Posttraumatic knee osteoarthritis following anterior cruciate ligament injury: Potential biochemical mediators of degenerative alteration and specific biochemical markers (Review)
- Authors:
- Hong Li
- Chen Chen
- Shiyi Chen
-
Affiliations: Department of Sports Medicine, Huashan Hospital, Shanghai 200040, P.R. China, Department of Orthopaedics, Zhongshan Hospital, Shanghai 200032, P.R. China - Published online on: December 17, 2014 https://doi.org/10.3892/br.2014.404
- Pages: 147-151
This article is mentioned in:
Abstract
Spindler KP and Wright RW: Clinical practice. Anterior cruciate ligament tear. N Engl J Med. 359:2135–2142. 2008. View Article : Google Scholar : PubMed/NCBI | |
Frobell RB, Roos EM, Roos HP, Ranstam J and Lohmander LS: A randomized trial of treatment for acute anterior cruciate ligament tears. N Engl J Med. 363:331–342. 2010. View Article : Google Scholar : PubMed/NCBI | |
Brophy RH, Zeltser D, Wright RW and Flanigan D: Anterior cruciate ligament reconstruction and concomitant articular cartilage injury: incidence and treatment. Arthroscopy. 26:112–120. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lohmander LS, Ostenberg A, Englund M and Roos H: High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 50:3145–3152. 2004. View Article : Google Scholar : PubMed/NCBI | |
Nelson F, Billinghurst RC, Pidoux I, et al: Early post-traumatic osteoarthritis-like changes in human articular cartilage following rupture of the anterior cruciate ligament. Osteoarthritis Cartilage. 14:114–119. 2006. View Article : Google Scholar : PubMed/NCBI | |
Li G, Moses JM, Papannagari R, Pathare NP, De Frate LE and Gill TJ: Anterior cruciate ligament deficiency alters the in vivo motion of the tibiofemoral cartilage contact points in both the anteroposterior and mediolateral directions. J Bone Joint Surg Am. 88:1826–1834. 2006. View Article : Google Scholar : PubMed/NCBI | |
Van de Velde SK, Bingham JT, Hosseini A, et al: Increased tibiofemoral cartilage contact deformation in patients with anterior cruciate ligament deficiency. Arthritis Rheum. 60:3693–3702. 2009. View Article : Google Scholar : PubMed/NCBI | |
Church S and Keating JF: Reconstruction of the anterior cruciate ligament: timing of surgery and the incidence of meniscal tears and degenerative change. J Bone Joint Surg Br. 87:1639–1642. 2005. View Article : Google Scholar : PubMed/NCBI | |
Granan LP, Bahr R, Lie SA and Engebretsen L: Timing of anterior cruciate ligament reconstructive surgery and risk of cartilage lesions and meniscal tears: a cohort study based on the Norwegian National Knee Ligament Registry. Am J Sports Med. 37:955–961. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fajardo M and Di Cesare PE: Disease-modifying therapies for osteoarthritis: current status. Drugs Aging. 22:141–161. 2005. View Article : Google Scholar : PubMed/NCBI | |
Li H, Hosseini A, Li JS, Gill TJ IV and Li G: Quantitative magnetic resonance imaging (MRI) morphological analysis of knee cartilage in healthy and anterior cruciate ligament-injured knees. Knee Surg Sports Traumatol Arthrosc. 20:1496–1502. 2012. View Article : Google Scholar : PubMed/NCBI | |
Friel NA and Chu CR: The role of ACL injury in the development of posttraumatic knee osteoarthritis. Clin Sports Med. 32:1–12. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ferretti A, Conteduca F, De Carli A, Fontana M and Mariani PP: Osteoarthritis of the knee after ACL reconstruction. Int Orthop. 15:367–371. 1991. View Article : Google Scholar : PubMed/NCBI | |
Daniel DM, Stone ML, Dobson BE, Fithian DC, Rossman DJ and Kaufman KR: Fate of the ACL-injured patient. A prospective outcome study. Am J Sports Med. 22:632–644. 1994. View Article : Google Scholar : PubMed/NCBI | |
Li H, Tao H, Hua Y, Chen J, Li Y and Chen S: Quantitative magnetic resonance imaging assessment of cartilage status: a comparison between young men with and without anterior cruciate ligament reconstruction. Arthroscopy. 29:2012–2019. 2013. View Article : Google Scholar : PubMed/NCBI | |
Oiestad BE, Holm I, Engebretsen L and Risberg MA: The association between radiographic knee osteoarthritis and knee symptoms, function and quality of life 10–15 years after anterior cruciate ligament reconstruction. Br J Sports Med. 45:583–588. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kraus VB, Birmingham J, Stabler TV, et al: Effects of intraarticular I11-Ra for acute anterior cruciate ligament knee injury: a randomized controlled pilot trial (NCT00332254). Osteoarthritis Cartilage. 20:271–278. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wei L, Fleming BC, Sun X, et al: Comparison of differential biomarkers of osteoarthritis with and without posttraumatic injury in the Hartley guinea pig model. J Orthop Res. 28:900–906. 2010.PubMed/NCBI | |
Marks PH and Donaldson ML: Inflammatory cytokine profiles associated with chondral damage in the anterior cruciate ligament-deficient knee. Arthroscopy. 21:1342–1347. 2005. View Article : Google Scholar : PubMed/NCBI | |
Aigner T, Soeder S and Haag J: IL-1beta and BMPs - interactive players of cartilage matrix degradation and regeneration. Eur Cell Mater. 12:49–56. 2006.PubMed/NCBI | |
Turner NA, Warburton P, O'Regan DJ, Ball SG and Porter KE: Modulatory effect of interleukin-1alpha on expression of structural matrix proteins, MMPs and TIMPs in human cardiac myofibroblasts: role of p 38 MAP kinase. Matrix Biol. 29:613–620. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xue R, Yang L, Tang Z, et al: The profile of MMP and TIMP in injured rat ACL. Mol Cell Biomech. 7:115–124. 2010.PubMed/NCBI | |
Chen WP, Tang JL, Bao JP, et al: Effects of diallyl sulphide in chondrocyte and cartilage in experimental osteoarthritis in rabbit. Phytother Res. 25:351–356. 2011.PubMed/NCBI | |
Tang Z, Yang L, Zhang J, et al: Coordinated expression of MMPs and TIMPs in rat knee intra-articular tissues after ACL injury. Connect Tissue Res. 50:315–322. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ra HJ and Parks WC: Control of matrix metalloproteinase catalytic activity. Matrix Biol. 26:587–596. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lin PM, Chen CT and Torzilli PA: Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage. Osteoarthritis Cartilage. 12:485–496. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ni GX, Zhan LQ, Gao MQ, Lei L, Zhou YZ and Pan YX: Matrix metalloproteinase-3 inhibitor retards treadmill running-induced cartilage degradation in rats. Arthritis Res Ther. 13:R1922011. View Article : Google Scholar : PubMed/NCBI | |
Catterall JB, Stabler TV, Flannery CR and Kraus VB: Changes in serum and synovial fluid biomarkers after acute injury (NCT00332254). Arthritis Res Ther. 12:R2292010. View Article : Google Scholar : PubMed/NCBI | |
Hattori S, Sakane M, Mutsuzaki H, Tanaka J, Ochiai N and Nakajima H: Chondrocyte apoptosis and decrease of glycosaminoglycan in cranial cruciate ligament insertion after resection in rabbits. J Vet Med Sci. 69:253–258. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sakane M, Mutsuzaki H, Hattori S, Nakajima H and Ochiai N: Time dependence of changes of two cartilage layers in anterior cruciate ligament insertion after resection on chondrocyte apoptosis and decrease in glycosaminoglycan. Sports Med Arthrosc Rehabil Ther Technol. 1:272009. View Article : Google Scholar : PubMed/NCBI | |
Connelly JT, Wilson CG and Levenston ME: Characterization of proteoglycan production and processing by chondrocytes and BMSCs in tissue engineered constructs. Osteoarthritis Cartilage. 16:1092–1100. 2008. View Article : Google Scholar : PubMed/NCBI | |
Little CB, Hughes CE, Curtis CL, et al: Matrix metalloproteinases are involved in C-terminal and interglobular domain processing of cartilage aggrecan in late stage cartilage degradation. Matrix Biol. 21:271–288. 2002. View Article : Google Scholar : PubMed/NCBI | |
Troeberg L and Nagase H: Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim Biophys Acta. 1824:133–145. 2012. View Article : Google Scholar : PubMed/NCBI | |
Caterson B, Flannery CR, Hughes CE and Little CB: Mechanisms involved in cartilage proteoglycan catabolism. Matrix Biol. 19:333–344. 2000. View Article : Google Scholar : PubMed/NCBI | |
Sondergaard BC, Schultz N, Madsen SH, Bay-Jensen AC, Kassem M and Karsdal MA: MAPKs are essential upstream signaling pathways in proteolytic cartilage degradation - divergence in pathways leading to aggrecanase and MMP-mediated articular cartilage degradation. Osteoarthritis Cartilage. 18:279–288. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lorenz H, Wenz W, Ivancic M, Steck E and Richter W: Early and stable upregulation of collagen type II, collagen type I and YK140 expression levels in cartilage during early experimental osteoarthritis occurs independent of joint location and histological grading. Arthritis Res Ther. 7:R156–R165. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pujol JP, Chadjichristos C, Legendre F, et al: Interleukin-1 and transforming growth factor-beta 1 as crucial factors in osteoarthritic cartilage metabolism. Connect Tissue Res. 49:293–297. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chadjichristos C, Ghayor C, Kypriotou M, et al: Sp1 and Sp3 transcription factors mediate interleukin-1 beta down-regulation of human type II collagen gene expression in articular chondrocytes. J Biol Chem. 278:39762–39772. 2003. View Article : Google Scholar : PubMed/NCBI | |
Porée B, Kypriotou M, Chadjichristos C, et al: Interleukin-6 (IL-6) and/or soluble IL-6 receptor down-regulation of human type II collagen gene expression in articular chondrocytes requires a decrease of Sp1. Sp3 ratio and of the binding activity of both factors to the CO12A1 promoter. J Biol Chem. 283:4850–4865. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mutsuzaki H, Sakane M, Ikeda K, et al: Histological changes and apoptosis of cartilage layer in human anterior cruciate ligament tibial insertion after rupture. Knee Surg Sports Traumatol Arthrosc. 15:602–609. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mutsuzaki H, Sakane M, Honda K, Ikeda K, Hattori S and Ochiai N: Cell death and cell proliferation in cartilage layers in human anterior cruciate ligament tibial insertions after rupture. Connect Tissue Res. 51:282–288. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nishimuta JF and Levenston ME: Response of cartilage and meniscus tissue explants to in vitro compressive overload. Osteoarthritis Cartilage. 20:422–429. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xu L, Hayashi D, Roemer FW, Felson DT and Guermazi A: Magnetic resonance imaging of subchondral bone marrow lesions in association with osteoarthritis. Semin Arthritis Rheum. 42:105–118. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lewis JL, Deloria LB, Oyen-Tiesma M, Thompson RC Jr, Ericson M and Oegema TR Jr: Cell death after cartilage impact occurs around matrix cracks. J Orthop Res. 21:881–887. 2003. View Article : Google Scholar : PubMed/NCBI | |
Frobell RB: Change in cartilage thickness, posttraumatic bone marrow lesions, and joint fluid volumes after acute ACL disruption: a two-year prospective MRI study of sixty-one subjects. J Bone Joint Surg Am. 93:1096–1103. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nakamae A, Engebretsen L, Bahr R, Krosshaug T and Ochi M: Natural history of bone bruises after acute knee injury: clinical outcome and histopathological findings. Knee Surg Sports Traumatol Arthrosc. 14:1252–1258. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lahm A, Uhl M, Erggelet C, Haberstroh J and Mrosek E: Articular cartilage degeneration after acute subchondral bone damage: an experimental study in dogs with histopathological grading. Acta Orthop Scand. 75:762–767. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lahm A, Kreuz PC, Oberst M, Haberstroh J, Uhl M and Maier D: Subchondral and trabecular bone remodeling in canine experimental osteoarthritis. Arch Orthop Trauma Surg. 126:582–587. 2006. View Article : Google Scholar : PubMed/NCBI | |
Beekhuizen M, van Osch GJ, Bot AG, et al: Inhibition of oncostatin M in osteoarthritic synovial fluid enhances GAG production in osteoarthritic cartilage repair. Eur Cell Mater. 26:80–90. 2013.PubMed/NCBI | |
Tsuchida AI, Beekhuizen M, Rutgers M, et al: Interleukin-6 is elevated in synovial fluid of patients with focal cartilage defects and stimulates cartilage matrix production in an in vitro regeneration model. Arthritis Res Ther. 14:R2622012. View Article : Google Scholar : PubMed/NCBI | |
Sharif M, Kirwan J, Charni N, Sandell LJ, Whittles C and Garnero P: A 5-yr longitudinal study of type IIA collagen synthesis and total type II collagen degradation in patients with knee osteoarthritis - association with disease progression. Rheumatology (Oxford). 46:938–943. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lohmander LS, Atley LM, Pietka TA and Eyre DR: The release of crosslinked peptides from type II collagen into human synovial fluid is increased soon after joint injury and in osteoarthritis. Arthritis Rheum. 48:3130–3139. 2003. View Article : Google Scholar : PubMed/NCBI | |
Duclos ME, Roualdes O, Cararo R, Rousseau JC, Roger T and Hartmann DJ: Significance of the serum CTX-II level in an osteoarthritis animal model: a 5-month longitudinal study. Osteoarthritis Cartilage. 18:1467–1476. 2010. View Article : Google Scholar : PubMed/NCBI | |
Freeston JE, Garnero P, Wakefield RJ, Hensor EM, Conaghan PG and Emery P: Urinary type II collagen C-terminal peptide is associated with synovitis and predicts structural bone loss in very early inflammatory arthritis. Ann Rheum Dis. 70:331–333. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ikegawa S, Sano M, Koshizuka Y and Nakamura Y: Isolation, characterization and mapping of the mouse and human PRG4 (proteoglycan 4) genes. Cytogenet Cell Genet. 90:291–297. 2000. View Article : Google Scholar : PubMed/NCBI | |
Jay GD, Tantravahi U, Britt DE, Barrach HJ and Cha CJ: Homology of lubricin and superficial zone protein (SZP): products of megakaryocyte stimulating factor (MSF) gene expression by human synovial fibroblasts and articular chondrocytes localized to chromosome 1q25. J Orthop Res. 19:677–687. 2001. View Article : Google Scholar : PubMed/NCBI | |
Liu YJ, Lu SH, Xu B, et al: Hemangiopoietin, a novel human growth factor for the primitive cells of both hematopoietic and endothelial cell lineages. Blood. 103:4449–4456. 2004. View Article : Google Scholar : PubMed/NCBI | |
Coles JM, Zhang L, Blum JJ, et al: Loss of cartilage structure, stiffness, and frictional properties in mice lacking PRG4. Arthritis Rheum. 62:1666–1674. 2010. View Article : Google Scholar : PubMed/NCBI | |
Schmidt TA, Gastelum NS, Nguyen QT, Schumacher BL and Sah RL: Boundary lubrication of articular cartilage: role of synovial fluid constituents. Arthritis Rheum. 56:882–891. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rhee DK, Marcelino J, Baker M, et al: The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Invest. 115:622–631. 2005. View Article : Google Scholar : PubMed/NCBI | |
Elsaid KA, Machan JT, Waller K, Fleming BC and Jay GD: The impact of anterior cruciate ligament injury on lubricin metabolism and the effect of inhibiting tumor necrosis factor alpha on chondroprotection in an animal model. Arthritis Rheum. 60:2997–3006. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nugent GE, Aneloski NM, Schmidt TA, Schumacher BL, Voegtline MS and Sah RL: Dynamic shear stimulation of bovine cartilage biosynthesis of proteoglycan 4. Arthritis Rheum. 54:1888–1896. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nugent-Derfus GE, Takara T, O'Neill JK, et al: Continuous passive motion applied to whole joints stimulates chondrocyte biosynthesis of PRG4. Osteoarthritis Cartilage. 15:566–574. 2007. View Article : Google Scholar : PubMed/NCBI | |
Matyas JR, Atley L, Ionescu M, Eyre DR and Poole AR: Analysis of cartilage biomarkers in the early phases of canine experimental osteoarthritis. Arthritis Rheum. 50:543–552. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jones AR, Chen S, Chai DH, et al: Modulation of lubricin biosynthesis and tissue surface properties following cartilage mechanical injury. Arthritis Rheum. 60:133–142. 2009. View Article : Google Scholar : PubMed/NCBI | |
Englert C, McGowan KB, Klein TJ, Giurea A, Schumacher BL and Sah RL: Inhibition of integrative cartilage repair by proteoglycan 4 in synovial fluid. Arthritis Rheum. 52:1091–1099. 2005. View Article : Google Scholar : PubMed/NCBI | |
Schmidt TA, Gastelum NS, Han EH, Nugent-Derfus GE, Schumacher BL and Sah RL: Differential regulation of proteoglycan 4 metabolism in cartilage by IL-1alpha, IGF-I, and TGF-beta1. Osteoarthritis Cartilage. 16:90–97. 2008. View Article : Google Scholar : PubMed/NCBI | |
Neu CP, Khalafi A, Komvopoulos K, Schmid TM and Reddi AH: Mechanotransduction of bovine articular cartilage superficial zone protein by transforming growth factor beta signaling. Arthritis Rheum. 56:3706–3714. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gleghorn JP, Jones AR, Flannery CR and Bonassar LJ: Alteration of articular cartilage frictional properties by transforming growth factor beta, interleukin-1beta, and oncostatin M. Arthritis Rheum. 60:440–449. 2009. View Article : Google Scholar : PubMed/NCBI | |
Elsaid KA, Fleming BC, Oksendahl HL, et al: Decreased lubricin concentrations and markers of joint inflammation in the synovial fluid of patients with anterior cruciate ligament injury. Arthritis Rheum. 58:1707–1715. 2008. View Article : Google Scholar : PubMed/NCBI | |
Elsaid KA, Jay GD, Warman ML, Rhee DK and Chichester CO: Association of articular cartilage degradation and loss of boundary-lubricating ability of synovial fluid following injury and inflammatory arthritis. Arthritis Rheum. 52:1746–1755. 2005. View Article : Google Scholar : PubMed/NCBI |