1
|
Schuster FL and Sullivan JJ: Cultivation
of clinically significant hemoflagellates. Clin Microbiol Rev.
15:374–389. 2002.PubMed/NCBI View Article : Google Scholar
|
2
|
Moreno J and Alvar J: Canine
leishmaniasis: Epidemiological risk and the experimental model.
Trends Parasitol. 18:399–405. 2002.PubMed/NCBI View Article : Google Scholar
|
3
|
Nussbaum K, Honek J, Cadmus CMCVC and
Efferth T: Trypanosomatid parasites causing neglected diseases.
Curr Med Chem. 17:1594–1617. 2010.PubMed/NCBI View Article : Google Scholar
|
4
|
Robays J, Nyamowala G, Sese C, Betu Ku
Mesu Kande V, Lutumba P, Van der Veken W and Boelaert M: High
failure rates of melarsoprol for sleeping sickness, Democratic
Republic of Congo. Emerg Infect Dis. 14:966–967. 2008.PubMed/NCBI View Article : Google Scholar
|
5
|
World Health Organization. Tropical
disease research, progress 1995-1996. WHO Tech Rep Ser. 1:108–139.
1997.PubMed/NCBI View Article : Google Scholar
|
6
|
World Health Organization (WHO): Tropical
disease research. WHO, Geneva, 1997.
|
7
|
World Health Organization. Weekly
epidemiological record, 2016, vol. 91, 38 [full issue]. Wkly
Epidemiol Rec. 91:432–440. 2016.
|
8
|
Rodrigues JCF, Godinho JLP and de Souza W:
Biology of human pathogenic trypanosomatids: Epidemiology,
lifecycle and ultrastructure. Subcell Biochem. 74:1–42.
2014.PubMed/NCBI View Article : Google Scholar
|
9
|
Atouguia J and Costa J: Therapy of human
African trypanosomiasis: Current situation. Mem Inst Oswaldo Cruz.
94:221–224. 1999.PubMed/NCBI View Article : Google Scholar
|
10
|
Pépin J and Milord F: The treatment of
human African trypanosomiasis. Adv Parasitol. 33:1–47.
1994.PubMed/NCBI View Article : Google Scholar
|
11
|
UNICEF/UNDP/World Bank/WHO Special
Programme for Research and Training in Tropical Diseases.
Operational guidelines for the establishment and functioning of
data and safety monitoring boards: special programme for research
and training in tropical diseases. Int J Pharm Med. 20:25–36.
2006.
|
12
|
Legros D, Olilvier G, Gastellu-Etchegorry
M, Paquet C, Burri C, Jannin J and Büscher P: Treatment of human
African trypanosomiasis-present situation and needs for research
and development. Lancet Infect Dis. 2:437–440. 2002.PubMed/NCBI View Article : Google Scholar
|
13
|
Wang CC: Molecular mechanisms and
therapeutic approaches to the treatment of African trypanosomiasis.
Annu Rev Pharmacol Toxicol. 35:93–127. 1995.PubMed/NCBI View Article : Google Scholar
|
14
|
Barrett MP, Coombs GH and Mottram JC:
Recent advances in identifying and validating drug targets in
trypanosomes and leishmanias. Trends Microbiol. 7:82–88.
1999.PubMed/NCBI View Article : Google Scholar
|
15
|
Patterson S, Alphey MS, Jones DC, Shanks
EJ, Street IP, Frearson JA, Wyatt PG, Gilbert IH and Fairlamb AH:
Dihydroquinazolines as a novel class of Trypanosoma brucei
trypanothione reductase inhibitors: Discovery, synthesis, and
characterization of their binding mode by protein crystallography.
J Med Chem. 54:6514–6530. 2011.PubMed/NCBI View Article : Google Scholar
|
16
|
Urbina JA, Concepcion JL, Rangel S, Visbal
G and Lira R: Squalene synthase as a chemotherapeutic target in
Trypanosoma cruzi and Leishmania mexicana. Mol
Biochem Parasitol. 125:35–45. 2002.PubMed/NCBI View Article : Google Scholar
|
17
|
Looker DL, Marr JJ and Berens RL:
Mechanisms of action of pyrazolopyrimidines in Leishmania
donovani. J Biol Chem. 261:9412–9415. 1986.PubMed/NCBI
|
18
|
Sienkiewicz N, Jarosławski S, Wyllie S and
Fairlamb AH: Chemical and genetic validation of dihydrofolate
reductase-thymidylate synthase as a drug target in African
trypanosomes. Mol Microbiol. 69:520–533. 2008.PubMed/NCBI View Article : Google Scholar
|
19
|
Kalel VC, Emmanouilidis L, Dawidowski M,
Schliebs W, Sattler M, Popowicz GM and Erdmann R: Inhibitors of
glycosomal protein import provide new leads against
trypanosomiasis. Microb Cell. 4:229–232. 2017.PubMed/NCBI View Article : Google Scholar
|
20
|
Opperdoes FR and Borst P: Localization of
nine glycolytic enzymes in a microbody-like organelle in
Trypanosoma brucei: The glycosome. FEBS Lett. 80:360–364.
1977.PubMed/NCBI View Article : Google Scholar
|
21
|
Clayton CE and Michels P: Metabolic
compartmentation in African trypanosomes. Parasitol Today.
12:465–471. 1996.PubMed/NCBI View Article : Google Scholar
|
22
|
Engel JC, de Cazzulo BMF, Stoppani AO,
Cannata JJ and Cazzulo JJ: Aerobic glucose fermentation by
Trypanosoma cruzi axenic culture amastigote-like forms
during growth and differentiation to epimastigotes. Mol Biochem
Parasitol. 26:1–10. 1987.PubMed/NCBI View Article : Google Scholar
|
23
|
Moyersoen J, Choe J, Fan E, Hol WGJ and
Michels PAM: Biogenesis of peroxisomes and glycosomes:
Trypanosomatid glycosome assembly is a promising new drug target.
FEMS Microbiol Rev. 28:603–643. 2004.PubMed/NCBI View Article : Google Scholar
|
24
|
Gualdrón-López M, Brennand A, Avilán L and
Michels PAM: Translocation of solutes and proteins across the
glycosomal membrane of trypanosomes; possibilities and limitations
for targeting with trypanocidal drugs. Parasitology. 140:1–20.
2013.PubMed/NCBI View Article : Google Scholar
|
25
|
Sommer JM, Bradley PJ, Wang C and Johnson
PJ: Biogenesis of specialized organelles: Glycosomes and
hydrogenosomes. In: Smith DF, Parsons M (eds), Molecular biology of
parasitic protozoa, Vol. 13. Oxford Press, New York, N.Y,
pp159-180, 1996.
|
26
|
Titorenko VI, Nicaud JM, Wang H, Chan H
and Rachubinski RA: Acyl-CoA oxidase is imported as a
heteropentameric, cofactor-containing complex into peroxisomes of
Yarrowia lipolytica. J Cell Biol. 156:481–494. 2002.PubMed/NCBI View Article : Google Scholar
|
27
|
Heiland I and Erdmann R: Biogenesis of
peroxisomes. Topogenesis of the peroxisomal membrane and matrix
proteins. FEBS J. 272:2362–2372. 2005.PubMed/NCBI View Article : Google Scholar
|
28
|
Verplaetse E, Rigden DJ and Michels PAM:
Identification, characterization and essentiality of the unusual
peroxin 13 from Trypanosoma brucei. Biochim Biophys Acta.
1793:516–527. 2009.PubMed/NCBI View Article : Google Scholar
|
29
|
Lametschwandtner G, Brocard C, Fransen M,
Van Veldhoven P, Berger J and Hartig A: The difference in
recognition of terminal tripeptides as peroxisomal targeting signal
1 between yeast and human is due to different affinities of their
receptor Pex5p to the cognate signal and to residues adjacent to
it. J Biol Chem. 273:33635–33643. 1998.PubMed/NCBI View Article : Google Scholar
|
30
|
Cyr N, Madrid KP, Strasser R, Aurousseau
M, Finn R, Ausio J and Jardim A: Leishmania donovani peroxin
14 undergoes a marked conformational change following association
with peroxin 5. J Biol Chem. 283:31488–31499. 2008.PubMed/NCBI View Article : Google Scholar
|
31
|
Brocard C and Hartig A: Peroxisome
targeting signal 1: Is it really a simple tripeptide? Biochim
Biophys Acta. 1763:1565–1573. 2006.PubMed/NCBI View Article : Google Scholar
|
32
|
Galland N, Demeure F, Hannaert V,
Verplaetse E, Vertommen D, Van der Smissen P, Courtoy PJ and
Michels PA: Characterization of the role of the receptors PEX5 and
PEX7 in the import of proteins into glycosomes of
Trypanosoma brucei. Biochim Biophys Acta. 1773:521–535.
2007.PubMed/NCBI View Article : Google Scholar
|
33
|
Verplaetse E, Gualdrón-López M, Chevalier
N and Michels PAM: Studies on the organization of the docking
complex involved in matrix protein import into glycosomes of
Trypanosoma brucei. Biochem Biophys Res Commun. 424:781–785.
2012.PubMed/NCBI View Article : Google Scholar
|
34
|
Brennand A, Rigden DJ and Michels PAM:
Trypanosomes contain two highly different isoforms of peroxin PEX13
involved in glycosome biogenesis. FEBS Lett. 586:1765–1771.
2012.PubMed/NCBI View Article : Google Scholar
|
35
|
Meinecke M, Cizmowski C, Schliebs W,
Krüger V, Beck S, Wagner R and Erdmann R: The peroxisomal
importomer constitutes a large and highly dynamic pore. Nat Cell
Boil. 12:273–277. 2010.PubMed/NCBI View Article : Google Scholar
|
36
|
Francisco T, Rodrigues TA, Freitas MO,
Grou CP, Carvalho AF, Sá-Miranda C, Pinto MP and Azevedo JE: A
cargo-centered perspective on the PEX5 receptor-mediated
peroxisomal protein import pathway. J Biol Chem. 288:29151–29159.
2013.PubMed/NCBI View Article : Google Scholar
|
37
|
Moyersoen J, Choe J, Kumar A, Voncken FG,
Hol WG and Michels PA: Characterization of Trypanosoma
brucei PEX14 and its role in the import of glycosomal matrix
proteins. Eur J Biochem. 270:2059–2067. 2003.PubMed/NCBI View Article : Google Scholar
|
38
|
Krazy H and Michels PAM: Identification
and characterization of three peroxins-PEX6, PEX10 and
PEX12-involved in glycosome biogenesis in Trypanosoma
brucei. Biochim Biophys Acta. 1763:6–17. 2006.PubMed/NCBI View Article : Google Scholar
|
39
|
Dawidowski M, Emmanouilidis L, Kalel VC,
Tripsianes K, Schorpp K, Hadian K, Kaiser M, Mäser P, Kolonko M,
Tanghe S, et al: Inhibitors of PEX14 disrupt protein import into
glycosomes and kill Trypanosoma parasites. Science.
355:1416–1420. 2017.PubMed/NCBI View Article : Google Scholar
|
40
|
Opperdoes FR, Baudhuin P, Coppens I, De
Roe C, Edwards SW, Weijers PJ and Misset O: Purification,
morphometric analysis, and characterization of the glycosomes
(microbodies) of the protozoan hemoflagellate Trypanosoma
brucei. J Cell Biol. 98:1178–1184. 1984.PubMed/NCBI View Article : Google Scholar
|
41
|
Visser N and Opperdoes FR: Glycolysis in
Trypanosoma brucei. Eur J Biochem. 103:623–632.
1980.PubMed/NCBI View Article : Google Scholar
|
42
|
Michels PA: Evolutionary aspects of
trypanosomes: Analysis of genes. J Mol Evol. 24:45–52.
1986.PubMed/NCBI View Article : Google Scholar
|
43
|
Fernandes AP, Nelson K and Beverley SM:
Evolution of nuclear ribosomal RNAs in kinetoplastid protozoa:
perspectives on the age and origins of parasitism. Proc Natl Acad
Sci USA. 90:11608–11612. 1993.PubMed/NCBI View Article : Google Scholar
|
44
|
Opperdoes FR: Compartmentation of
carbohydrate metabolism in trypanosomes. Annu Rev Microbiol.
41:127–151. 1987.PubMed/NCBI View Article : Google Scholar
|
45
|
Ruppin E, Papin JA, de Figueiredo LF and
Schuster S: Metabolic reconstruction, constraint-based analysis and
game theory to probe genome-scale metabolic networks. Curr Opin
Biotechnol. 21:502–510. 2010.PubMed/NCBI View Article : Google Scholar
|
46
|
Hart D and Coombs GH: Leishmania
mexicana: Energy metabolism of amastigotes and promastigotes. Exp
Parasitol. 54:397–409. 1982.PubMed/NCBI View Article : Google Scholar
|
47
|
Creek DJ, Mazet M, Achcar F, Anderson J,
Kim DH, Kamour R, Morand P, Millerioux Y, Biran M, Kerkhoven EJ, et
al: Probing the metabolic network in bloodstream-form
Trypanosoma brucei using untargeted metabolomics with stable
isotope labelled glucose. PLoS Pathog. 11(e1004689)2015.PubMed/NCBI View Article : Google Scholar
|
48
|
Haanstra JR, Kerkhoven EJ, van Tuijl A,
Blits M, Wurst M, van Nuland R, Albert MA, Michels PA, Bouwman J,
Clayton C, et al: A domino effect in drug action: From metabolic
assault towards parasite differentiation. Mol Microbiol. 79:94–108.
2011.PubMed/NCBI View Article : Google Scholar
|
49
|
Michels P, Hannaert V and Bringaud F:
Metabolic aspects of glycosomes in trypanosomatidae-new data and
views. Parasitol Today. 16:482–489. 2000.PubMed/NCBI View Article : Google Scholar
|
50
|
Verlinde CL, Hannaert V, Blonski C,
Willson M, Périé JJ, Fothergill-Gilmore LA, Opperdoes FR, Gelb MH,
Hol WG and Michels PA: Glycolysis as a target for the design of new
anti-trypanosome drugs. Drug Resist Updat. 4:50–65. 2001.PubMed/NCBI View Article : Google Scholar
|
51
|
D'Antonio EL, Deinema MS, Kearns SP, Frey
TA, Tanghe S, Perry K, Roy TA, Gracz HS, Rodriguez A and D'Antonio
J: Structure-based approach to the identification of a novel group
of selective glucosamine analogue inhibitors of Trypanosoma
cruzi glucokinase. Mol Biochem Parasitol. 204:64–76.
2015.PubMed/NCBI View Article : Google Scholar
|
52
|
Merritt C, Silva LE, Tanner AL, Stuart K
and Pollastri MP: Kinases as druggable targets in trypanosomatid
protozoan parasites. Chem Rev. 114:11280–11304. 2014.PubMed/NCBI View Article : Google Scholar
|
53
|
Willson M, Alric I, Perie J and Sanejouand
YH: Yeast hexokinase inhibitors designed from the 3-D enzyme
structure rebuilding. J Enzyme Inhib. 12:101–121. 1997.PubMed/NCBI View Article : Google Scholar
|
54
|
Chambers JW, Fowler ML, Morris MT and
Morris JC: The anti-trypanosomal agent lonidamine inhibits
Trypanosoma brucei hexokinase 1. Mol Biochem Parasitol.
158:202–207. 2008.PubMed/NCBI View Article : Google Scholar
|
55
|
Cordeiro AT, Michels PAM, Delboni LF and
Thiemann OH: The crystal structure of glucose-6-phosphate isomerase
from Leishmania mexicana reveals novel active site features.
Eur J Biochem. 271:2765–2772. 2004.PubMed/NCBI View Article : Google Scholar
|
56
|
Dax C, Duffieux F, Chabot N, Coincon M,
Sygusch J, Michels PAM and Blonski C: Selective irreversible
inhibition of fructose 1,6-bisphosphate aldolase from
Trypanosoma brucei. J Med Chem. 49:1499–1502.
2006.PubMed/NCBI View Article : Google Scholar
|
57
|
Azéma L, Lherbet C, Baudoin C and Blonski
C: Cell permeation of a Trypanosoma brucei aldolase
inhibitor: Evaluation of different enzyme-labile phosphate
protecting groups. Bioorg Med Chem Lett. 16:3440–3443.
2006.PubMed/NCBI View Article : Google Scholar
|
58
|
Bakker BM, Michels PA, Opperdoes FR and
Westerhoff HV: Glycolysis in bloodstream form Trypanosoma
brucei can be understood in terms of the kinetics of the glycolytic
enzymes. J Biol Chem. 272:3207–3215. 1997.PubMed/NCBI View Article : Google Scholar
|
59
|
Wierenga R, Noble M, Vriend G, Nauche S
and Hol W: Refined 1.83 A structure of trypanosomal triosephosphate
isomerase crystallized in the presence of 2.4 M-ammonium sulphate:
A comparison with the structure of the trypanosomal triosephosphate
isomerase-glycerol-3-phosphate complex. J Mol Biol. 220:995–1015.
1991.PubMed/NCBI View Article : Google Scholar
|
60
|
Galland N, de Walque S, Voncken FGJ,
Verlinde CLMJ and Michels PAM: An internal sequence targets
Trypanosoma brucei triosephosphate isomerase to glycosomes.
Mol Biochem Parasitol. 171:45–49. 2010.PubMed/NCBI View Article : Google Scholar
|
61
|
López C, Chevalier N, Hannaert V, Rigden
DJ, Michels PAM and Ramirez JL: Leishmania donovani
phosphofructokinase. Gene characterization, biochemical properties
and structure-modeling studies. Eur J Biochem. 269:3978–3989.
2002.PubMed/NCBI View Article : Google Scholar
|
62
|
Martinez-Oyanedel J, McNae IW, Nowicki MW,
Keillor JW, Michels PA, Fothergill-Gilmore LA and Walkinshaw MD:
The first crystal structure of phosphofructokinase from a
eukaryote: Trypanosoma brucei. J Mol Biol. 366:1185–1198.
2007.PubMed/NCBI View Article : Google Scholar
|
63
|
Lo T, Westwood ME, McLellan AC, Selwood T
and Thornalley PJ: Binding and modification of proteins by
methylglyoxal under physiological conditions. A kinetic and
mechanistic study with N alpha-acetylarginine, N
alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum
albumin. J Biol Chem. 269:32299–32305. 1994.PubMed/NCBI
|
64
|
Denise H, Giroud C, Barrett MP and Baltz
T: Affinity chromatography using trypanocidal arsenical drugs
identifies a specific interaction between glycerol-3-phosphate
dehydrogenase from Trypanosoma brucei and Cymelarsan. Eur J
Biochem. 259:339–346. 1999.PubMed/NCBI View Article : Google Scholar
|
65
|
Nwagwu M and Opperdoes FR: Regulation of
glycolysis in Trypanosoma brucei: Hexokinase and
phosphofructokinase activity. Acta Trop. 39:61–72. 1982.PubMed/NCBI
|
66
|
Cronin CN and Tipton KF: Purification and
regulatory properties of phosphofructokinase from
Trypanosoma (Trypanozoon) brucei brucei. Biochem J.
227:113–124. 1985.PubMed/NCBI View Article : Google Scholar
|
67
|
Bakker BM, Mensonides FI, Teusink B, van
Hoek P, Michels PA and Westerhoff HV: Compartmentation protects
trypanosomes from the dangerous design of glycolysis. Proc Natl
Acad Sci USA. 97:2087–2092. 2000.PubMed/NCBI View Article : Google Scholar
|
68
|
McNae IW, Kinkead J, Malik D, Yen LH,
Walker MK, Swain C, Webster SP, Gray N, Fernandes PM, Myburgh E, et
al: Fast acting allosteric phosphofructokinase inhibitors block
trypanosome glycolysis and cure acute African trypanosomiasis in
mice. Nat Commun. 12(1052)2021.PubMed/NCBI View Article : Google Scholar
|
69
|
Cortés-Figueroa AA, Pérez-Torres A,
Salaiza N, Cabrera N, Escalona-Montaño A, Rondán A, Aguirre-García
M, Gómez-Puyou A, Pérez-Montfort R and Becker I: A monoclonal
antibody that inhibits Trypanosoma cruzi growth in vitro and
its reaction with intracellular triosephosphate isomerase.
Parasitol Res. 102:635–643. 2008.PubMed/NCBI View Article : Google Scholar
|