1
|
Zhao L and Hu FX: α-Lipoic acid treatment
of aged type 2 diabetes mellitus complicated with acute cerebral
infarction. Eur Rev Med Pharmacol Sci. 18:3715–3719. 2014.
|
2
|
Liu X, Zhou Y, Wang J, Liu X, Yang C, Li
J, Chen S and Wu S: Effect of central obesity on the events of
new-onset cerebral infarction among type 2 diabetes mellitus
patients. Zhonghua Liu Xing Bing Xue Za Zhi. 35:390–392. 2014.(In
Chinese).
|
3
|
Inagaki K, Nagao M and Oikawa S: Internal
medicine and neurological diseases: Progress in diagnosis and
treatment. Topics: II neurological diseases related to diabetes
mellitus; 2. Cerebral infarction, coma, hypoglycemia. Nihon Naika
Gakkai Zasshi. 101:2180–2187. 2012.(In Japanese). View Article : Google Scholar
|
4
|
Cambon H, Derouesne C, Yelnik A,
Duyckaerts C and Hauw JJ: Effect of diabetes mellitus and blood
glucose on the size of cerebral infarction and causes of death.
Neuropathological study of 77 cases of infarction in the sylvian
artery area. Rev Neurol (Paris). 147:727–734. 1991.
|
5
|
Du L, Ma J and Zhang X: Higher serum uric
acid may contribute to cerebral infarction in patients with type 2
diabetes mellitus: A meta-analysis. J Mol Neurosci. 61:25–31. 2017.
View Article : Google Scholar
|
6
|
Ichikawa H, Shimizu Y, Kuriki A, Murakami
H, Mukai M and Kawamura M: The brainstem is at high risk for
recurrent noncardioembolic cerebral infarction in association with
diabetes mellitus: A hospital-based study. Eur Neurol. 67:26–32.
2012. View Article : Google Scholar
|
7
|
Kawamura T, Umemura T, Kanai A, Nagashima
M, Nakamura N, Uno T, Nakayama M, Sano T, Hamada Y, Nakamura J and
Hotta N: Soluble adhesion molecules and C-reactive protein in the
progression of silent cerebral infarction in patients with type 2
diabetes mellitus. Metabolism. 55:461–466. 2006. View Article : Google Scholar
|
8
|
Long Y, Zhan Q, Yuan M, Duan X, Zhou J, Lu
J, Li Z, Yu F, Zhou X, Yang Q and Xia J: The expression of
microRNA-223 and FAM5C in cerebral infarction patients with
diabetes mellitus. Cardiovasc Toxicol. 17:42–48. 2017. View Article : Google Scholar
|
9
|
Petzold S, Kapellen T, Siekmeyer M, Hirsch
W, Bartelt H, Siekmeyer W and Kiess W: Acute cerebral infarction
and extra pontine myelinolysis in children with new onset type 1
diabetes mellitus. Pediatr Diabetes. 12:513–517. 2011. View Article : Google Scholar
|
10
|
Tang HL, Li DD, Zhang JJ, Hsu YH, Wang TS,
Zhai SD and Song YQ: Lack of evidence for a harmful effect of
sodium-glucose co-transporter 2 (SGLT2) inhibitors on fracture risk
among type 2 diabetes patients: A network and cumulative
meta-analysis of randomized controlled trials. Diabetes Obes Metab.
18:1199–1206. 2016. View Article : Google Scholar
|
11
|
Mittal N, Mittal R, Kumar H and Medhi B:
Sodium glucose co-transporter 2 inhibitors for glycemic control in
type 2 diabetes mellitus: Quality of reporting of randomized
controlled trials. Perspect Clin Res. 7:21–27. 2016. View Article : Google Scholar :
|
12
|
Nunez DJ, Yao X, Lin J, Walker A, Zuo P,
Webster L, Krug-Gourley S, Zamek-Gliszczynski MJ, Gillmor DS and
Johnson SL: Glucose and lipid effects of the ileal apical
sodium-dependent bile acid transporter inhibitor GSK2330672:
Double-blind randomized trials with type 2 diabetes subjects taking
metformin. Diabetes Obes Metab. 18:654–662. 2016. View Article : Google Scholar
|
13
|
Ohki T, Isogawa A, Toda N and Tagawa K:
Effectiveness of ipragliflozin, a sodium-glucose co-transporter 2
inhibitor, as a second-line treatment for non-alcoholic fatty liver
disease patients with type 2 diabetes mellitus who do not respond
to incretin-based therapies including glucagon-like peptide-1
analogs and dipeptidyl peptidase-4 inhibitors. Clin Drug Investig.
36:313–319. 2016. View Article : Google Scholar
|
14
|
Shin SJ, Chung S, Kim SJ, Lee EM, Yoo YH,
Kim JW, Ahn YB, Kim ES, Moon SD, Kim MJ and Ko SH: Effect of
sodium-glucose co-transporter 2 inhibitor, dapagliflozin, on renal
renin-angiotensin system in an animal model of type 2 diabetes.
PLoS One. 11:e01657032016. View Article : Google Scholar :
|
15
|
Singh AK and Singh R: Sodium-glucose
co-transporter-2 inhibitors and dipeptidyl peptidase-4 inhibitors
combination therapy in type 2 diabetes: A systematic review of
current evidence. Indian J Endocrinol Metab. 20:245–253. 2016.
View Article : Google Scholar :
|
16
|
Tang H, Cui W, Li D, Wang T, Zhang J, Zhai
S and Song Y: Sodium-glucose co-transporter 2 inhibitors in
addition to insulin therapy for management of type 2 diabetes
mellitus: A meta-analysis of randomized controlled trials. Diabetes
Obes Metab. 19:142–147. 2017. View Article : Google Scholar
|
17
|
Yabe D, Iwasaki M, Kuwata H, Haraguchi T,
Hamamoto Y, Kurose T, Sumita K, Yamazato H, Kanada S and Seino Y:
Sodium-glucose co-transporter-2 inhibitor use and dietary
carbohydrate intake in Japanese individuals with type 2 diabetes: A
randomized, open-label, 3-arm parallel comparative, exploratory
study. Diabetes Obes Metab. 19:739–743. 2017. View Article : Google Scholar :
|
18
|
Aziz MT, El Ibrashy IN, Mikhailidis DP,
Rezq AM, Wassef MA, Fouad HH, Ahmed HH, Sabry DA, Shawky HM and
Hussein RE: Signaling mechanisms of a water soluble curcumin
derivative in experimental type 1 diabetes with cardiomyopathy.
Diabetol Metab Syndr. 5:132013. View Article : Google Scholar :
|
19
|
Margina D, Gradinaru D, Manda G, Neagoe I
and Ilie M: Membranar effects exerted in vitro by
polyphenols-quercetin, epigallocatechin gallate and curcumin-on
HUVEC and Jurkat cells, relevant for diabetes mellitus. Food Chem
Toxicol. 61:86–93. 2013. View Article : Google Scholar
|
20
|
Nishiyama T, Mae T, Kishida H, Tsukagawa
M, Mimaki Y, Kuroda M, Sashida Y, Takahashi K, Kawada T, Nakagawa K
and Kitahara M: Curcuminoids and sesquiterpenoids in turmeric
(Curcuma longa L.) suppress an increase in blood glucose level in
type 2 diabetic KK-Ay mice. J Agric Food Chem. 53:959–963. 2005.
View Article : Google Scholar
|
21
|
Bulboacă AD, Bolboacă S and Suci S:
Protective effect of curcumin in fructose-induced metabolic
syndrome and in streptozotocin-induced diabetes in rats. Iran J
Basic Med Sci. 19:585–593. 2016.
|
22
|
Castro CN, Tabarrozzi Barcala AE,
Winnewisser J, Gimeno ML, Noguerol Antunica M, Liberman AC, Paz DA,
Dewey RA and Perone MJ: Curcumin ameliorates autoimmune diabetes.
Evidence in accelerated murine models of type 1 diabetes. Clin Exp
Immunol. 177:149–160. 2014. View Article : Google Scholar :
|
23
|
Li G, Xu X, Wang D, Wang J, Wang Y and Yu
J: Microglial activation during acute cerebral infarction in the
presence of diabetes mellitus. Neurol Sci. 32:1075–1079. 2011.
View Article : Google Scholar
|
24
|
Zhang B, Wang D, Ji TF, Shi L and Yu JL:
Overexpression of lncRNA ANRIL up-regulates VEGF expression and
promotes angiogenesis of diabetes mellitus combined with cerebral
infarction by activating NF-κB signaling pathway in a rat model.
Oncotarget. 8:17347–17359. 2017.
|
25
|
Kobayashi S: Progress in diagnosis of and
therapy for cerebral infarction in patients with diabetes mellitus.
Nihon Naika Gakkai Zasshi. 93:1532–1538. 2004.(In Japanese).
View Article : Google Scholar
|
26
|
Chiu J, Khan ZA, Farhangkhoee H and
Chakrabarti S: Curcumin prevents diabetes-associated abnormalities
in the kidneys by inhibiting p300 and nuclear factor-kappaB.
Nutrition. 25:964–972. 2009. View Article : Google Scholar
|
27
|
Chuengsamarn S, Rattanamongkolgul S,
Luechapudiporn R, Phisalaphong C and Jirawatnotai S: Curcumin
extract for prevention of type 2 diabetes. Diabetes Care.
35:2121–2127. 2012. View Article : Google Scholar :
|
28
|
El-Azab MF, Attia FM and El-Mowafy AM:
Novel role of curcumin combined with bone marrow transplantation in
reversing experimental diabetes: Effects on pancreatic islet
regeneration, oxidative stress and inflammatory cytokines. Eur J
Pharmacol. 658:41–48. 2011. View Article : Google Scholar
|