Pim-1 kinase as cancer drug target: An update (Review)
- Authors:
- Yernar Tursynbay
- Jinfu Zhang
- Zhi Li
- Tursonjan Tokay
- Zhaxybay Zhumadilov
- Denglong Wu
- Yingqiu Xie
-
Affiliations: Department of Biology, Nazarbayev University School of Science and Technology, Astana 010000, Republic of Kazakhstan, Institute of International Medical Research, Department of Urology and Andrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China, Department of Pathology, Sun Yat‑sen University, Guangzhou 510080, P.R. China, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Republic of Kazakhstan, Department of Urology, Tong Ji Hospital, Tong Ji University, Shanghai 200065, P.R. China - Published online on: December 24, 2015 https://doi.org/10.3892/br.2015.561
- Pages: 140-146
This article is mentioned in:
Abstract
Narlik-Grassow M, Blanco-Aparicio C and Carnero A: The PIM family of serine/threonine kinases in cancer. Med Res Rev. 34:136–159. 2014. View Article : Google Scholar : PubMed/NCBI | |
Warfel NA and Kraft AS: PIM kinase (and Akt) biology and signaling in tumors. Pharmacol Ther. 151:41–49. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li J, Loveland BE and Xing PX: Anti-Pim-1 mAb inhibits activation and proliferation of T lymphocytes and prolongs mouse skin allograft survival. Cell Immunol. 272:87–93. 2011. View Article : Google Scholar : PubMed/NCBI | |
Aho TLT, Sandholm J, Peltola KJ, Mankonen HP, Lilly M and Koskinen PJ: Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site. FEBS Lett. 571:43–49. 2004. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Xu K, Dai B, Guo Z, Jiang T, Chen H and Qiu Y: The 44 kDa Pim-1 kinase directly interacts with tyrosine kinase Etk/BMX and protects human prostate cancer cells from apoptosis induced by chemotherapeutic drugs. Oncogene. 25:70–78. 2006.PubMed/NCBI | |
Saris CJM, Domen J and Berns A: The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J. 10:655–664. 1991.PubMed/NCBI | |
Kumar A, Mandiyan V, Suzuki Y, Zhang C, Rice J, Tsai J, Artis DR, Ibrahim P and Bremer R: Crystal structures of proto-oncogene kinase Pim1: A target of aberrant somatic hypermutations in diffuse large cell lymphoma. J Mol Biol. 348:183–193. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bachmann M and Möröy T: The serine/threonine kinase Pim-1. Int J Biochem Cell Biol. 37:726–730. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yin J, Shine L, Raycroft F, Deeti S, Reynolds A, Ackerman KM, Glaviano A, O'Farrell S, O'Leary O, Kilty C, et al: Inhibition of the Pim1 oncogene results in diminished visual function. PLoS One. 7:e521772012. View Article : Google Scholar : PubMed/NCBI | |
Magnuson NS, Wang Z, Ding G and Reeves R: Why target PIM1 for cancer diagnosis and treatment? Future Oncol. 6:1461–1478. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hofmann AD, Takahashi T, Duess J, Gosemann JH and Puri P: Increased expression of activated pSTAT3 and PIM-1 in the pulmonary vasculature of experimental congenital diaphragmatic hernia. J Pediatr Surg. 50:908–911. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Wang Z and Magnuson NS: Pim-1 kinase-dependent phosphorylation of p21Cip1/WAF1 regulates its stability and cellular localization in H1299 cells. Mol Cancer Res. 5:909–922. 2007. View Article : Google Scholar : PubMed/NCBI | |
Morishita D, Katayama R, Sekimizu K, Tsuruo T and Fujita N: Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels. Cancer Res. 68:5076–5085. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lam LT, Zhang H, Xue J, Hessler P, Tahir SK, Chen J, Jin S, Souers AJ and Leverson JD: Colorectal cancer cell lines with high BCL-XL and low MCL-1 expression are sensitive to a potent and selective BCL-XL inhibitor. Cancer Res. 74(Suppl 19): 27592014. View Article : Google Scholar | |
Kumar JK, Ping RYS, Teong HF, Goh S and Clément MV: Activation of a non-genomic Pim-1/Bad-Pser75 module is required for an efficient pro-survival effect of Bcl-xL induced by androgen in LNCaP cells. Int J Biochem Cell Biol. 43:594–603. 2011. View Article : Google Scholar : PubMed/NCBI | |
Block KM, Hanke NT, Maine EA and Baker AF: IL-6 stimulates STAT3 and Pim-1 kinase in pancreatic cancer cell lines. Pancreas. 41:773–781. 2012.PubMed/NCBI | |
Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, Pienta KJ, Rubin MA and Chinnaiyan AM: Delineation of prognostic biomarkers in prostate cancer. Nature. 412:822–826. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hu XF, Li J, Vandervalk S, Wang Z, Magnuson NS and Xing PX: PIM-1-specific mAb suppresses human and mouse tumor growth by decreasing PIM-1 levels, reducing Akt phosphorylation, and activating apoptosis. J Clin Invest. 119:362–375. 2009.PubMed/NCBI | |
Li J, Hu XF, Loveland BE and Xing PX: Pim-1 expression and monoclonal antibody targeting in human leukemia cell lines. Exp Hematol. 37:1284–1294. 2009. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Xu K, Linn DE, Yang X, Guo Z, Shimelis H, Nakanishi T, Ross DD, Chen H, Fazli L, et al: The 44-kDa Pim-1 kinase phosphorylates BCRP/ABCG2 and thereby promotes its multimerization and drug-resistant activity in human prostate cancer cells. J Biol Chem. 283:3349–3356. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Lin F, Zhuo C, Deng G, Chen Z, Yin S, Gao Z, Piccioni M, Tsun A, Cai S, et al: PIM1 kinase phosphorylates the human transcription factor FOXP3 at serine 422 to negatively regulate its activity under inflammation. J Biol Chem. 289:26872–26881. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nie H, Zheng Y, Li R, Guo TB, He D, Fang L, Liu X, Xiao L, Chen X, Wan B, et al: Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis. Nat Med. 19:322–328. 2013. View Article : Google Scholar : PubMed/NCBI | |
Morawski PA, Mehra P, Chen C, Bhatti T and Wells AD: Foxp3 protein stability is regulated by cyclin-dependent kinase 2. J Biol Chem. 288:24494–24502. 2013. View Article : Google Scholar : PubMed/NCBI | |
Oleinika K, Nibbs RJ, Graham GJ and Fraser AR: Suppression, subversion and escape: The role of regulatory T cells in cancer progression. Clin Exp Immunol. 171:36–45. 2013. View Article : Google Scholar : PubMed/NCBI | |
Isaac M, Siu A and Jongstra J: The oncogenic PIM kinase family regulates drug resistance through multiple mechanisms. Drug Resist Updat. 14:203–211. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Burcu M, Linn DE, Qiu Y and Baer MR: Pim-1 kinase protects P-glycoprotein from degradation and enables its glycosylation and cell surface expression. Mol Pharmacol. 78:310–318. 2010. View Article : Google Scholar : PubMed/NCBI | |
Natarajan K, Bhullar J, Shukla S, Burcu M, Chen ZS, Ambudkar SV and Baer MR: The Pim kinase inhibitor SGI-1776 decreases cell surface expression of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and drug transport by Pim-1-dependent and -independent mechanisms. Biochem Pharmacol. 85:514–524. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim KT, Baird K, Ahn JY, Meltzer P, Lilly M, Levis M and Small D: Pim-1 is up-regulated by constitutively activated FLT3 and plays a role in FLT3-mediated cell survival. Blood. 105:1759–1767. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lilly M, Sandholm J, Cooper JJ, Koskinen PJ and Kraft A: The PIM-1 serine kinase prolongs survival and inhibits apoptosis-related mitochondrial dysfunction in part through a bcl-2-dependent pathway. Oncogene. 18:4022–4031. 1999. View Article : Google Scholar : PubMed/NCBI | |
Jiang T, Guo Z, Dai B, Kang M, Ann DK, Kung HJ and Qiu Y: Bi-directional regulation between tyrosine kinase Etk/BMX and tumor suppressor p53 in response to DNA damage. J Biol Chem. 279:50181–50189. 2004. View Article : Google Scholar : PubMed/NCBI | |
Riganti C, Gazzano E, Gulino GR, Volante M, Ghigo D and Kopecka J: Two repeated low doses of doxorubicin are more effective than a single high dose against tumors overexpressing P-glycoprotein. Cancer Lett. 360:219–226. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gribar JJ, Ramachandra M, Hrycyna CA, Dey S and Ambudkar SV: Functional characterization of glycosylation-deficient human P-glycoprotein using a vaccinia virus expression system. J Membr Biol. 173:203–214. 2000. View Article : Google Scholar : PubMed/NCBI | |
Meshinchi S and Appelbaum FR: Structural and functional alterations of FLT3 in acute myeloid leukemia. Clin Cancer Res. 15:4263–4269. 2009. View Article : Google Scholar : PubMed/NCBI | |
Schmidt-Arras D, Böhmer SA, Koch S, Müller JP, Blei L, Cornils H, Bauer R, Korasikha S, Thiede C and Böhmer FD: Anchoring of FLT3 in the endoplasmic reticulum alters signaling quality. Blood. 113:3568–3576. 2009. View Article : Google Scholar : PubMed/NCBI | |
Stout BA, Bates ME, Liu LY, Farrington NN and Bertics PJ: IL-5 and granulocyte-macrophage colony-stimulating factor activate STAT3 and STAT5 and promote Pim-1 and cyclin D3 protein expression in human eosinophils. J Immunol. 173:6409–6417. 2004. View Article : Google Scholar : PubMed/NCBI | |
Choudhary C, Olsen JV, Brandts C, Cox J, Reddy PN, Böhmer FD, Gerke V, Schmidt-Arras DE, Berdel WE, Müller-Tidow C, et al: Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell. 36:326–339. 2009. View Article : Google Scholar : PubMed/NCBI | |
Natarjan K, Xie Y, Burcu M, Linn DE, Qui Y and Baer MR: Pim-1 kinase phosphorylates and stabilizes 130 kDa FLT3 and promotes aberrant STAT5 signaling in acute myeloid leukemia with FLT3 internal tandem duplication. PLoS One. 8:e764532013.PubMed/NCBI | |
Lanigan F, Geraghty JG and Bracken AP: Transcriptional regulation of cellular senescence. Oncogene. 30:2901–2911. 2011. View Article : Google Scholar : PubMed/NCBI | |
Vargas J, Feltes BC, Poloni JG and Bonatto D: Senescence, an endogenous anticancer mechanism. Fronti Biosci (Landmark Ed.). 17:2616–2643. 2012. View Article : Google Scholar | |
Jin B, Wang Y, Wu CL, Liu KY, Chen H and Mao ZB: PIM-1 modulates cellular senescence and links IL-6 signaling to heterochromatin formation. Aging Cell. 13:879–889. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mohsin S, Khan M, Nguyen J, Alkatib M, Siddiqi S, Hariharan N, Wallach K, Monsanto M, Gude N, Dembitsky W, et al: Rejuvenation of human cardiac progenitor cells with Pim-1 kinase. Circ Res. 113:1169–1179. 2013. View Article : Google Scholar : PubMed/NCBI | |
Samse K, Emathinger J, Hariharan N, Quijada P, Ilves K, Völkers M, Ormachea L, De La Torre A, Orogo AM, Alvarez R, et al: Functional ffect of Pim1 depends upon intracellular localization in human cardiac progenitor cells. J Biol Chem. 290:13935–13947. 2015. View Article : Google Scholar : PubMed/NCBI | |
Linn DE, Yang X, Xie Y, Alfano A, Deshmukh D, Wang X, Shimelis H, Chen H, Li W, Xu K, et al: Differential regulation of androgen receptor by PIM-1 kinases via phosphorylation-dependent recruitment of distinct ubiquitin E3 ligases. J Biol Chem. 287:22959–22968. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ha S, Iqbal NJ, Mita P, Ruoff R, Gerald WL, Lepor H, Taneja SS, Lee P, Melamed J, Garabedian MJ, et al: Phosphorylation of the androgen receptor by PIM1 in hormone refractory prostate cancer. Oncogene. 32:3992–4000. 2013. View Article : Google Scholar : PubMed/NCBI | |
Song H, Zhang B, Watson MA, Humphrey PA, Lim H and Milbrandt J: Loss of Nkx3.1 leads to the activation of discrete downstream target genes during prostate tumorigenesis. Oncogene. 28:3307–3319. 2009. View Article : Google Scholar : PubMed/NCBI | |
Xu K, Shimelis H, Linn DE, Jiang R, Yang X, Sun F, Guo Z, Chen H, Li W, Chen H, et al: Regulation of androgen receptor transcriptional activity and specificity by RNF6-induced ubiquitination. Cancer Cell. 15:270–282. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Roh M and Abdulkadir SA: Pim1 promotes human prostate cancer cell tumorigenicity and c-MYC transcriptional activity. BMC Cancer. 10:2482010. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Eltoum IE, Roh M, Wang J and Abdulkadir SA: Interactions between cells with distinct mutations in c-MYC and Pten in prostate cancer. PLoS Genet. 5:e10005422009. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Kim J, Roh M, Franco OE, Hayward SW, Wills ML and Abdulkadir SA: Pim1 kinase synergizes with c-MYC to induce advanced prostate carcinoma. Oncogene. 29:2477–2487. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zippo A, De Robertis A, Serafini R and Oliviero S: PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat Cell Biol. 9:932–944. 2007. View Article : Google Scholar : PubMed/NCBI | |
Santio NM, Eerola SK, Paatero I, Yli-Kauhaluoma J, Anizon F, Moreau P, Tuomela J, Härkönen P and Koskinen PJ: Pim kinases promote migration and metastatic growth of prostate cancer xenografts. PLoS One. 10:e01303402015. View Article : Google Scholar : PubMed/NCBI | |
Zemskova MY, Song JH, Cen B, Cerda-Infante J, Montecinos VP and Kraft AS: Regulation of prostate stromal fibroblasts by the PIM1 protein kinase. Cell Signal. 27:135–146. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cen B, Xiong Y, Song JH, Mahajan S, DuPont R, McEachern K, DeAngelo DJ, Cortes JE, Minden MD, Ebens A, et al: The Pim-1 protein kinase is an important regulator of MET receptor tyrosine kinase levels and signaling. Mol Cell Biol. 34:2517–2532. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cen B, Mahajan S, Wang W and Kraft AS: Elevation of receptor tyrosine kinases by small molecule AKT inhibitors in prostate cancer is mediated by Pim-1. Cancer Res. 73:3402–3411. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tong Y, Stewart KD, Thomas S, Przytulinska M, Johnson EF, Klinghofer V, Leverson J, McCall O, Soni NB, Luo Y, et al: Isoxazolo[3,4-b]quinoline-3,4(1H,9H)-diones as unique, potent and selective inhibitors for Pim-1 and Pim-2 kinases: Chemistry, biological activities, and molecular modeling. Bioorg Med Chem Lett. 18:5206–5208. 2008. View Article : Google Scholar : PubMed/NCBI | |
Holder S, Lilly M and Brown ML: Comparative molecular field analysis of flavonoid inhibitors of the PIM-1 kinase. Bioorg Med Chem. 15:6463–6473. 2007. View Article : Google Scholar : PubMed/NCBI | |
Blanco-Aparicio C, Collazo AM, Oyarzabal J, Leal JF, Albarán MI, Lima FR, Pequeño B, Ajenjo N, Becerra M, Alfonso P, et al: Pim 1 kinase inhibitor ETP-45299 suppresses cellular proliferation and synergizes with PI3K inhibition. Cancer Lett. 300:145–153. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Chen LS, Neelapu SS and Gandhi V: Combination of Pim kinase inhibitor SGI-1776 and bendamustine in B-cell lymphoma. Clin Lymphoma Myeloma Leuk. 13(Suppl 2): S355–S362. 2013. View Article : Google Scholar : PubMed/NCBI | |
Keeton E, McEachern K, Alimzhanov M, Wang S, Cao Y, Bao L, Palakurthi S, Grondine M, Chen Y, Dillman K, et al: Efficacy and biomarker modulation by AZD1208, a novel, potent and selective pan-Pim kinase inhibitor, in models of acute myeloid leukemia. Cancer Res. 72:27962012. View Article : Google Scholar | |
Mondello P, Cuzzocrea S and Mian M: Pim kinases in hematological malignancies: Where are we now and where are we going? J Hematol Oncol. 7:952014. View Article : Google Scholar : PubMed/NCBI | |
Hospital MA, Green AS, Lacombe C, Mayeux P, Bouscary D and Tamburini J: The FLT3 and Pim kinases inhibitor SGI-1776 preferentially target FLT3-ITD AML cells. Blood. 119:1791–1792. 2012. View Article : Google Scholar : PubMed/NCBI | |
Foulks JM, Carpenter KJ, Luo B, Xu Y, Senina A, Nix R, Chan A, Clifford A, Wilkes M, Vollmer D, et al: A small-molecule inhibitor of PIM kinases as a potential treatment for urothelial carcinomas. Neoplasia. 16:403–412. 2014. View Article : Google Scholar : PubMed/NCBI | |
Keeton EK, McEachern K, Dillman KS, Palakurthi S, Cao Y, Grondine MR, Kaur S, Wang S, Chen Y, Wu A, et al: AZD1208, a potent and selective pan-Pim kinase inhibitor, demonstrates efficacy in preclinical models of acute myeloid leukemia. Blood. 123:905–913. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kirschner AN, Wang J, van der Meer R, Anderson PD, Franco-Coronel OE, Kushner MH, Everett JH, Hameed O, Keeton EK, Ahdesmaki M, et al: PIM kinase inhibitor AZD1208 for treatment of MYC-driven prostate cancer. J Natl Cancer Inst. 107:dju4072014. View Article : Google Scholar : PubMed/NCBI | |
Hogan C, Hutchison C, Marcar L, Milne D, Saville M, Goodlad J, Kernohan N and Meek D: Elevated levels of oncogenic protein kinase Pim-1 induce the p53 pathway in cultured cells and correlate with increased Mdm2 in mantle cell lymphoma. J Biol Chem. 283:18012–18023. 2008. View Article : Google Scholar : PubMed/NCBI | |
Turaka A, Buyyounouski MK, Hanlon AL, Horwitz EM, Greenberg RE and Movsas B: Hypoxic prostate/muscle PO2 ratio predicts for outcome in patients with localized prostate cancer: Long-term results. Int J Radiat Oncol Biol Phys. 82:e433–e439. 2012. View Article : Google Scholar : PubMed/NCBI | |
Guo Z, Wang A, Zhang W, Levit M, Gao Q, Barberis C, Tabart M, Zhang J, Hoffmann D, Wiederschain D, et al: PIM inhibitors target CD25-positive AML cells through concomitant suppression of STAT5 activation and degradation of MYC oncogene. Blood. 124:1777–1789. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liang C and Li YY: Use of regulators and inhibitors of Pim-1, a serine/threonine kinase, for tumour therapy (Review). Mol Med Rep. 9:2051–2060. 2014.PubMed/NCBI | |
Xie Y and Bayakhmetov S: PIM1 kinase as a promise of targeted therapy in prostate cancer stem cells (Review). Mol Clin Oncol. 4:13–17. 2016. | |
Xie Y, Lu W, Liu S, Yang Q, Carver BS and Chen Z: The essential role of ARF in prostate cancer microenvironment. BJU Int. 116:41. 2015. |