1
|
Baykara O: Kanser tedavisinde güncel
yaklaşimlar. BAUN Sağ Bil Derg. 5:154–165. 2016.
|
2
|
Ercın ME and Şimşek E: Programming of
energy metabolism in prostate carcinoma: In silico analysis.
Gümüşhane Üniv Sağlık Bilim Derg. 9:350–356. 2021.
|
3
|
Rawla P: Epidemiology of prostate cancer.
World J Oncol. 10:63–89. 2019.PubMed/NCBI View Article : Google Scholar
|
4
|
Liu B, Xu L, Dai EN, Tian JX and Li JM:
Anti-tumoral potential of MDA19 in human osteosarcoma via
suppressing PI3K/Akt/mTOR signaling pathway. Biosci Rep.
38(BSR20181501)2018.PubMed/NCBI View Article : Google Scholar
|
5
|
Yoon H, Shaw JL, Haigis MC and Greka A:
Lipid metabolism in sickness and in health: Emerging regulators of
lipotoxicity. Mol Cell. 81:3708–3730. 2021.PubMed/NCBI View Article : Google Scholar
|
6
|
Stoykova GE and Schlaepfer IR: Lipid
metabolism and endocrine resistance in prostate cancer, and new
opportunities for therapy. Int J Mol Sci. 20(2626)2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Jin C and Yuan P: Implications of lipid
droplets in lung cancer: Associations with drug resistance. Oncol
Lett. 20:2091–2104. 2020.PubMed/NCBI View Article : Google Scholar
|
8
|
Guijas C, Rodríguez JP, Rubio JM, Balboa
MA and Balsinde J: Phospholipase A2 regulation of lipid droplet
formation. Biochim Biophys Acta. 1841:1661–1671. 2014.PubMed/NCBI View Article : Google Scholar
|
9
|
Petan T: Lipid droplets in cancer. Rev
Physiol Biochem Pharmacol. 185:53–86. 2023.PubMed/NCBI View Article : Google Scholar
|
10
|
Huang F, Wang K and Shen J:
Lipoprotein-associated phospholipase A2: The story continues. Med
Res Rev. 40:79–134. 2020.PubMed/NCBI View Article : Google Scholar
|
11
|
Candels LS, Becker S and Trautwein C:
PLA2G7: A new player in shaping energy metabolism and lifespan.
Signal Transduct Target Ther. 7(195)2022.PubMed/NCBI View Article : Google Scholar
|
12
|
Schilke RM, Blackburn CMR, Bamgbose TT and
Woolard MD: Interface of phospholipase activity, immune cell
function, and atherosclerosis. Biomolecules.
10(1449)2020.PubMed/NCBI View Article : Google Scholar
|
13
|
Vainio P, Lehtinen L, Mirtti T, Hilvo M,
Seppänen-Laakso T, Virtanen J, Sankila A, Nordling S, Lundin J,
Rannikko A, et al: Phospholipase PLA2G7, associated with aggressive
prostate cancer, promotes prostate cancer cell migration and
invasion and is inhibited by statins. Oncotarget. 2:1176–1190.
2011.PubMed/NCBI View Article : Google Scholar
|
14
|
Luby A and Alves-Guerra MC: UCP2 as a
cancer target through energy metabolism and oxidative stress
control. Int J Mol Sci. 23(15077)2022.PubMed/NCBI View Article : Google Scholar
|
15
|
Erden Y, Tekin S, Kirbag S and Sandal S:
Mitochondrial uncoupling proteins in the brain: Their structure,
function and physiological roles. Med Sci̇. 4:2289–2307. 2014.
|
16
|
Sreedhar A and Zhao Y: Uncoupling protein
2 and metabolic diseases. Mitochondrion. 34:135–140.
2017.PubMed/NCBI View Article : Google Scholar
|
17
|
Li W, Nichols K, Nathan CA and Zhao Y:
Mitochondrial uncoupling protein 2 is up-regulated in human head
and neck, skin, pancreatic, and prostate tumors. Cancer Biomark.
13:377–383. 2013.PubMed/NCBI View Article : Google Scholar
|
18
|
Xie S, Xia L, Song Y, Liu H, Wang ZW and
Zhu X: Insights into the biological role of NEDD4L E3 ubiquitin
ligase in human cancers. Front Oncol. 11(774648)2021.PubMed/NCBI View Article : Google Scholar
|
19
|
Zhang M, Zhang Z, Tian X, Zhang E, Wang Y,
Tang J and Zhao J: NEDD4L in human tumors: Regulatory mechanisms
and dual effects on anti-tumor and pro-tumor. Front Pharmacol.
14(1291773)2023.PubMed/NCBI View Article : Google Scholar
|
20
|
Balpınar O and Aytaç S: Medical cannabis
and health: A pharmacological review. Ankara Univ Ecz Fak Derg.
45:631–635. 2021.
|
21
|
Dang N, Meng X, Ma S, Zhang Q, Sun X, Wei
J and Huang S: MDA-19 suppresses progression of melanoma via
inhibiting the PI3K/Akt pathway. Open Med (Wars). 13:416–424.
2018.PubMed/NCBI View Article : Google Scholar
|
22
|
Kubik J, Humeniuk E, Adamczuk G,
Madej-Czerwonka B and Korga-Plewko A: Targeting energy metabolism
in cancer treatment. Int J Mol Sci. 23(5572)2022.PubMed/NCBI View Article : Google Scholar
|
23
|
Kostecka LG, Mendez S, Li M, Khare P,
Zhang C, Le A, Amend SR and Pienta KJ: Cancer cells employ lipid
droplets to survive toxic stress. Prostate. 84:644–655.
2024.PubMed/NCBI View Article : Google Scholar
|
24
|
Cruz ALS, Barreto EA, Fazolini NPB, Viola
JPB and Bozza PT: Lipid droplets: Platforms with multiple functions
in cancer hallmarks. Cell Death Dis. 11(105)2020.PubMed/NCBI View Article : Google Scholar
|
25
|
Roman M, Wrobel TP, Panek A, Paluszkiewicz
C and Kwiatek WM: Lipid droplets in prostate cancer cells and
effect of irradiation studied by Raman microspectroscopy. Biochim
Biophys Acta Mol Cell Biol Lipids. 1865(158753)2020.PubMed/NCBI View Article : Google Scholar
|
26
|
Tousignant KD, Rockstroh A, Taherian Fard
A, Lehman ML, Wang C, McPherson SJ, Philp LK, Bartonicek N, Dinger
ME, Nelson CC and Sadowski MC: Lipid uptake is an androgen-enhanced
lipid supply pathway associated with prostate cancer disease
progression and bone metastasis. Mol Cancer Res. 17:1166–1179.
2019.PubMed/NCBI View Article : Google Scholar
|
27
|
Martínez-Martínez E, Martín-Ruiz A, Martín
P, Calvo V, Provencio M and García JM: CB2 cannabinoid receptor
activation promotes colon cancer progression via AKT/GSK3β
signaling pathway. Oncotarget. 7:68781–68791. 2016.PubMed/NCBI View Article : Google Scholar
|
28
|
Sun D, Li X, Nie S, Liu J and Wang S:
Disorders of cancer metabolism: The therapeutic potential of
cannabinoids. Biomed Pharmacother. 157(113993)2023.PubMed/NCBI View Article : Google Scholar
|
29
|
Das S, Kaul K, Mishra S, Charan M and
Ganju RK: Cannabinoid signaling in cancer. Adv Exp Med Biol.
1162:51–61. 2019.PubMed/NCBI View Article : Google Scholar
|
30
|
Lehtinen L, Vainio P, Wikman H, Huhtala H,
Mueller V, Kallioniemi A, Pantel K, Kronqvist P, Kallioniemi O,
Carpèn O and Iljin K: PLA2G7 associates with hormone receptor
negativity in clinical breast cancer samples and regulates
epithelial-mesenchymal transition in cultured breast cancer cells.
J Pathol Clin Res. 3:123–138. 2017.PubMed/NCBI View
Article : Google Scholar
|
31
|
Atakol D, Özensoy Güler Ö, Terzi E, Yılmaz
H, Ercin ME and Şimşek E: Investigation of protein expressions of
PLA2G7, UCP2 and NEDD4L genes associated with fat droplet formation
in prostate cancer. OTJHS. 8:497–502. 2023.
|
32
|
Jayaraman S, Gantz DL and Gursky O:
Effects of phospholipase A(2) and its products on structural
stability of human LDL: Relevance to formation of LDL-derived lipid
droplets. J Lipid Res. 52:549–557. 2011.PubMed/NCBI View Article : Google Scholar
|
33
|
Li J, Jiang R, Cong X and Zhao Y: UCP2
gene polymorphisms in obesity and diabetes, and the role of UCP2 in
cancer. FEBS Lett. 593:2525–2534. 2019.PubMed/NCBI View Article : Google Scholar
|
34
|
Ke Q, Yuan Q, Qin N, Shi C, Luo J, Fang Y,
Xu L, Sun Q, Zen K, Jiang L, et al: UCP2-induced hypoxia promotes
lipid accumulation and tubulointerstitial fibrosis during ischemic
kidney injury. Cell Death Dis. 11(26)2020.PubMed/NCBI View Article : Google Scholar
|
35
|
Burch TC, Rhim JS and Nyalwidhe JO:
Mitochondria biogenesis and bioenergetics gene profiles in isogenic
prostate cells with different malignant phenotypes. Biomed Res Int.
2016(1785201)2016.PubMed/NCBI View Article : Google Scholar
|
36
|
Song F, Li JZ, Wu Y, Wu WY, Wang Y and Li
G: Ubiquitinated ligation protein NEDD4L participates in MiR-30a-5p
attenuated atherosclerosis by regulating macrophage polarization
and lipid metabolism. Mol Ther Nucleic Acids. 26:1303–1317.
2021.PubMed/NCBI View Article : Google Scholar
|
37
|
Alberts P and Rotin D: Regulation of lipid
droplet turnover by ubiquitin ligases. BMC Biol.
8(94)2010.PubMed/NCBI View Article : Google Scholar
|