1
|
WHO, . Global Burden of Disease. Geneva,
Switzerland: 2004
|
2
|
Jemal A, Siegel R, Ward E, Hao Y, Xu J,
Murray T and Thun MJ: Cancer statistics, 2008. CA Cancer J Clin.
58:71–96. 2008. View Article : Google Scholar
|
3
|
Akbari ME, Abachizade K, Tabatabaei M,
Motlagh A Ghanbari, Jabari Z Majd and Khayamzadeh M: Cancer in
Iran. Darolfekr Publications; Ghom: 2008
|
4
|
Kamangar F, Dores GM and Anderson WF:
Patterns of cancer incidence, mortality, and prevalence across five
continents: Defining priorities to reduce cancer disparities in
different geographic regions of the world. J Clin Oncol.
24:2137–2150. 2006. View Article : Google Scholar
|
5
|
Stratton MR and Rahman N: The emerging
landscape of breast cancer susceptibility. Nat Genet. 40:17–22.
2008. View Article : Google Scholar
|
6
|
Joenje H and Patel KJ: The emerging
genetic and molecular basis of Fanconi anaemia. Nat Rev Genet.
2:446–457. 2001. View
Article : Google Scholar
|
7
|
Tischkowitz MD and Hodgson SV: Fanconi
anaemia. J Med Genet. 40:1–10. 2003. View Article : Google Scholar :
|
8
|
Pronk JC, Gibson RA, Savoia A, Wijker M,
Morgan NV, Melchionda S, Ford D, Temtamy S, Ortega JJ, Jansen S, et
al: Localisation of the Fanconi anaemia complementation group A
gene to chromosome 16q24.3. Nat Genet. 11:338–340. 1995. View Article : Google Scholar
|
9
|
Han SS, Tompkins VS, Son DJ, Han S, Yun H,
Kamberos NL, Dehoedt CL, Gu C, Holman C, Tricot G, et al: CDKN1A
and FANCD2 are potential oncotargets in Burkitt lymphoma and
multiple myeloma. Exp Hematol Oncol. 4:92015. View Article : Google Scholar :
|
10
|
Medhurst AL, Huber PA, Waisfisz Q, de
Winter JP and Mathew CG: Direct interactions of the five known
Fanconi anaemia proteins suggest a common functional pathway. Hum
Mol Genet. 10:423–429. 2001. View Article : Google Scholar
|
11
|
Hussain S, Witt E, Huber PA, Medhurst AL,
Ashworth A and Mathew CG: Direct interaction of the Fanconi anaemia
protein FANCG with BRCA2/FANCD1. Hum Mol Genet. 12:2503–2510. 2003.
View Article : Google Scholar
|
12
|
Howlett NG, Taniguchi T, Olson S, Cox B,
Waisfisz Q, De Die-Smulders C, Persky N, Grompe M, Joenje H, Pals
G, et al: Biallelic inactivation of BRCA2 in Fanconi anemia.
Science. 297:606–609. 2002. View Article : Google Scholar
|
13
|
Cleton-Jansen AM, Callen DF, Seshadri R,
Goldup S, Mccallum B, Crawford J, Powell JA, Settasatian C, Van
Beerendonk H, Moerland EW, et al: Loss of heterozygosity mapping at
chromosome arm 16q in 712 breast tumors reveals factors that
influence delineation of candidate regions. Cancer Res.
61:1171–1177. 2001.
|
14
|
Haiman CA, Hsu C, de Bakker PI, Frasco M,
Sheng X, Van Den Berg D, Casagrande JT, Kolonel LN, Le Marchand L,
Hankinson SE, et al: Comprehensive association testing of common
genetic variation in DNA repair pathway genes in relationship with
breast cancer risk in multiple populations. Hum Mol Genet.
17:825–834. 2008. View Article : Google Scholar
|
15
|
Seal S, Barfoot R, Jayatilake H, Smith P,
Renwick A, Bascombe L, McGuffog L, Evans DG, Eccles D, Easton DF,
et al: Evaluation of Fanconi anemia genes in familial breast cancer
predisposition. Cancer Res. 63:8596–8599. 2003.
|
16
|
Tischkowitz MD, Morgan NV, Grimwade D,
Eddy C, Ball S, Vorechovsky I, Langabeer S, Stöger R, Hodgson SV
and Mathew CG: Deletion and reduced expression of the Fanconi
anemia FANCA gene in sporadic acute myeloid leukemia. Leukemia.
18:420–425. 2004. View Article : Google Scholar
|
17
|
Thompson E, Dragovic RL, Stephenson SA,
Eccles DM, Campbell IG and Dobrovic A: A novel duplication
polymorphism in the FANCA promoter and its association with breast
and ovarian cancer. BMC Cancer. 5:432005. View Article : Google Scholar :
|
18
|
Abbasi S, Rasouli M, Nouri M and Kalbasi
S: Association of estrogen receptor-α A908G (K303R) mutation with
breast cancer risk. Int J Clin Exp Med. 6:39–49. 2013.
|
19
|
Beck A, Luedtke A, Liu K and Tintle N: A
powerful method for including genotype uncertainty in tests of
hardy-weinberg equilibrium. Pac Symp Biocomput. 22:368–379.
2016.
|
20
|
Colleu-Durel S, Guitton N, Nourgalieva K,
Lévêque J, Danic B and Chenal C: Genomic instability and breast
cancer. Oncol Rep. 8:1001–1005. 2001.
|
21
|
Shen Y, Lee YH, Panneerselvam J, Zhang J,
Loo LW and Fei P: Mutated Fanconi anemia pathway in non-Fanconi
anemia cancers. Oncotarget. 6:20396–20403. 2015. View Article : Google Scholar :
|
22
|
Bakker JL, Thirthagiri E, Van Mil SE,
Adank MA, Ikeda H, Verheul HM, Meijers-Heijboer H, de Winter JP,
Sharan SK and Waisfisz Q: A novel splice site mutation in the
noncoding region of BRCA2: Implications for Fanconi anemia and
familial breast cancer diagnostics. Hum Mutat. 35:442–446. 2014.
View Article : Google Scholar :
|
23
|
Sawyer SL, Tian L, Kähkönen M,
Schwartzentruber J, Kircher M; University of Washington Centre for
Mendelian Genomics, ; FORGE Canada Consortium, ; Majewski J, Dyment
DA, Innes AM, et al: Biallelic mutations in BRCA1 cause a new
Fanconi anemia subtype. Cancer Discov. 5:135–142. 2015. View Article : Google Scholar
|
24
|
Venkitaraman AR: Connecting Fanconi's
anaemia to breast cancer predisposition. Lancet. 360:1344–1345.
2002. View Article : Google Scholar
|
25
|
Van Der Heijden MS, Brody JR and Kern SE:
Functional screen of the fanconi anemia pathway in cancer cells by
Fancd2 immunoblot. Cancer Biol Ther. 3:534–537. 2004. View Article : Google Scholar
|
26
|
Turner N, Tutt A and Ashworth A: Hallmarks
of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer. 4:814–819. 2004.
View Article : Google Scholar
|
27
|
Lewis AG, Flanagan J, Marsh A, Pupo GM,
Mann G, Spurdle AB, Lindeman GJ, Visvader JE, Brown MA and
Chenevix-Trench G: Kathleen Cuningham Foundation Consortium for
Research into Familial Breast Cancer: Mutation analysis of FANCD2,
BRIP1/BACH1, LMO4 and SFN in familial breast cancer. Breast Cancer
Res. 7:R1005–R1016. 2005. View
Article : Google Scholar :
|
28
|
Solyom S, Winqvist R, Nikkilä J, Rapakko
K, Hirvikoski P, Kokkonen H and Pylkäs K: Screening for large
genomic rearrangements in the FANCA gene reveals extensive deletion
in a Finnish breast cancer family. Cancer Lett. 302:113–118. 2011.
View Article : Google Scholar
|
29
|
Zhu Y, Spitz MR, Lei L, Mills GB and Wu X:
A single nucleotide polymorphism in the matrix metalloproteinase-1
promoter enhances lung cancer susceptibility. Cancer Res.
61:7825–7829. 2001.
|
30
|
Bond GL, Hu W, Bond EE, Robins H, Lutzker
SG, Arva NC, Bargonetti J, Bartel F, Taubert H, Wuerl P, et al: A
single nucleotide polymorphism in the MDM2 promoter attenuates the
p53 tumor suppressor pathway and accelerates tumor formation in
humans. Cell. 119:591–602. 2004. View Article : Google Scholar
|
31
|
Johnson N, Fletcher O, Palles C, Rudd M,
Webb E, Sellick G, dos Santos Silva I, McCormack V, Gibson L,
Fraser A, et al: Counting potentially functional variants in BRCA1,
BRCA2 and ATM predicts breast cancer susceptibility. Hum Mol Genet.
16:1051–1057. 2007. View Article : Google Scholar
|
32
|
Rodríguez-López R, Osorio A,
Sánchez-Pulido L, De La Hoya M, Barroso A, Caldés T and Benítez J:
No mutations in the XRCC2 gene in BRCA1/2-negative high-risk breast
cancer families. Int J Cancer. 103:136–137. 2003. View Article : Google Scholar
|
33
|
Smith TR, Miller MS, Lohman K, Lange EM,
Case LD, Mohrenweiser HW and Hu JJ: Polymorphisms of XRCC1 and
XRCC3 genes and susceptibility to breast cancer. Cancer Lett.
190:183–190. 2003. View Article : Google Scholar
|
34
|
Kiiski JI, Pelttari LM, Khan S,
Freysteinsdottir ES, Reynisdottir I, Hart SN, Shimelis H, Vilske S,
Kallioniemi A, Schleutker J, et al: Exome sequencing identifies
FANCM as a susceptibility gene for triple-negative breast cancer.
Proc Natl Acad Sci USA. 111:pp. 15172–15177. 2014; View Article : Google Scholar :
|
35
|
Fearnhead NS, Wilding JL, Winney B, Tonks
S, Bartlett S, Bicknell DC, Tomlinson IP, Mortensen NJ and Bodmer
WF: Multiple rare variants in different genes account for
multifactorial inherited susceptibility to colorectal adenomas.
Proc Natl Acad Sci USA. 101:pp. 15992–15997. 2004; View Article : Google Scholar :
|
36
|
Virts EL, Jankowska A, Mackay C, Glaas MF,
Wiek C, Kelich SL, Lottmann N, Kennedy FM, Marchal C, Lehnert E, et
al: AluY-mediated germline deletion, duplication and somatic stem
cell reversion in UBE2T defines a new subtype of Fanconi anemia.
Hum Mol Genet. 24:5093–5108. 2015. View Article : Google Scholar :
|
37
|
Blanco A, Gutiérrez-Enríquez S,
Santamariña M, Montalban G, Bonache S, Balmaña J, Carracedo A, Diez
O and Vega A: RAD51C germline mutations found in Spanish
site-specific breast cancer and breast-ovarian cancer families.
Breast Cancer Res Treat. 147:133–143. 2014. View Article : Google Scholar
|
38
|
Cleton-Jansen AM, Moerland EW, Pronk JC,
Van Berkel CG, Apostolou S, Crawford J, Savoia A, Auerbach AD,
Mathew CG, Callen DF and Cornelisse CJ: Mutation analysis of the
Fanconi anaemia A gene in breast tumours with loss of
heterozygosity at 16q24.3. Br J Cancer. 79:1049–1052. 1999.
View Article : Google Scholar :
|