1
|
Rabello FB, Souza CD and Júnior JA Farina:
Update on hypertrophic scar treatment. Clinics (Sao Paulo).
69:565–573. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Branski LK, Rennekampff HO and Vogt PM:
Keloid and hypertrophic scar treatment modalities. An update.
Chirurg. 83:831–846. 2012.(In German). View Article : Google Scholar
|
3
|
Hayashi T, Furukawa H, Oyama A, Funayama
E, Saito A, Murao N and Yamamoto Y: A new uniform protocol of
combined corticosteroid injections and ointment application reduces
recurrence rates after surgical keloid/hypertrophic scar excision.
Dermatol Surg. 38:893–897. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Huang D, Shen KH and Wang HG: Pressure
therapy upregulates matrix metalloproteinase expression and
downregulates collagen expression in hypertrophic scar tissue. Chin
Med J (Engl). 126:3321–3324. 2013.PubMed/NCBI
|
5
|
Chesnut C, Mednik S and Lask G:
Hypertrophic scar treatment with intralesional triamcinolone
acetonide and pulsed dye laser results in necrosis. Cutis.
94:E12–E13. 2014.PubMed/NCBI
|
6
|
On HR, Lee SH, Lee YS, Chang HS, Park C
and Roh MR: Evaluating hypertrophic thyroidectomy scar outcomes
after treatment with triamcinolone injections and copper bromide
laser therapy. Lasers Surg Med. 47:479–484. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Al-Mohamady Ael-S, Ibrahim SM and Muhammad
MM: Pulsed dye laser versus long pulsed Nd:YAG laser in the
treatment of hypertrophic scars and keloid: A comparative
randomized split-scar trial. J Cosmet Laser Ther. 18:208–212. 2016.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhu Z, Ding J, Shankowsky HA and Tredget
EE: The molecular mechanism of hypertrophic scar. J Cell Commun
Signal. 7:239–252. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Werner S, Krieg T and Smola H:
Keratinocyte-fibroblast interactions in wound healing. J Invest
Dermatol. 127:998–1008. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Li B and Wang JH: Fibroblasts and
myofibroblasts in wound healing: Force generation and measurement.
J Tissue Viability. 20:108–120. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gehring WJ, Affolter M and Bürglin T:
Homeodomain proteins. Annu Rev Biochem. 63:487–526. 1994.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Apiou F, Flagiello D, Cillo C, Malfoy B,
Poupon MF and Dutrillaux B: Fine mapping of human HOX gene
clusters. Cytogenet Cell Genet. 73:114–115. 1996. View Article : Google Scholar : PubMed/NCBI
|
13
|
Mace KA, Hansen SL, Myers C, Young DM and
Boudreau N: HOXA3 induces cell migration in endothelial and
epithelial cells promoting angiogenesis and wound repair. J Cell
Sci. 118:2567–2577. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Hansen SL, Myers CA, Charboneau A, Young
DM and Boudreau N: HoxD3 accelerates wound healing in diabetic
mice. Am J Pathol. 163:2421–2431. 2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Mack JA and Maytin EV: Persistent
inflammation and angiogenesis during wound healing in K14-directed
Hoxb13 transgenic mice. J Invest Dermatol. 130:856–865. 2010.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Mack JA, Abramson SR, Ben Y, Coffin JC,
Rothrock JK, Maytin EV, Hascall VC, Largman C and Stelnicki EJ:
Hoxb13 knockout adult skin exhibits high levels of hyaluronan and
enhanced wound healing. FASEB J. 17:1352–1354. 2003.PubMed/NCBI
|
17
|
Chen F and Capecchi MR: Paralogous mouse
Hox genes, Hoxa9, Hoxb9 and Hoxd9, function together to control
development of the mammary gland in response to pregnancy. Proc
Natl Acad Sci USA. 96:541–546. 1999. View Article : Google Scholar : PubMed/NCBI
|
18
|
Seki H, Hayashida T, Jinno H, Hirose S,
Sakata M, Takahashi M, Maheswaran S, Mukai M and Kitagawa Y: HOXB9
expression promoting tumor cell proliferation and angiogenesis is
associated with clinical outcomes in breast cancer patients. Ann
Surg Oncol. 19:1831–1840. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kwon OS, Oh E, Park JR, Lee JS, Bae GY,
Koo JH, Kim H, Choi YL, Choi YS, Kim J and Cha HJ: GalNAc-T14
promotes metastasis through Wnt dependent HOXB9 expression in lung
adenocarcinoma. Oncotarget. 6:41916–41928. 2015.PubMed/NCBI
|
20
|
Zhan J, Wang P, Niu M, Wang Y, Zhu X, Guo
Y and Zhang H: High expression of transcriptional factor HoxB9
predicts poor prognosis in patients with lung adenocarcinoma.
Histopathology. 66:955–965. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hayashida T, Takahashi F, Chiba N,
Brachtel E, Takahashi M, Godin-Heymann N, Gross KW, Vivanco Md,
Wijendran V, Shioda T, et al: HOXB9, a gene overexpressed in breast
cancer, promotes tumorigenicity and lung metastasis. Proc Natl Acad
Sci USA. 107:1100–1105. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Nguyen DX, Chiang AC, Zhang XH, Kim JY,
Kris MG, Ladanyi M, Gerald WL and Massagué J: WNT/TCF signaling
through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis.
Cell. 138:51–62. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sha S, Gu Y, Xu B, Hu H, Yang Y, Kong X
and Wu K: Decreased expression of HOXB9 is related to poor overall
survival in patients with gastric carcinoma. Dig Liver Dis.
45:422–429. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chang Q, Zhang L, He C, Zhang B, Zhang J,
Liu B, Zeng N and Zhu Z: HOXB9 induction of
mesenchymal-to-epithelial transition in gastric carcinoma is
negatively regulated by its hexapeptide motif. Oncotarget.
6:42838–42853. 2015.PubMed/NCBI
|
25
|
He T, Bai X, Yang L, Fan L, Li Y, Su L,
Gao J, Han S and Hu D: Loureirin B inhibits hypertrophic scar
formation via inhibition of the TGF-β1-ERK/JNK Pathway. Cell
Physiol Biochem. 37:666–676. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Root DE, Hacohen N, Hahn WC, Lander ES and
Sabatini DM: Genome-scale loss-of-function screening with a
lentiviral RNAi library. Nat Methods. 3:715–719. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Ngo P, Ramalingam P, Phillips JA and
Furuta GT: Collagen gel contraction assay. Methods Mol Biol.
341:103–109. 2006.PubMed/NCBI
|
29
|
Vernon RB and Gooden MD: An improved
method for the collagen gel contraction assay. In Vitro Cell Dev
Biol Anim. 38:97–101. 2002. View Article : Google Scholar : PubMed/NCBI
|
30
|
Viera MH, Amini S, Valins W and Berman B:
Innovative therapies in the treatment of keloids and hypertrophic
scars. J Clin Aesthet Dermatol. 3:20–26. 2010.
|
31
|
Shaarawy E, Hegazy RA and Hay RM Abdel:
Intralesional botulinum toxin type A equally effective and better
tolerated than intralesional steroid in the treatment of keloids: A
randomized controlled trial. J Cosmet Dermatol. 14:161–166. 2015.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Gauglitz GG, Bureik D, Dombrowski Y,
Pavicic T, Ruzicka T and Schauber J: Botulinum toxin A for the
treatment of keloids. Skin Pharmacol Physiol. 25:313–318. 2012.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Gauglitz GG, Korting HC, Pavicic T,
Ruzicka T and Jeschke MG: Hypertrophic scarring and keloids:
Pathomechanisms and current and emerging treatment strategies. Mol
Med. 17:113–125. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Xue M and Jackson CJ: Extracellular matrix
reorganization during wound healing and its impact on abnormal
scarring. Adv Wound Care (New Rochelle). 4:119–136. 2015.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Crean JK, Finlay D, Murphy M, Moss C,
Godson C, Martin F and Brady HR: The role of p42/44 MAPK and
protein kinase B in connective tissue growth factor induced
extracellular matrix protein production, cell migration, and actin
cytoskeletal rearrangement in human mesangial cells. J Biol Chem.
277:44187–44194. 2002. View Article : Google Scholar : PubMed/NCBI
|
36
|
Xiao G, Gopalakrishnan R, Jiang D, Reith
E, Benson MD and Franceschi RT: Bone morphogenetic proteins,
extracellular matrix, and mitogen-activated protein kinase
signaling pathways are required for osteoblast-specific gene
expression and differentiation in MC3T3-E1 cells. J Bone Miner Res.
17:101–110. 2002. View Article : Google Scholar : PubMed/NCBI
|
37
|
Qin H, Ishiwata T, Wang R, Kudo M,
Yokoyama M, Naito Z and Asano G: Effects of extracellular matrix on
phenotype modulation and MAPK transduction of rat aortic smooth
muscle cells in vitro. Exp Mol Pathol. 69:79–90. 2000. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kyriakis JM and Avruch J: Mammalian MAPK
signal transduction pathways activated by stress and inflammation:
A 10-year update. Physiol Rev. 92:689–737. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhang W and Liu HT: MAPK signal pathways
in the regulation of cell proliferation in mammalian cells. Cell
Res. 12:9–18. 2002. View Article : Google Scholar : PubMed/NCBI
|