Role of several histone lysine methyltransferases in tumor development (Review)
- Authors:
- Jifu Li
- Shunqin Zhu
- Xiao-Xue Ke
- Hongjuan Cui
-
Affiliations: Cell Biology Laboratory, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China, School of Life Science, Southwest University, Chongqing 400716, P.R. China - Published online on: January 21, 2016 https://doi.org/10.3892/br.2016.574
- Pages: 293-299
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Klener P: Epigenetic cancer drugs and their role in anticancer therapy. Vnitr Lek. 59:463–465. 2013.(In Czech).PubMed/NCBI | |
Murray K: The occurrence of E-N-methyl lysine in histones. Biochemistry. 3:10–15. 1964. View Article : Google Scholar : PubMed/NCBI | |
Yun M, Wu J, Workman JL and Li B: Readers of histone modifications. Cell Res. 21:564–578. 2011. View Article : Google Scholar : PubMed/NCBI | |
Biancotto C, Frigè G and Minucci S: Histone modification therapy of cancer. Adv Genet. 70:341–386. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kouzarides T: Chromatin modifications and their function. Cell. 128:693–705. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lee JC, Kang SU, Jeon Y, Park JW, You JS, Ha SW, Bae N, Lubec G, Kwon SH, Lee JS, et al: Protein L-isoaspartyl methyltransferase regulates p53 activity. Nat Commun. 3:9272012. View Article : Google Scholar : PubMed/NCBI | |
Verma M and Srivastava S: Epigenetics in cancer: Implications for early detection and prevention. Lancet Oncol. 3:755–763. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chaib H, Prébet T, Vey N and Collette Y: Histone methyltransferases: A new class of therapeutic targets in cancer treatment? Med Sci (Paris). 27:725–732. 2011.In French. View Article : Google Scholar : PubMed/NCBI | |
Wang X and Zhu WG: Advances in histone methyltransferases and histone demethylases. Ai Zheng. 27:1018–1025. 2008.(In Chinese). PubMed/NCBI | |
Collazo E, Couture JF, Bulfer S and Trievel RC: A coupled fluorescent assay for histone methyltransferases. Anal Biochem. 342:86–92. 2005. View Article : Google Scholar : PubMed/NCBI | |
Campagna-Slater V, Mok MW, Nguyen KT, Feher M, Najmanovich R and Schapira M: Structural chemistry of the histone methyltransferases cofactor binding site. J Chem Inf Model. 51:612–623. 2011. View Article : Google Scholar : PubMed/NCBI | |
Qian C and Zhou MM: SET domain protein lysine methyltransferases: Structure, specificity and catalysis. Cell Mol Life Sci. 63:2755–2763. 2006. View Article : Google Scholar : PubMed/NCBI | |
Vermeulen M, Eberl HC, Matarese F, Marks H, Denissov S, Butter F, Lee KK, Olsen JV, Hyman AA, Stunnenberg HG, et al: Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell. 142:967–980. 2010. View Article : Google Scholar : PubMed/NCBI | |
Peterson CL and Laniel MA: Histones and histone modifications. Curr Biol. 14:R546–R551. 2004. View Article : Google Scholar : PubMed/NCBI | |
Stancheva I: Caught in conspiracy: Cooperation between DNA methylation and histone H3K9 methylation in the establishment and maintenance of heterochromatin. Biochem Cell Biol. 83:385–395. 2005. View Article : Google Scholar : PubMed/NCBI | |
Towbin BD, González-Aguilera C, Sack R, Gaidatzis D, Kalck V, Meister P, Askjaer P and Gasser SM: Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell. 150:934–947. 2012. View Article : Google Scholar : PubMed/NCBI | |
Krouwels IM, Wiesmeijer K, Abraham TE, Molenaar C, Verwoerd NP, Tanke HJ and Dirks RW: A glue for heterochromatin maintenance: Stable SUV39H1 binding to heterochromatin is reinforced by the SET domain. J Cell Biol. 170:537–549. 2005. View Article : Google Scholar : PubMed/NCBI | |
O'Carroll D, Scherthan H, Peters AH, Opravil S, Haynes AR, Laible G, Rea S, Schmid M, Lebersorger A, Jerratsch M, et al: Isolation and characterization of Suv39h2, a second histone H3 methyltransferase gene that displays testis-specific expression. Mol Cell Biol. 20:9423–9433. 2000. View Article : Google Scholar : PubMed/NCBI | |
Tachibana M, Sugimoto K, Fukushima T and Shinkai Y: Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem. 276:25309–25317. 2001. View Article : Google Scholar : PubMed/NCBI | |
Tachibana M, Matsumura Y, Fukuda M, Kimura H and Shinkai Y: G9a/GLP complexes independently mediate H3K9 and DNA methylation to silence transcription. EMBO J. 27:2681–2690. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li H, Rauch T, Chen ZX, Szabó PE, Riggs AD and Pfeifer GP: The histone methyltransferase SETDB1 and the DNA methyltransferase DNMT3A interact directly and localize to promoters silenced in cancer cells. J Biol Chem. 281:19489–19500. 2006. View Article : Google Scholar : PubMed/NCBI | |
Steele-Perkins G, Fang W, Yang XH, Van Gele M, Carling T, Gu J, Buyse IM, Fletcher JA, Liu J, Bronson R, et al: Tumor formation and inactivation of RIZ1, an Rb-binding member of a nuclear protein-methyltransferase superfamily. Genes Dev. 15:2250–2262. 2001. View Article : Google Scholar : PubMed/NCBI | |
Falandry C, Fourel G, Galy V, Ristriani T, Horard B, Bensimon E, Salles G, Gilson E and Magdinier F: CLLD8/KMT1F is a lysine methyltransferase that is important for chromosome segregation. J Biol Chem. 285:20234–20241. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ding J, Li T, Wang X, Zhao E, Choi JH, Yang L, Zha Y, Dong Z, Huang S, Asara JM, et al: The histone H3 methyltransferase G9A epigenetically activates the serine-glycine synthesis pathway to sustain cancer cell survival and proliferation. Cell Metab. 18:896–907. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kondo Y, Shen L, Ahmed S, Boumber Y, Sekido Y, Haddad BR and Issa JP: Downregulation of histone H3 lysine 9 methyltransferase G9a induces centrosome disruption and chromosome instability in cancer cells. PLoS One. 3:e20372008. View Article : Google Scholar : PubMed/NCBI | |
Dong C, Wu Y, Yao J, Wang Y, Yu Y, Rychahou PG, Evers BM and Zhou BP: G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer. J Clin Invest. 122:1469–1486. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen MW, Hua KT, Kao HJ, Chi CC, Wei LH, Johansson G, Shiah SG, Chen PS, Jeng YM, Cheng TY, et al: H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing the cell adhesion molecule Ep-CAM. Cancer Res. 70:7830–7840. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hua KT, Wang MY, Chen MW, Wei LH, Chen CK, Ko CH, Jeng YM, Sung PL, Jan YH, Hsiao M, et al: The H3K9 methyltransferase G9a is a marker of aggressive ovarian cancer that promotes peritoneal metastasis. Mol Cancer. 13:1892014. View Article : Google Scholar : PubMed/NCBI | |
Ke XX, Zhang D, Zhu S, Xia Q, Xiang Z and Cui H: Inhibition of H3K9 methyltransferase G9a repressed cell proliferation and induced autophagy in neuroblastoma cells. PLoS One. 9:e1069622014. View Article : Google Scholar : PubMed/NCBI | |
Li KC, Hua KT, Lin YS, Su CY, Ko JY, Hsiao M, Kuo ML and Tan CT: Inhibition of G9a induces DUSP4-dependent autophagic cell death in head and neck squamous cell carcinoma. Mol Cancer. 13:1722014. View Article : Google Scholar : PubMed/NCBI | |
Yuan Y, Tang AJ, Castoreno AB, Kuo SY, Wang Q, Kuballa P, Xavier R, Shamji AF, Schreiber SL and Wagner BK: Gossypol and an HMT G9a inhibitor act in synergy to induce cell death in pancreatic cancer cells. Cell Death Dis. 4:e6902013. View Article : Google Scholar : PubMed/NCBI | |
Son HJ, Kim JY, Hahn Y and Seo SB: Negative regulation of JAK2 by H3K9 methyltransferase G9a in leukemia. Mol Cell Biol. 32:3681–3694. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lehnertz B, Pabst C, Su L, Miller M, Liu F, Yi L, Zhang R, Krosl J, Yung E, Kirschner J, et al: The methyltransferase G9a regulates HoxA9-dependent transcription in AML. Genes Dev. 28:317–327. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tao H, Li H, Su Y, Feng D, Wang X, Zhang C, Ma H and Hu Q: Histone methyltransferase G9a and H3K9 dimethylation inhibit the self-renewal of glioma cancer stem cells. Mol Cell Biochem. 394:23–30. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hung SY, Lin HH, Yeh KT and Chang JG: Histone-modifying genes as biomarkers in hepatocellular carcinoma. Int J Clin Exp Pathol. 7:2496–2507. 2014.PubMed/NCBI | |
Wu H, Zhang H, Wang P, Mao Z, Feng L, Wang Y, Liu C, Xia Q, Li B, Zhao H, et al: Short-Form CDYLb but not long-form CDYLa functions cooperatively with histone methyltransferase G9a in hepatocellular carcinomas. Genes Chromosomes Cancer. 52:644–655. 2013.PubMed/NCBI | |
Zhong X, Chen X, Guan X, Zhang H, Ma Y, Zhang S, Wang E, Zhang L and Han Y: Overexpression of G9a and MCM7 in oesophageal squamous cell carcinoma is associated with poor prognosis. Histopathology. 66:192–200. 2015. View Article : Google Scholar : PubMed/NCBI | |
Schultz DC, Ayyanathan K, Negorev D, Maul GG and Rauscher FJ III: SETDB1: A novel KAP-1-associated histoneH3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 16:919–932. 2002. View Article : Google Scholar : PubMed/NCBI | |
Harte PJ, Wu W, Carrasquillo MM and Matera AG: Assignment of a novel bifurcated SET domain gene, SETDB1, to human chromosome band 1q21 by in situ hybridization and radiation hybrids. Cytogenet Cell Genet. 84:83–86. 1999. View Article : Google Scholar : PubMed/NCBI | |
Frietze S, O'Geen H, Blahnik KR, Jin VX and Farnham PJ: ZNF274 recruits the histone methyltransferase SETDB1 to the 3 ends of ZNF genes. PLoS One. 5:e150822010. View Article : Google Scholar : PubMed/NCBI | |
Cho S, Park JS and Kang YK: Dual functions of histone-lysine N-methyltransferase Setdb1 protein at promyelocytic leukemia-nuclear body (PML-NB): Maintaining PML-NB structure and regulating the expression of its associated genes. J Biol Chem. 286:41115–41124. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ceol CJ, Houvras Y, Jane-Valbuena J, Bilodeau S, Orlando DA, Battisti V, Fritsch L, Lin WM, Hollmann TJ, Ferré F, et al: The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature. 471:513–517. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lee JK and Kim KC: DZNep, inhibitor of S-adenosylhomocysteine hydrolase, down-regulates expression of SETDB1 H3K9me3 HMTase in human lung cancer cells. Biochem Biophys Res Commun. 438:647–652. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez-Paredes M, de Paz Martinez A, Simó-Riudalbas L, Sayols S, Moutinho C, Moran S, Villanueva A, Vázquez-Cedeira M, Lazo PA, Carneiro F, et al: Gene amplification of the histone methyltransferase SETDB1 contributes to human lung tumorigenesis. Oncogene. 33:2807–2813. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sun QY, Ding LW, Xiao JF, Chien W, Lim SL, Hattori N, Goodglick L, Chia D, Mah V, Alavi M, et al: SETDB1 accelerates tumourigenesis by regulating the WNT signalling pathway. J Pathol. 235:559–570. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu PC, Lu JW, Yang JY, Lin IH, Ou DL, Lin YH, Chou KH, Huang WF, Wang WP, Huang YL, et al: H3K9 histone methyltransferase, KMT1E/SETDB1, cooperates with the SMAD2/3 pathway to suppress lung cancer metastasis. Cancer Res. 74:7333–7343. 2014. View Article : Google Scholar : PubMed/NCBI | |
Spyropoulou A, Gargalionis A, Dalagiorgou G, Adamopoulos C, Papavassiliou KA, Lea RW, Piperi C and Papavassiliou AG: Role of histone lysine methyltransferases SUV39H1 and SETDB1 in gliomagenesis: Modulation of cell proliferation, migration, and colony formation. Neuromolecular Med. 16:70–82. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Wei M, Ren SC, Chen R, Xu WD, Wang FB, Lu J, Shen J, Yu YW, Hou JG, et al: Histone methyltransferase SETDB1 is required for prostate cancer cell proliferation, migration and invasion. Asian J Androl. 16:319–324. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Cai K, Wang J, Wang X, Cheng K, Shi F, Jiang L, Zhang Y and Dou J: MiR-7, inhibited indirectly by lincRNA HOTAIR, directly inhibits SETDB1 and reverses the EMT of breast cancer stem cells by downregulating the STAT3 pathway. Stem Cells. 32:2858–2868. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kouzarides T: Histone methylation in transcriptional control. Curr Opin Genet Dev. 12:198–209. 2002. View Article : Google Scholar : PubMed/NCBI | |
Jansen MP, Reijm EA, Sieuwerts AM, Ruigrok-Ritstier K, Look MP, Rodríguez-González FG, Heine AA, Martens JW, Sleijfer S, Foekens JA, et al: High miR-26a and low CDC2 levels associate with decreased EZH2 expression and with favorable outcome on tamoxifen in metastatic breast cancer. Breast Cancer Res Treat. 133:937–947. 2012. View Article : Google Scholar : PubMed/NCBI | |
Raaphorst FM, Meijer CJ, Fieret E, Blokzijl T, Mommers E, Buerger H, Packeisen J, Sewalt RA, Otte AP and van Diest PJ: Poorly differentiated breast carcinoma is associated with increased expression of the human polycomb group EZH2 gene. Neoplasia. 5:481–488. 2003. View Article : Google Scholar : PubMed/NCBI | |
Mu Z, Li H, Fernandez SV, Alpaugh KR, Zhang R and Cristofanilli M: EZH2 knockdown suppresses the growth and invasion of human inflammatory breast cancer cells. J Exp Clin Cancer Res. 32:702013. View Article : Google Scholar : PubMed/NCBI | |
Zeidler M, Varambally S, Cao Q, Chinnaiyan AM, Ferguson DO, Merajver SD and Kleer CG: The Polycomb group protein EZH2 impairs DNA repair in breast epithelial cells. Neoplasia. 7:1011–1019. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hoffmann MJ, Engers R, Florl AR, Otte AP, Muller M and Schulz WA: Expression changes in EZH2, but not in BMI-1, SIRT1, DNMT1 or DNMT3B are associated with DNA methylation changes in prostate cancer. Cancer Biol Ther. 6:1403–1412. 2007. View Article : Google Scholar : PubMed/NCBI | |
Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, et al: The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 419:624–629. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bryant RJ, Cross NA, Eaton CL, Hamdy FC and Cunliffe VT: EZH2 promotes proliferation and invasiveness of prostate cancer cells. Prostate. 67:547–556. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kim SH, Joshi K, Ezhilarasan R, Myers TR, Siu J, Gu C, Nakano-Okuno M, Taylor D, Minata M, Sulman EP, et al: EZH2 protects glioma stem cells from radiation-induced cell death in a MELK/FOXM1-dependent manner. Stem Cell Rep. 4:226–238. 2015. View Article : Google Scholar | |
Zhang W, Lv S, Liu J, Zang Z, Yin J, An N, Yang H and Song Y: PCI-24781 down-regulates EZH2 expression and then promotes glioma apoptosis by suppressing the PIK3K/Akt/mTOR pathway. Genet Mol Biol. 37:716–724. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu ZQ, Zhang L, Gao BS, Wan YG, Zhang XH, Chen B, Wang YT, Sun N and Fu YW: EZH2 promotes tumor progression by increasing VEGF expression in clear cell renal cell carcinoma. Clin Transl Oncol. 17:41–49. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xia H, Zhang W, Li Y, Guo N and Yu C: EZH2 silencing with RNA interference induces G2/M arrest in human lung cancer cells in vitro. BioMed Res Int. 2014:3487282014. View Article : Google Scholar : PubMed/NCBI | |
Guo SQ and Zhang YZ: Overexpression of enhancer of zests homolog 2 in lymphoma. Chin Med J (Engl). 125:3735–3739. 2012.PubMed/NCBI | |
Fujii S, Ito K, Ito Y and Ochiai A: Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by increasing histone H3 methylation. J Biol Chem. 283:17324–17332. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Yang X, Ma X, Ingram DR, Lazar AJ, Torres KE and Pollock RE: Antitumor effects of pharmacological EZH2 inhibition on malignant peripheral nerve sheath tumor through the miR-30a and KPNB1 pathway. Mol Cancer. 14:552015. View Article : Google Scholar : PubMed/NCBI | |
Dubuc AM, Remke M, Korshunov A, Northcott PA, Zhan SH, Mendez-Lago M, Kool M, Jones DT, Unterberger A, Morrissy AS, et al: Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma. Acta Neuropathol. 125:373–384. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wan J, Zhan J, Li S, Ma J, Xu W, Liu C, Xue X, Xie Y, Fang W, Chin YE, et al: PCAF-primed EZH2 acetylation regulates its stability and promotes lung adenocarcinoma progression. Nucleic Acids Res. 43:3591–3604. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pekowska A, Benoukraf T, Zacarias-Cabeza J, Belhocine M, Koch F, Holota H, Imbert J, Andrau JC, Ferrier P and Spicuglia S: H3K4 tri-methylation provides an epigenetic signature of active enhancers. EMBO J. 30:4198–4210. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Lin C, Smith ER, Guo H, Sanderson BW, Wu M, Gogol M, Alexander T, Seidel C, Wiedemann LM, et al: Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II. Mol Cell Biol. 29:6074–6085. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wu M, Wang PF, Lee JS, Martin-Brown S, Florens L, Washburn M and Shilatifard A: Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS. Mol Cell Biol. 28:7337–7344. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gregory GD, Vakoc CR, Rozovskaia T, Zheng X, Patel S, Nakamura T, Canaani E and Blobel GA: Mammalian ASH1L is a histone methyltransferase that occupies the transcribed region of active genes. Mol Cell Biol. 27:8466–8479. 2007. View Article : Google Scholar : PubMed/NCBI | |
Stoller JZ, Huang L, Tan CC, Huang F, Zhou DD, Yang J, Gelb BD and Epstein JA: Ash2l interacts with Tbx1 and is required during early embryogenesis. Exp Biol Med (Maywood). 235:569–576. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, Yagyu R and Nakamura Y: SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol. 6:731–740. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tao Y, Neppl RL, Huang ZP, Chen J, Tang RH, Cao R, Zhang Y, Jin SW and Wang DZ: The histone methyltransferase Set7/9 promotes myoblast differentiation and myofibril assembly. J Cell Biol. 194:551–565. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sirinupong N, Brunzelle J, Ye J, Pirzada A, Nico L and Yang Z: Crystal structure of cardiac-specific histone methyltransferase SmyD1 reveals unusual active site architecture. J Biol Chem. 285:40635–40644. 2010. View Article : Google Scholar : PubMed/NCBI | |
Peserico A, Germani A, Sanese P, Barbosa AJ, di Virgilio V, Fittipaldi R, Fabini E, Bertucci C, Varchi G, Moyer MP, et al: A SMYD3 small-molecule inhibitor impairing cancer cell growth. J Cell Physiol. 230:2447–2460. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu JY, Chen LB, Xu JY, Yang Z, Wei HY and Xu RH: Inhibition of SMYD3 gene expression by RNA interference induces apoptosis in human hepatocellular carcinoma cell line HepG2. Ai Zheng. 25:526–532. 2006.(In Chinese). PubMed/NCBI | |
Dong SW, Zhang H, Wang BL, Sun P, Wang YG and Zhang P: Effect of the downregulation of SMYD3 expression by RNAi on RIZ1 expression and proliferation of esophageal squamous cell carcinoma. Oncol Rep. 32:1064–1070. 2014.PubMed/NCBI | |
Hamamoto R, Silva FP, Tsuge M, Nishidate T, Katagiri T, Nakamura Y and Furukawa Y: Enhanced SMYD3 expression is essential for the growth of breast cancer cells. Cancer Sci. 97:113–118. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang SZ, Luo XG, Shen J, Zou JN, Lu YH and Xi T: Knockdown of SMYD3 by RNA interference inhibits cervical carcinoma cell growth and invasion in vitro. BMB Rep. 41:294–299. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Wang C, Wang K, Liu L, Shen Q, Yan K, Sun X, Chen J, Liu J, Ren H, et al: SMYD3 as an oncogenic driver in prostate cancer by stimulation of androgen receptor transcription. J Natl Cancer Inst. 105:1719–1728. 2013. View Article : Google Scholar : PubMed/NCBI | |
Morishita M and di Luccio E: Cancers and the NSD family of histone lysine methyltransferases. Biochim Biophys Acta. 1816:158–163. 2011.PubMed/NCBI | |
Duns G, van den Berg E, van Duivenbode I, Osinga J, Hollema H, Hofstra RM and Kok K: Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Res. 70:4287–4291. 2010. View Article : Google Scholar : PubMed/NCBI | |
Maltby VE, Martin BJ, Schulze JM, Johnson I, Hentrich T, Sharma A, Kobor MS and Howe L: Histone H3 lysine 36 methylation targets the Isw1b remodeling complex to chromatin. Mol Cell Biol. 32:3479–3485. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sampson ER, Yeh SY, Chang HC, Tsai MY, Wang X, Ting HJ and Chang C: Identification and characterization of androgen receptor associated coregulators in prostate cancer cells. J Biol Regul Homeost Agents. 15:123–129. 2001.PubMed/NCBI | |
Bianco-Miotto T, Chiam K, Buchanan G, Jindal S, Day TK, Thomas M, Pickering MA, O'Loughlin MA, Ryan NK, Raymond WA, et al: Global levels of specific histone modifications and an epigenetic gene signature predict prostate cancer progression and development. Cancer Epidemiol Biomarkers Prev. 19:2611–2622. 2010. View Article : Google Scholar : PubMed/NCBI | |
Berdasco M, Ropero S, Setien F, Fraga MF, Lapunzina P, Losson R, Alaminos M, Cheung NK, Rahman N and Esteller M: Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma. Proc Natl Acad Sci USA. 106:21830–21835. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhao F, Chen Y, Zeng L, Li R, Zeng R, Wen L, Liu Y and Zhang C: Role of triptolide in cell proliferation, cell cycle arrest, apoptosis and histone methylation in multiple myeloma U266 cells. Eur J Pharmacol. 646:1–11. 2010. View Article : Google Scholar : PubMed/NCBI | |
Thanasopoulou A, Tzankov A and Schwaller J: Potent co-operation between the NUP98-NSD1 fusion and the FLT3-ITD mutation in acute myeloid leukemia induction. Haematologica. 99:1465–1471. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ostronoff F, Othus M, Gerbing RB, Loken MR, Raimondi SC, Hirsch BA, Lange BJ, Petersdorf S, Radich J, Appelbaum FR, et al: NUP98/NSD1 and FLT3/ITD coexpression is more prevalent in younger AML patients and leads to induction failure: A COG and SWOG report. Blood. 124:2400–2407. 2014. View Article : Google Scholar : PubMed/NCBI | |
Job B, Bernheim A, Beau-Faller M, Camilleri-Broët S, Girard P, Hofman P, Mazières J, Toujani S, Lacroix L, Laffaire J, et al: LG Investigators: Genomic aberrations in lung adenocarcinoma in never smokers. PLoS One. 5:e151452010. View Article : Google Scholar : PubMed/NCBI | |
Seiwert TY, Zuo Z, Keck MK, Khattri A, Pedamallu CS, Stricker T, Brown C, Pugh TJ, Stojanov P, Cho J, et al: Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin Cancer Res. 21:632–641. 2015. View Article : Google Scholar : PubMed/NCBI | |
Deardorff MA, Maisenbacher M and Zackai EH: Ganglioglioma in a Sotos syndrome patient with an NSD1 deletion. Am J Med Genet A. 130A:393–394. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Thomas A, Lau C, Rajan A, Zhu Y, Killian JK, Petrini I, Pham T, Morrow B, Zhong X, et al: Mutations of epigenetic regulatory genes are common in thymic carcinomas. Sci Rep. 4:73362014. View Article : Google Scholar : PubMed/NCBI | |
Gossage L, Murtaza M, Slatter AF, Lichtenstein CP, Warren A, Haynes B, Marass F, Roberts I, Shanahan SJ, Claas A, et al: Clinical and pathological impact of VHL, PBRM1, BAP1, SETD2, KDM6A, and JARID1c in clear cell renal cell carcinoma. Genes Chromosomes Cancer. 53:38–51. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hao C, Wang L, Peng S, Cao M, Li H, Hu J, Huang X, Liu W, Zhang H, Wu S, et al: Gene mutations in primary tumors and corresponding patient-derived xenografts derived from non-small cell lung cancer. Cancer Lett. 357:179–185. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huether R, Dong L, Chen X, Wu G, Parker M, Wei L, Ma J, Edmonson MN, Hedlund EK, Rusch MC, et al: The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes. Nat Commun. 5:36302014. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Xue P, Li H, Bao Y, Wu L, Chang S, Niu B, Yang F and Zhang T: Histone modification mapping in human brain reveals aberrant expression of histone H3 lysine 79 dimethylation in neural tube defects. Neurobiol Dis. 54:404–413. 2013. View Article : Google Scholar : PubMed/NCBI | |
Martin C and Zhang Y: The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol. 6:838–849. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kim W, Choi M and Kim JE: The histone methyltransferase Dot1/DOT1L as a critical regulator of the cell cycle. Cell Cycle. 13:726–738. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chang MJ, Wu H, Achille NJ, Reisenauer MR, Chou CW, Zeleznik-Le NJ, Hemenway CS and Zhang W: Histone H3 lysine 79 methyltransferase Dot1 is required for immortalization by MLL oncogenes. Cancer Res. 70:10234–10242. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kim W, Kim R, Park G, Park JW and Kim JE: Deficiency of H3K79 histone methyltransferase Dot1-like protein (DOT1L) inhibits cell proliferation. J Biol Chem. 287:5588–5599. 2012. View Article : Google Scholar : PubMed/NCBI | |
Oda H, Okamoto I, Murphy N, Chu J, Price SM, Shen MM, Torres-Padilla ME, Heard E and Reinberg D: Monomethylation of histone H4-lysine 20 is involved in chromosome structure and stability and is essential for mouse development. Mol Cell Biol. 29:2278–2295. 2009. View Article : Google Scholar : PubMed/NCBI | |
Qin Y, Ouyang H, Liu J and Xie Y: Proteome identification of proteins interacting with histone methyltransferase SET8. Acta Biochim Biophys Sin (Shanghai). 2013. View Article : Google Scholar | |
Jørgensen S, Schotta G and Sørensen CS: Histone H4 lysine 20 methylation: Key player in epigenetic regulation of genomic integrity. Nucleic Acids Res. 41:2797–2806. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu S and Rice JC: A new regulator of the cell cycle: The PR-Set7 histone methyltransferase. Cell Cycle. 10:68–72. 2011. View Article : Google Scholar : PubMed/NCBI | |
Morishita M and di Luccio E: Structural insights into the regulation and the recognition of histone marks by the SET domain of NSD1. Biochem Biophys Res Commun. 412:214–219. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang P, Guo L, Duan ZJ, Tepper CG, Xue L, Chen X, Kung HJ, Gao AC, Zou JX and Chen HW: Histone methyltransferase NSD2/MMSET mediates constitutive NF-κB signaling for cancer cell proliferation, survival, and tumor growth via a feed-forward loop. Mol Cell Biol. 32:3121–3131. 2012. View Article : Google Scholar : PubMed/NCBI | |
Beck DB, Oda H, Shen SS and Reinberg D: PR-Set7 and H4K20me1: At the crossroads of genome integrity, cell cycle, chromosome condensation, and transcription. Genes Dev. 26:325–337. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yokoyama Y, Matsumoto A, Hieda M, Shinchi Y, Ogihara E, Hamada M, Nishioka Y, Kimura H, Yoshidome K, Tsujimoto M, et al: Loss of histone H4K20 trimethylation predicts poor prognosis in breast cancer and is associated with invasive activity. Breast Cancer Res. 16:R662014. View Article : Google Scholar : PubMed/NCBI |