1
|
Dinarello CA: Proinflammatory cytokines.
Chest. 118:503–508. 2000. View Article : Google Scholar
|
2
|
Meager T: The Molecular Biology of
Cytokines. John Wiley & Sons; Chichester, UK: pp. 1–21.
1998
|
3
|
Abbas AK, Lichtman AH and Pober JS:
Cellular and Molecular Immunology. 3rd edition. W.B. Saunders;
Philadelphia, PA: pp. 15–37. 1997
|
4
|
Fernández-Arenas E, Cabezón V, Bermejo C,
Arroyo J, Nombela C, Diez-Orejas R and Gil C: Integrated proteomics
and genomics strategies bring new insight into Candida
albicans response upon macrophage interaction. Mol Cell
Proteomics. 6:460–478. 2007.PubMed/NCBI
|
5
|
Brieland J, Essig D, Jackson C, Frank D,
Loebenberg D, Menzel F, Arnold B, DiDomenico B and Hare R:
Comparison of pathogenesis and host immune responses to Candida
glabrata and Candida albicans in systemically infected
immunocompetent mice. Infect Immun. 69:5046–5055. 2001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Spellberg B, Ibrahim AS, Edwards JE Jr and
Filler SG: Mice with disseminated candidiasis die of progressive
sepsis. J Infect Dis. 192:336–343. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
MacCallum DM, Castillo L, Brown AJ, Gow NA
and Odds FC: Early-expressed chemokines predict kidney
immunopathology in experimental disseminated Candida
albicans infections. PLoS One. 4:e64202009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Fradin C, De Groot P, MacCallum D,
Schaller M, Klis F, Odds FC and Hube B: Granulocytes govern the
transcriptional response, morphology and proliferation of
Candida albicans in human blood. Mol Microbiol. 56:397–415.
2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
MacCallum DM: Massive induction of innate
immune response to Candida albicans in the kidney in a
murine intravenous challenge model. FEMS Yeast Res. 9:1111–1122.
2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kim HS, Choi EH, Khan J, Roilides E,
Francesconi A, Kasai M, Sein T, Schaufele RL, Sakurai K, Son CG,
Greer BT, Chanock S, Lyman CA and Walsh TJ: Expression of genes
encoding innate host defense molecules in normal human monocytes in
response to Candida albicans. Infect Immun. 73:3714–3724.
2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Mathey E, Pollard J and Armati P: In situ
hybridization for cytokines in human tissue biopsies. Methods Mol
Biol. 249:41–46. 2003.PubMed/NCBI
|
12
|
Edwards BS, Oprea T, Prossnitz ER and
Sklar LA: Flow cytometry for high-throughput, high-content
screening. Curr Opin Chem Biol. 8:392–398. 2004. View Article : Google Scholar : PubMed/NCBI
|
13
|
Diaz MR, Boekhout T, Theelen B, Bovers M,
Cabañes FJ and Fell JW: Microcoding and flow cytometry as a
high-throughput fungal identification system for Malassezia
species. J Med Microbiol. 55:1197–1209. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ashman RB and Papadimitriou JM: Production
and function of cytokines in natural and acquired immunity to
Candida albicans infection. Microbiol Rev. 59:646–672.
1995.PubMed/NCBI
|
15
|
Moseley TA, Haudenschild DR, Rose L and
Reddi AH: Interleukin-17 family and IL-17 receptors. Cytokine
Growth Factor Rev. 14:155–174. 2003. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kolls JK and Lindén A: Interleukin-17
family members and inflammation. Immunity. 21:467–476. 2004.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Huang W, Na L, Fidel PL and
Schwarzenberger P: Requirement of interleukin-17A for systemic
anti-Candida albicans host defense in mice. J Infect Dis.
190:624–631. 2004. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Blobe GC, Schiemann WP and Lodish HF: Role
of transforming growth factor beta in human disease. N Engl J Med.
342:1350–1358. 2000. View Article : Google Scholar : PubMed/NCBI
|
19
|
Letterio JJ and Roberts AB: Regulation of
immune responses by TGF-beta. Annu Rev Immunol. 16:137–161. 1998.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Vodovotz Y, Bogdan C, Paik J, Xie QW and
Nathan C: Mechanisms of suppression of macrophage nitric oxide
release by transforming growth factor beta. J Exp Med. 178:605–613.
1993. View Article : Google Scholar : PubMed/NCBI
|
21
|
Letterio JJ, Lehrnbecher T, Pollack G,
Walsh TJ and Chanock SJ: Invasive candidiasis stimulates hepatocyte
and monocyte production of active transforming growth factor beta.
Infect Immun. 69:5115–5120. 2001. View Article : Google Scholar : PubMed/NCBI
|
22
|
Silva JS, Twardzik DR and Reed SG:
Regulation of Trypanosoma cruzi infections in vitro and in
vivo by transforming growth factor beta (TGF-beta). J Exp Med.
174:539–545. 1991.
|
23
|
Barral A, Barral-Netto M, Yong EC,
Brownell CE, Twardzik DR and Reed SG: Transforming growth factor
beta as a virulence mechanism for Leishmania braziliensis.
Proc Natl Acad Sci USA. 90:3442–3446. 1993. View Article : Google Scholar : PubMed/NCBI
|
24
|
Gorelik L and Flavell RA: Abrogation of
TGFbeta signaling in T cells leads to spontaneous T cell
differentiation and autoimmune disease. Immunity. 12:171–181. 2000.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Beno DW and Mathews HL: Growth inhibition
of Candida albicans by interleukin-2-activated splenocytes.
Infect Immun. 60:853–863. 1992.
|
26
|
Levitz SM and Dupont MP: Phenotypic and
functuional characterization of human lymphocytes activated by
interleukin-2 to directly inhibit growth of Crytococcus
neoformans in vitro. J Clin Invest. 91:1490–1498. 1993.
View Article : Google Scholar : PubMed/NCBI
|
27
|
De Filippo K, Henderson RB, Laschinger M
and Hogg N: Neutrophil chemokines KC and macrophage-inflammatory
protein-2 are newly synthesized by tissue macrophages using
distinct TLR signaling pathways. J Immunol. 180:4308–4315.
2008.PubMed/NCBI
|
28
|
Djeu JY, Blanchard DK, Halkis D and
Friedman H: Growth inhibition of Candida albicans by human
polymorphonuclear neutrophils: activation by interferon-gamma and
tumor necrosis factor. J Immunol. 137:2980–2984. 1986.PubMed/NCBI
|
29
|
Ferrante A: Tumor necrosis factor alpha
potentiates neutrophil antimicrobial activity: increased fungicidal
activity against Torulopsis glabrata and Candida
albicans and associated increases in oxygen radical production
and lysosomal enzyme release. Infect Immun. 57:2115–2122. 1989.
|
30
|
Marshall JD, Heeke DS, Abbate C, Yee P and
Van Nest G: Induction of interferon-gamma from natural killer cells
by immunostimulatory CpG DNA is mediated through
plasmacytoid-dendritic-cell-produced interferon-alpha and tumour
necrosis factor-alpha. Immunology. 117:38–46. 2006. View Article : Google Scholar
|
31
|
Grau GE, Heremans H, Piguet PF, Pointaire
P, Lambert PH, Billiau A and Vassalli P: Monoclonal antibody
against interferon gamma can prevent experimental cerebral malaria
and its associated overproduction of tumor necrosis factor. Proc
Natl Acad Sci USA. 86:5572–5574. 1989. View Article : Google Scholar
|
32
|
de Kossodo S and Grau GE: Profiles of
cytokine production in relation with susceptibility to cerebral
malaria. J Immunol. 151:4811–4820. 1993.PubMed/NCBI
|
33
|
Kwiatkowski D, Hill AV, Sambou I, Twumasi
P, Castracane J, Manogue KR, Cerami A, Brewster DR and Greenwood
BM: TNF concentration in fatal cerebral, non-fatal cerebral, and
uncomplicated Plasmodium falciparum malaria. Lancet.
336:1201–1204. 1990. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wolfs TG, Buurman WA, van Schadewijk A, de
Vries B, Daemen MA, Hiemstra PS and van’t Veer C: In vivo
expression of Toll-like receptor 2 and 4 by renal epithelial cells:
IFN-gamma and TNF-alpha mediated up-regulation during inflammation.
J Immunol. 168:1286–1293. 2002. View Article : Google Scholar : PubMed/NCBI
|
35
|
Mencacci A, Cenci E, Del Sero G, Fe
d’Ostiani C, Mosci P, Montagnoli C, Bacci A, Bistoni F, Quesniaux
VF, Ryffel B and Romani L: Defective co-stimulation and impaired
Th1 development in tumor necrosis factor/lymphotoxin-alpha
double-deficient mice infected with Candida albicans. Int
Immunol. 10:37–48. 1998. View Article : Google Scholar : PubMed/NCBI
|
36
|
Romani L, Mencacci A, Cenci E, Spaccapelo
R, Toniatti C, Puccetti P, Bistoni F and Poli V: Impaired
neutrophil response and CD4+ T helper cell 1 development in
interleukin 6-deficient mice infected with Candida albicans.
J Exp Med. 183:1345–1355. 1996. View Article : Google Scholar : PubMed/NCBI
|
37
|
Van Snick J: Interleukin-6: an overview.
Annu Rev Immunol. 8:253–278. 1990.
|
38
|
Khong WX, Foo DG, Trasti SL, Tan EL and
Alonso S: Sustained high levels of interleukin-6 contribute to the
pathogenesis of enterovirus 71 in a neonate mouse model. J Virol.
85:3067–3076. 2001. View Article : Google Scholar : PubMed/NCBI
|
39
|
Tanaka T, Kanda T, McManus BM, Kanai H,
Akiyama H, Sekiguchi K, Yokoyama T and Kurabayashi M:
Overexpression of interleukin-6 aggravates viral myocarditis:
impaired increase in tumor necrosis factor-alpha. J Mol Cell
Cardiol. 33:1627–1635. 2001. View Article : Google Scholar : PubMed/NCBI
|