1
|
Ball J, Carrington MJ, McMurray JJ and
Stewart S: Atrial fibrillation: Profile and burden of an evolving
epidemic in the 21st century. Int J Cardiol. 167:1807–1824. 2013.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Lip GY, Tse HF and Lane DA: Atrial
fibrillation. Lancet. 379:648–661. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hijazi Z, Oldgren J, Siegbahn A, Granger
CB and Wallentin L: Biomarkers in atrial fibrillation: A clinical
review. Eur Heart J. 34:1475–1480. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Korantzopoulos P, Kolettis TM, Galaris D
and Goudevenos JA: The role of oxidative stress in the pathogenesis
and perpetuation of atrial fibrillation. Int J Cardiol.
115:135–143. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Liu T, Li G, Li L and Korantzopoulos P:
Association between C-reactive protein and recurrence of atrial
fibrillation after successful electrical cardioversion: A
meta-analysis. J Am Coll Cardiol. 49:1642–1648. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Guo Y, Lip GY and Apostolakis S:
Inflammation in atrial fibrillation. J Am Coll Cardiol.
60:2263–2270. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Youn JY, Zhang J, Zhang Y, Chen H, Liu D,
Ping P, Weiss JN and Cai H: Oxidative stress in atrial
fibrillation: An emerging role of NADPH oxidase. J Mol Cell
Cardiol. 62:72–79. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Reilly SN, Jayaram R, Nahar K, Antoniades
C, Verheule S, Channon KM, Alp NJ, Schotten U and Casadei B: Atrial
sources of reactive oxygen species vary with the duration and
substrate of atrial fibrillation: Implications for the
antiarrhythmic effect of statins. Circulation. 124:1107–1117. 2011.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Cangemi R, Celestini A, Calvieri C,
Carnevale R, Pastori D, Nocella C, Vicario T, Pignatelli P and
Violi F: Different behaviour of NOX2 activation in patients with
paroxysmal/persistent or permanent atrial fibrillation. Heart.
98:1063–1066. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang J, Youn JY, Kim AY, Ramirez RJ, Gao
L, Ngo D, Chen P, Scovotti J, Mahajan A and Cai H: Nox4-dependent
hydrogen peroxide overproduction in human atrial fibrillation and
hl-1 atrial cells: Relationship to hypertension. Front Physiol.
3:1402012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Camm AJ, Kirchhof P, Lip GY, Schotten U,
Savelieva I, Ernst S, Van Gelder IC, Al-Attar N, Hindricks G,
Prendergast B, et al: European Heart Rhythm Association; European
Association for Cardio-Thoracic Surgery; ESC Committee for Practice
Guidelines: Guidelines for the management of atrial fibrillation:
The task force for the management of atrial fibrillation of the
european society of cardiology (ESC). Europace. 12:1360–1420.
2010.PubMed/NCBI
|
12
|
Levey AS, Bosch JP, Lewis JB, Greene T,
Rogers N and Roth D: Modification of Diet in Renal Disease Study
Group: A more accurate method to estimate glomerular filtration
rate from serum creatinine: A new prediction equation. Ann Intern
Med. 130:461–470. 1999. View Article : Google Scholar : PubMed/NCBI
|
13
|
Nattel S, Burstein B and Dobrev D: Atrial
remodeling and atrial fibrillation: Mechanisms and implications.
Circ Arrhythm Electrophysiol. 1:62–73. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Schotten U, Verheule S, Kirchhof P and
Goette A: Pathophysiological mechanisms of atrial fibrillation: A
translational appraisal. Physiol Rev. 91:265–325. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wakili R, Voigt N, Kääb S, Dobrev D and
Nattel S: Recent advances in the molecular pathophysiology of
atrial fibrillation. J Clin Invest. 121:2955–2968. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
VanWagoner DR: Oxidative stress and
inflammation in atrial fibrillation: Role in pathogenesis and
potential as a therapeutic target. J Cardiovasc Pharmacol.
52:306–313. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Negi S, Sovari AA and Dudley SC Jr: Atrial
fibrillation: The emerging role of inflammation and oxidative
stress. Cardiovasc Hematol Disord Drug Targets. 10:262–268. 2010.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Sovari AA and Dudley SC Jr: Reactive
oxygen species-targeted therapeutic interventions for atrial
fibrillation. Front Physiol. 3:3112012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Sirker A, Zhang M and Shah AM: NADPH
oxidases in cardiovascular disease: Insights from in vivo models
and clinical studies. Basic Res Cardiol. 106:735–747. 2011.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Kuroda J, Ago T, Matsushima S, Zhai P,
Schneider MD and Sadoshima J: NADPH oxidase 4 (Nox4) is a major
source of oxidative stress in the failing heart. Proc Natl Acad Sci
USA. 107:15565–15570. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lassègue B, San Martín A and Griendling
KK: Biochemistry, physiology, and pathophysiology of NADPH oxidases
in the cardiovascular system. Circ Res. 110:1364–1390. 2012.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Lambeth JD: NOX enzymes and the biology of
reactive oxygen. Nat Rev Immunol. 4:181–189. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ismail S, Sturrock A, Wu P, Cahill B,
Norman K, Huecksteadt T, Sanders K, Kennedy T and Hoidal J: NOX4
mediates hypoxia-induced proliferation of human pulmonary artery
smooth muscle cells: The role of autocrine production of
transforming growth factor-β1 and insulin-like growth factor
binding protein-3. Am J Physiol Lung Cell Mol Physiol.
296:L489–L499. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Cucoranu I, Clempus R, Dikalova A, Phelan
PJ, Ariyan S, Dikalov S and Sorescu D: NAD(P)H oxidase 4 mediates
transforming growth factor-beta1-induced differentiation of cardiac
fibroblasts into myofibroblasts. Circ Res. 97:900–907. 2005.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Hecker L, Vittal R, Jones T, Jagirdar R,
Luckhardt TR, Horowitz JC, Pennathur S, Martinez FJ and Thannickal
VJ: NADPH oxidase-4 mediates myofibroblast activation and
fibrogenic responses to lung injury. Nat Med. 15:1077–1081. 2009.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Ago T, Kuroda J, Pain J, Fu C, Li H and
Sadoshima J: Upregulation of Nox4 by hypertrophic stimuli promotes
apoptosis and mitochondrial dysfunction in cardiac myocytes. Circ
Res. 106:1253–1264. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
DudleySC Jr, Hoch NE, McCann LA, Honeycutt
C, Diamandopoulos L, Fukai T, Harrison DG, Dikalov SI and Langberg
J: Atrial fibrillation increases production of superoxide by the
left atrium and left atrial appendage: Role of the NADPH and
xanthine oxidases. Circulation. 112:1266–1273. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kim YM, Guzik TJ, Zhang YH, Zhang MH,
Kattach H, Ratnatunga C, Pillai R, Channon KM and Casadei B: A
myocardial Nox2 containing NAD(P)H oxidase contributes to oxidative
stress in human atrial fibrillation. Circ Res. 97:629–636. 2005.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Li SB, Yang F, Jing L, Ma J, Jia YD, Dong
SY, Zheng WF and Zhao LS: Myeloperoxidase and risk of recurrence of
atrial fibrillation after catheter ablation. J Investig Med.
61:722–727. 2013.PubMed/NCBI
|