Liposomal delivery and polyethylene glycol‑liposomal oxaliplatin for the treatment of colorectal cancer (Review)
- Authors:
- Chuang Yang
- Zhong‑Xue Fu
-
Affiliations: Department of General Surgery, Third People's Hospital of Mianyang, Mianyang, Sichuan 621000, P.R. China, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing, Chongqing 400016, P.R. China - Published online on: March 12, 2014 https://doi.org/10.3892/br.2014.249
- Pages: 335-339
This article is mentioned in:
Abstract
Spolverato G, Ejaz A, Azad N and Pawlik TM: Surgery for colorectal liver metastases: The evolution of determining prognosis. World J Gastrointest Oncol. 5:207–221. 2013. View Article : Google Scholar : PubMed/NCBI | |
Alberts SR, Sargent DJ, Nair S, et al: Effect of oxaliplatin, fluorouracil, and leucovorin with or without cetuximab on survival among patients with resected stage III colon cancer: a randomized trial. JAMA. 307:1383–1393. 2012. View Article : Google Scholar | |
Garcia-Foncillas J and Diaz-Rubio E: Progress in metastatic colorectal cancer: growing role of cetuximab to optimize clinical outcome. Clin Transl Oncol. 12:533–542. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wiseman LR, Adkins JC, Plosker GL, et al: Oxaliplatin: a review of its use in the management of metastatic colorectal cancer. Drugs Aging. 14:459–475. 1999. View Article : Google Scholar : PubMed/NCBI | |
Simpson D, Dunn C, Curran M and Goa KL: Oxaliplatin: a review of its use in combination therapy for advanced metastatic colorectal cancer. Drugs. 63:2127–2156. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yang DY, Li Y, Liu JH, et al: Efficacy and tolerance of maintenance therapy in patients with incurable advanced colorectal cancer. J Southern Med Uni. 33:1815–1818. 2013.(In Chinese). | |
Brodowicz T, Ciuleanu TE, Radosavljevic D, et al: FOLFOX4 plus cetuximab administered weekly or every second week in the first-line treatment of patients with KRAS wild-type metastatic colorectal cancer: a randomized phase II CECOG study. Ann Oncol. 24:1769–1777. 2013. View Article : Google Scholar : PubMed/NCBI | |
Douillard JY, Oliner KS, Siena S, et al: Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med. 369:1023–1034. 2013. View Article : Google Scholar : PubMed/NCBI | |
Messersmith WA, Jimeno A, Jacene H, et al: Phase I trial of oxaliplatin, infusional 5-fluorouracil, and leucovorin (FOLFOX4) with erlotinib and bevacizumab in colorectal cancer. Clin Colorectal Cancer. 9:297–304. 2010. View Article : Google Scholar : PubMed/NCBI | |
McWhinney SR, Goldberg RM and McLeod HL: Platinum neurotoxicity pharmacogenetics. Mol Cancer Ther. 8:10–16. 2009. View Article : Google Scholar | |
Ochenduszko SL and Krzemieniecki K: Targeted therapy in advanced colorectal cancer: more data, more questions. Anticancer Drugs. 21:737–748. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cortejoso L, Garcia MI, Garcia-Alfonso P, et al: Differential toxicity biomarkers for irinotecan- and oxaliplatin-containing chemotherapy in colorectal cancer. Cancer Chemother Pharmacol. 71:1463–1472. 2013. View Article : Google Scholar : PubMed/NCBI | |
Di Francia R, Siesto RS, Valente D, et al: Pharmacogenomics panel test for prevention toxicity in patient who receive fluoropirimidine/oxaliplatin-based therapy. Eur Rev Med Pharmacol Sci. 16:1211–1217. 2012.PubMed/NCBI | |
Hoff PM, Saad ED, Costa F, et al: Literature review and practical aspects on the management of oxaliplatin-associated toxicity. Clin Colorectal Cancer. 11:93–100. 2012. View Article : Google Scholar : PubMed/NCBI | |
Olszewski U and Hamilton G: A better platinum-based anticancer drug yet to come? Anticancer Agents Med Chem. 10:293–301. 2010. View Article : Google Scholar : PubMed/NCBI | |
Patil YP and Jadhav S: Novel methods for liposome preparation. Chem Phys Lipids. 177:8–18. 2014. View Article : Google Scholar | |
Jain RL and Shastri JP: Study of ocular drug delivery system using drug-loaded liposomes. Int J Pharm Investig. 1:35–41. 2011. View Article : Google Scholar : PubMed/NCBI | |
Suntres ZE: Liposomal antioxidants for protection against oxidant-induced damage. J Toxicol. 2011:1524742011. View Article : Google Scholar : PubMed/NCBI | |
Pagano RE and Weinstein JN: Interactions of liposomes with mammalian cells. Annu Rev Biophys Bioeng. 7:435–468. 1978. View Article : Google Scholar : PubMed/NCBI | |
Yefimova SL, Kurilchenko IY, Tkacheva TN, et al: Comparative study of dye-loaded liposome accumulation in sensitive and resistant human breast cancer cells. Exp Oncol. 34:101–106. 2012.PubMed/NCBI | |
Saffari M, Shirazi HF, Oghabian MA, et al: Preparation and in-vitro evaluation of an antisense-containing cationic liposome against non-small cell lung cancer: a comparative preparation study. Iran J Pharm Res. 12(Suppl): 3–10. 2013.PubMed/NCBI | |
Preiss MR and Bothun GD: Stimuli-responsive liposome-nanoparticle assemblies. Expert Opin Drug Deliv. 8:1025–1040. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rangger C, Helbok A, Sosabowski J, et al: Tumor targeting and imaging with dual-peptide conjugated multifunctional liposomal nanoparticles. Int J Nanomedicine. 8:4659–4671. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li X, Zhang J, Wang DK, et al: Anti-tumor activity of folate receptor targeting docetaxel-loaded membrane-modified liposomes. Acta Pharma Sinica. 48:1142–1147. 2013.(In Chinese). | |
Nag OK and Awasthi V: Surface engineering of liposomes for stealth behavior. Pharmaceutics. 5:542–569. 2013. View Article : Google Scholar : PubMed/NCBI | |
Noble GT, Stefanick JF, Ashley JD, et al: Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol. 32:32–45. 2014. View Article : Google Scholar : PubMed/NCBI | |
Immordino ML, Dosio F and Cattel L: Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 1:297–315. 2006.PubMed/NCBI | |
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al: Liposome: classification, preparation, and applications. Nanoscale Res Lett. 8:1022013. View Article : Google Scholar : PubMed/NCBI | |
Allen TM and Cullis PR: Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 65:36–48. 2013. View Article : Google Scholar : PubMed/NCBI | |
Samad A, Sultana Y and Aqil M: Liposomal drug delivery systems: an update review. Curr Drug Deliv. 4:297–305. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cattel L, Ceruti M and Dosio F: From conventional to stealth liposomes: a new frontier in cancer chemotherapy. Tumori. 89:237–249. 2003.PubMed/NCBI | |
Smith-Jones PM, Vallabhajosula S, Navarro V, et al: Radiolabeled monoclonal antibodies specific to the extracellular domain of prostate-specific membrane antigen: preclinical studies in nude mice bearing LNCaP human prostate tumor. J Nucl Med. 44:610–617. 2003. | |
Yan Z, Zhan C, Wen Z, et al: LyP-1-conjugated doxorubicin-loaded liposomes suppress lymphatic metastasis by inhibiting lymph node metastases and destroying tumor lymphatics. Nanotechnology. 22:4151032011. View Article : Google Scholar : PubMed/NCBI | |
Brignole C, Marimpietri D, Gambini C, et al: Development of Fab’ fragments of anti-GD(2) immunoliposomes entrapping doxorubicin for experimental therapy of human neuroblastoma. Cancer Lett. 197:199–204. 2003. | |
Yang Y, Yan Z, Wei D, et al: Tumor-penetrating peptide functionalization enhances the anti-glioblastoma effect of doxorubicin liposomes. Nanotechnology. 24:4051012013. View Article : Google Scholar : PubMed/NCBI | |
Yan Z, Wang F, Wen Z, et al: LyP-1-conjugated PEGylated liposomes: a carrier system for targeted therapy of lymphatic metastatic tumor. J Control Release. 157:118–125. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ishida O and Maruyama K: Transferrin conjugated PEG-liposomes as intracellular targeting carrier for tumor therapy. Jpn J Clin Med. 56:657–662. 1998.(In Japanese). | |
Rane S and Prabhakar B: Optimization of paclitaxel containing pH-sensitive liposomes by 3 factor, 3 level box-behnken design. Indian J Pharm Sci. 75:420–426. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dicheva BM and Koning GA: Targeted thermosensitive liposomes: an attractive novel approach for increased drug delivery to solid tumors. Expert Opin Drug Deliv. 11:83–100. 2014. View Article : Google Scholar : PubMed/NCBI | |
Linemann T, Thomsen LB, Jardin KG, et al: Development of a novel lipophilic, magnetic nanoparticle for in vivo drug delivery. Pharmaceutics. 5:246–260. 2013. View Article : Google Scholar : PubMed/NCBI | |
Alinaghi A, Rouini MR, Johari Daha F, et al: The influence of lipid composition and surface charge on biodistribution of intact liposomes releasing from hydrogel-embedded vesicles. Int J Pharm. 459:30–39. 2014. View Article : Google Scholar : PubMed/NCBI | |
Iversen PO: Angiogenesis and hematological malignancies. J Norw Med Assoc. 123:3198–3200. 2003.(In Norwegian). | |
Bisacchi D, Benelli R, Vanzetto C, et al: Anti-angiogenesis and angioprevention: mechanisms, problems and perspectives. Cancer Detect Prev. 27:229–238. 2003. View Article : Google Scholar : PubMed/NCBI | |
Abdollahi A and Folkman J: Evading tumor evasion: current concepts and perspectives of anti-angiogenic cancer therapy. Drug Resist Updat. 13:16–28. 2010. View Article : Google Scholar : PubMed/NCBI | |
Waite CL and Roth CM: Nanoscale drug delivery systems for enhanced drug penetration into solid tumors: current progress and opportunities. Crit Rev Biomed Eng. 40:21–41. 2012. View Article : Google Scholar : PubMed/NCBI | |
Prabhakar U, Maeda H, Jain RK, et al: Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 73:2412–2417. 2013. View Article : Google Scholar : PubMed/NCBI | |
Taurin S, Nehoff H and Greish K: Anticancer nanomedicine and tumor vascular permeability; Where is the missing link? J Control Release. 164:265–275. 2012. View Article : Google Scholar : PubMed/NCBI | |
Greish K: Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol Biol. 624:25–37. 2010. View Article : Google Scholar : PubMed/NCBI | |
Maeda H, Bharate GY and Daruwalla J: Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm. 71:409–419. 2009. View Article : Google Scholar : PubMed/NCBI | |
Karn PR, Cho W and Hwang SJ: Liposomal drug products and recent advances in the synthesis of supercritical fluid-mediated liposomes. Nanomedicine (Lond). 8:1529–1548. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang C, Liu HZ, Lu WD, et al: PEG-liposomal oxaliplatin potentialization of antitumor efficiency in a nude mouse tumor-xenograft model of colorectal carcinoma. Oncol Rep. 25:1621–1628. 2011.PubMed/NCBI | |
Nakamura H, Doi Y, Abu Lila AS, et al: Sequential treatment of oxaliplatin-containing PEGylated liposome together with S-1 improves intratumor distribution of subsequent doses of oxaliplatin-containing PEGylated liposome. Eur J Pharm Biopharm. Dec 17–2013.(Epub ahead of print). View Article : Google Scholar | |
Rejman J, Oberle V, Zuhorn IS and Hoekstra D: Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 377:159–169. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hood RR, Shao C, Omiatek DM, et al: Microfluidic synthesis of PEG- and folate-conjugated liposomes for one-step formation of targeted stealth nanocarriers. Pharm Res. 30:1597–1607. 2013. View Article : Google Scholar : PubMed/NCBI | |
Abu Lila AS, Doi Y, Nakamura K, et al: Sequential administration with oxaliplatin-containing PEG-coated cationic liposomes promotes a significant delivery of subsequent dose into murine solid tumor. J Control Release. 142:167–173. 2010. | |
Zalba S, Navarro I, Troconiz IF, et al: Application of different methods to formulate PEG-liposomes of oxaliplatin: evaluation in vitro and in vivo. Eur J Pharm Biopharm. 81:273–280. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu XP, Geng DQ, Xu HX, et al: Research on the preparation of oxaliplatin liposome. J Wuhan Univ Technol. 30:50–53. 2008. | |
Yang C, Liu HZ, Fu ZX and Lu WD: Oxaliplatin long-circulating liposomes improved therapeutic index of colorectal carcinoma. BMC Biotechnology. 11:212011. View Article : Google Scholar : PubMed/NCBI | |
Tippayamontri T, Kotb R, Paquette B, et al: Cellular uptake and cytoplasm/DNA distribution of cisplatin and oxaliplatin and their liposomal formulation in human colorectal cancer cell HCT116. Invest New Drugs. 29:1321–1327. 2011. View Article : Google Scholar : PubMed/NCBI | |
Doi Y, Okada T, Matsumoto H, et al: Combination therapy of metronomic S-1 dosing with oxaliplatin-containing polyethylene glycol-coated liposome improves antitumor activity in a murine colorectal tumor model. Cancer Sci. 101:2470–2475. 2010. View Article : Google Scholar | |
Jain A, Jain SK, Ganesh N, et al: Design and development of ligand-appended polysaccharidic nanoparticles for the delivery of oxaliplatin in colorectal cancer. Nanomedicine. 6:179–190. 2010. View Article : Google Scholar : PubMed/NCBI | |
Abu Lila AS, Matsumoto H, Doi Y, et al: Tumor-type-dependent vascular permeability constitutes a potential impediment to the therapeutic efficacy of liposomal oxaliplatin. Eur J Pharm Biopharm. 81:524–531. 2012.PubMed/NCBI | |
Abu Lila AS, Ichihara M, Shimizu T, et al: Ex-vivo/in-vitro anti-polyethylene glycol (PEG) immunoglobulin M production from murine splenic B cells stimulated by PEGylated liposome. Biol Pharm Bull. 36:1842–1848. 2013.PubMed/NCBI | |
Yang C, Liu HZ and Fu ZX: Effects of PEG-liposomal oxaliplatin on apoptosis, and expression of Cyclin A and Cyclin D1 in colorectal cancer cells. Oncol Rep. 28:1006–1012. 2012.PubMed/NCBI | |
Yang C, Liu HZ and Fu ZX: PEG-liposomal oxaliplatin induces apoptosis in human colorectal cancer cells via Fas/FasL and caspase-8. Cell Biol Int. 36:289–296. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wicki A, Rochlitz C, Orleth A, et al: Targeting tumor-associated endothelial cells: anti-VEGFR2 immunoliposomes mediate tumor vessel disruption and inhibit tumor growth. Clin Cancer Res. 18:454–464. 2012. View Article : Google Scholar : PubMed/NCBI |