
Santin AD, Bellone S, Palmieri M, Ravaggi
A, Romani C, Tassi R, Roman JJ, Burnett A, Pecorelli S and Cannon
MJ: HPV16/18 E7-pulsed dendritic cell vaccination in cervical
cancer patients with recurrent disease refractory to standard
treatment modalities. Gynecol Oncol. 100:469–478. 2006.PubMed/NCBI View Article : Google Scholar
|
82
|
Komdeur FL, Singh A, van de Wall S,
Meulenberg JJM, Boerma A, Hoogeboom BN, Paijens ST, Oyarce C, de
Bruyn M, Schuuring E, et al: First-in-human phase I clinical trial
of an SFV-based RNA replicon cancer vaccine against HPV-induced
cancers. Mol Ther. 29:611–625. 2021.PubMed/NCBI View Article : Google Scholar
|
83
|
Choi YJ, Hur SY, Kim TJ, Hong SR, Lee JK,
Cho CH, Park KS, Woo JW, Sung YC, Suh YS and Park JS: A phase II,
prospective, randomized, multicenter, open-label study of GX-188E,
an HPV DNA vaccine, in patients with cervical intraepithelial
neoplasia 3. Clin Cancer Res. 26:1616–1623. 2020.PubMed/NCBI View Article : Google Scholar
|
84
|
Choi CH, Choi HJ, Lee JW, Kang ES, Cho D,
Kim YM, Kim D, Seo H, Park M, Kim W, et al: Phase I study of BVAC-C
in HPV type 16 or 18 positive recurrent cervical carcinoma: Safety,
clinical activity and immunologic correlates. Ann Oncol. 29 (Suppl
8)(viii343)2018.
|