1
|
Kuruvilla TS and Dias M: Fusarium Solani:
A causative agent of skin and nail infections. Indian J Dermatol.
57:308–309. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Varon AG, Nouer SA, Barreiros G, Trope BM,
Magalhães F, Akiti T, Garnica M and Nucci M: Superficial skin
lesions positive for Fusarium are associated with subsequent
development of invasive fusariosis. J Infect. 68:85–89. 2014.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Nucci M and Anaissie E: Fusarium
infections in immunocompromised patients. Clin Microbiol Rev.
20:695–704. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tan R, Ng KP, Gan GG and Na SL:
Fusarium sp. infection in a patient with Acute Lymphoblastic
Leukaemia. Med J Malaysia. 68:479–480. 2013.PubMed/NCBI
|
5
|
Ma LJ, Geiser DM, Proctor RH, Rooney AP,
O'Donnell K, Trail F, Gardiner DM, Manners JM and Kazan K:
Fusarium pathogenomics. Annu Rev Microbiol. 67:399–416.
2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Tamura M, Mochizuki N, Nagatomi Y,
Harayama K, Toriba A and Hayakawa K: A method for simultaneous
determination of 20 Fusarium toxins in cereals by
high-resolution liquid chromatography-Orbitrap mass spectrometry
with a pentafluorophenyl column. Toxins (Basel). 7:1664–1682. 2015.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Barros G, Zanon MS, Palazzini JM,
Haidukowski M, Pascale M and Chulze S: Trichothecenes and
zearalenone production by Fusarium equiseti and Fusarium
semitectum species isolated from Argentinean soybean. Food
Addit Contam Part A Chem Anal Control Expo Risk Assess.
29:1436–1442. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Arif M, Zaidi NW, Haq QM, Singh YP, Taj G,
Kar CS and Singh US: Morphological and comparative genomic analyses
of pathogenic and non-pathogenic Fusarium solani isolated
from Dalbergia sissoo. Mol Biol Rep. 42:1107–1122. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Datta J and Lal N: Application of
molecular markers for genetic discrimination of Fusarium
wilt pathogen races affecting chickpea and pigeonpea in major
regions of India. Cell Mol Biol (Noisy-le-grand). 58:55–65.
2012.PubMed/NCBI
|
10
|
Short DP, O'Donnell K and Geiser DM:
Clonality, recombination, and hybridization in the
plumbing-inhabiting human pathogen Fusarium keratoplasticum
inferred from multilocus sequence typing. BMC Evol Biol. 14:912014.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Dubey SC, Priyanka K and Singh V:
Phylogenetic relationship between different race representative
populations of Fusarium oxysporum f. sp. ciceris in respect
of translation elongation factor-1α, β-tubulin, and internal
transcribed spacer region genes. Arch Microbiol. 196:445–452. 2014.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Chang SC, Macêdo DP, Souza-Motta CM and
Oliveira NT: Use of molecular markers to compare Fusarium
verticillioides pathogenic strains isolated from plants and
humans. Genet Mol Res. 12:2863–2875. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Mirete S, Patiño B, Jurado M, Vázquez C,
González-Jaén MT and Puertas M: Structural variation and dynamics
of the nuclear ribosomal intergenic spacer region in key members of
the Gibberella fujikuroi species complex. Genome.
56:205–213. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Konstantinova P and Yli-Mattila T:
IGS-RFLP analysis and development of molecular markers for
identification of Fusarium poae, Fusarium
langsethiae, Fusarium sporotrichioides and Fusarium
kyushuense. Int J Food Microbiol. 95:321–331. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Van Poucke K, Monbaliu S, Munaut F,
Heungens K, De Saeger S and Van Hove F: Genetic diversity and
mycotoxin production of Fusarium lactis species complex
isolates from sweet pepper. Int J Food Microbiol. 153:28–37. 2012.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Yang Y, Bouras N, Yang J, Howard RJ and
Strelkov SE: Mycotoxin production by isolates of Fusarium
lactis from greenhouse sweet pepper (Capsicum annuum).
Int J Food Microbiol. 151:150–156. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
O'Donnell K, Sutton DA, Fothergill A,
McCarthy D, Rinaldi MG, Brandt ME, Zhang N and Geiser DM: Molecular
phylogenetic diversity, multilocus haplotype nomenclature, and in
vitro antifungal resistance within the Fusarium solani
species complex. J Clin Microbiol. 46:2477–2490. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
O'Donnell K: Ribosomal DNA internal
transcribed spacers are highly divergent in the phytopathogenic
ascomycete Fusarium sambucinum (Gibberella
pulicaris). Curr Genet. 22:213–220. 1992. View Article : Google Scholar : PubMed/NCBI
|
19
|
Balajee SA, Borman AM, Brandt ME, Cano J,
Cuenca-Estrella M, Dannaoui E, Guarro J, Haase G, Kibbler CC, Meyer
W, et al: Sequence-based identification of Aspergillus,
Fusarium, and Mucorales species in the clinical
mycology laboratory: Where are we and where should we go from here?
J Clin Microbiol. 47:877–884. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Iwen PC, Hinrichs SH and Rupp ME:
Utilization of the internal transcribed spacer regions as molecular
targets to detect and identify human fungal pathogens. Med Mycol.
40:87–109. 2002. View Article : Google Scholar : PubMed/NCBI
|