1
|
Albuquerque EX, Pereira EF, Alkondon M and
Rogers SW: Mammalian nicotinic acetylcholine receptors: From
structure to function. Physiol Rev. 89:73–120. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Niu XM and Lu S: Acetylcholine receptor
pathway in lung cancer: New twists to an old story. World J Clin
Oncol. 5:667–676. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Schuller HM: Is cancer triggered by
altered signalling of nicotinic acetylcholine receptors? Nat Rev
Cancer. 9:195–205. 2009. View
Article : Google Scholar : PubMed/NCBI
|
4
|
Trombino S, Cesario A, Margaritora S,
Granone P, Motta G, Falugi C and Russo P: Alpha7-nicotinic
acetylcholine receptors affect growth regulation of human
mesothelioma cells: Role of mitogen-activated protein kinase
pathway. Cancer Res. 64:135–145. 2004. View Article : Google Scholar : PubMed/NCBI
|
5
|
Arredondo J, Chernyavsky AI, Jolkovsky DL,
Pinkerton KE and Grando SA: Receptor-mediated tobacco toxicity:
Cooperation of the Ras/Raf-1/MEK1/ERK and JAK-2/STAT-3 pathways
downstream of alpha7 nicotinic receptor in oral keratinocytes.
FASEB J. 20:2093–2101. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Nakayama H, Numakawa T and Ikeuchi T:
Nicotine-induced phosphorylation of Akt through epidermal growth
factor receptor and Src in PC12h cells. J Neurochem. 83:1372–1379.
2002. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bierut LJ: Nicotine dependence and genetic
variation in the nicotinic receptors. Drug Alcohol Depend.
104(Suppl 1): S64–S69. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Catassi A, Servent D, Paleari L, Cesario A
and Russo P: Multiple roles of nicotine on cell proliferation and
inhibition of apoptosis: Implications on lung carcinogenesis. Mutat
Res. 659:221–231. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ng MK, Wu J, Chang E, Wang BY,
Katzenberg-Clark R, Ishii-Watabe A and Cooke JP: A central role for
nicotinic cholinergic regulation of growth factor-induced
endothelial cell migration. Arterioscler Thromb Vasc Biol.
27:106–112. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Beasley MB, Brambilla E and Travis WD: The
2004 World Health Organization classification of lung tumors. Semin
Roentgenol. 40:90–97. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Amos CI, Wu X, Broderick P, Gorlov IP, Gu
J, Eisen T, Dong Q, Zhang Q, Gu X, Vijayakrishnan J, et al:
Genome-wide association scan of tag SNPs identifies a
susceptibility locus for lung cancer at 15q25.1. Nat Genet.
40:616–622. 2008. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Hung RJ, McKay JD, Gaborieau V, Boffetta
P, Hashibe M, Zaridze D, Mukeria A, Szeszenia-Dabrowska N,
Lissowska J, Rudnai P, et al: A susceptibility locus for lung
cancer maps to nicotinic acetylcholine receptor subunit genes on
15q25. Nature. 452:633–637. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Thorgeirsson TE, Geller F, Sulem P, Rafnar
T, Wiste A, Magnusson KP, Manolescu A, Thorleifsson G, Stefansson
H, Ingason A, et al: A variant associated with nicotine dependence,
lung cancer and peripheral arterial disease. Nature. 452:638–642.
2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
McKay JD, Hung RJ, Gaborieau V, Boffetta
P, Chabrier A, Byrnes G, Zaridze D, Mukeria A, Szeszenia-Dabrowska
N, Lissowska J, et al: EPIC Study: Lung cancer susceptibility locus
at 5p15.33. Nat Genet. 40:1404–1406. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang Y, Broderick P, Webb E, Wu X,
Vijayakrishnan J, Matakidou A, Qureshi M, Dong Q, Gu X, Chen WV, et
al: Common 5p15.33 and 6p21.33 variants influence lung cancer risk.
Nat Genet. 40:1407–1409. 2008. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Broderick P, Wang Y, Vijayakrishnan J,
Matakidou A, Spitz MR, Eisen T, Amos CI and Houlston RS:
Deciphering the impact of common genetic variation on lung cancer
risk: A genome-wide association study. Cancer Res. 69:6633–6641.
2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Liu P, Vikis HG, Wang D, Lu Y, Wang Y,
Schwartz AG, Pinney SM, Yang P, de Andrade M, Petersen GM, et al:
Familial aggregation of common sequence variants on 15q24–25.1 in
lung cancer. J Natl Cancer Inst. 100:1326–1330. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Landi MT, Chatterjee N, Yu K, Goldin LR,
Goldstein AM, Rotunno M, Mirabello L, Jacobs K, Wheeler W, Yeager
M, et al: A genome-wide association study of lung cancer identifies
a region of chromosome 5p15 associated with risk for
adenocarcinoma. Am J Hum Genet. 85:679–691. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Flora AV, Zambrano CA, Gallego X, Miyamoto
JH, Johnson KA, Cowan KA, Stitzel JA and Ehringer MA: Functional
characterization of SNPs in CHRNA3/B4 intergenic region associated
with drug behaviors. Brain Res. 1529:1–15. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Paliwal A, Vaissière T, Krais A, Cuenin C,
Cros MP, Zaridze D, Moukeria A, Boffetta P, Hainaut P, Brennan P,
et al: Aberrant DNA methylation links cancer susceptibility locus
15q25.1 to apoptotic regulation and lung cancer. Cancer Res.
70:2779–2788. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Song P, Sekhon HS, Fu XW, Maier M, Jia Y,
Duan J, Proskosil BJ, Gravett C, Lindstrom J, Mark GP, et al:
Activated cholinergic signaling provides a target in squamous cell
lung carcinoma. Cancer Res. 68:4693–4700. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Paleari L, Catassi A, Ciarlo M, Cavalieri
Z, Bruzzo C, Servent D, Cesario A, Chessa L, Cilli M, Piccardi F,
et al: Role of alpha7-nicotinic acetylcholine receptor in human
non-small cell lung cancer proliferation. Cell Prolif. 41:936–959.
2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Heusch WL and Maneckjee R: Signalling
pathways involved in nicotine regulation of apoptosis of human lung
cancer cells. Carcinogenesis. 19:551–556. 1998. View Article : Google Scholar : PubMed/NCBI
|
24
|
Medjber K, Freidja ML, Grelet S, Lorenzato
M, Maouche K, Nawrocki-Raby B, Birembaut P, Polette M and Tournier
JM: Role of nicotinic acetylcholine receptors in cell proliferation
and tumour invasion in broncho-pulmonary carcinomas. Lung Cancer.
87:258–264. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Li H, Wang S, Takayama K, Harada T,
Okamoto I, Iwama E, Fujii A, Ota K, Hidaka N, Kawano Y, et al:
Nicotine induces resistance to erlotinib via cross-talk between α 1
nAChR and EGFR in the non-small cell lung cancer xenograft model.
Lung Cancer. 88:1–8. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhao Q, Gu X, Zhang C, Lu Q, Chen H and Xu
L: Blocking M2 muscarinic receptor signaling inhibits tumor growth
and reverses epithelial-mesenchymal transition (EMT) in non-small
cell lung cancer (NSCLC). Cancer Biol Ther. 16:634–643. 2015.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Chernyavsky AI, Shchepotin IB, Galitovkiy
V and Grando SA: Mechanisms of tumor-promoting activities of
nicotine in lung cancer: Synergistic effects of cell membrane and
mitochondrial nicotinic acetylcholine receptors. BMC Cancer.
15:1522015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Xu R, Shang C, Zhao J, Han Y, Liu J, Chen
K and Shi W: Activation of M3 muscarinic receptor by acetylcholine
promotes non-small cell lung cancer cell proliferation and invasion
via EGFR/PI3K/AKT pathway. Tumour Biol. 36:4091–4100. 2015.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhong X, Fan Y, Ritzenthaler JD, Zhang W,
Wang K, Zhou Q and Roman J: Novel link between prostaglandin E2
(PGE2) and cholinergic signaling in lung cancer: The role of c-Jun
in PGE2-induced α7 nicotinic acetylcholine receptor expression and
tumor cell proliferation. Thorac Cancer. 6:488–500. 2015.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Schaal C, Padmanabhan J and Chellappan S:
The role of nAChR and calcium signaling in pancreatic cancer
initiation and progression. Cancers (Basel). 7:1447–1471. 2015.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Al-Wadei MH, Al-Wadei HA and Schuller HM:
Effects of chronic nicotine on the autocrine regulation of
pancreatic cancer cells and pancreatic duct epithelial cells by
stimulatory and inhibitory neurotransmitters. Carcinogenesis.
33:1745–1753. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Al-Wadei MH, Al-Wadei HA and Schuller HM:
Pancreatic cancer cells and normal pancreatic duct epithelial cells
express an autocrine catecholamine loop that is activated by
nicotinic acetylcholine receptors α3, α5, and α7. Mol Cancer Res.
10:239–249. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Al-Wadei HA, Plummer HK III and Schuller
HM: Nicotine stimulates pancreatic cancer xenografts by systemic
increase in stress neurotransmitters and suppression of the
inhibitory neurotransmitter gamma-aminobutyric acid.
Carcinogenesis. 30:506–511. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hermann PC, Sancho P, Cañamero M,
Martinelli P, Madriles F, Michl P, Gress T, de Pascual R, Gandia L
and Guerra C: Nicotine promotes initiation and progression of
KRAS-induced pancreatic cancer via Gata6-dependent
dedifferentiation of acinar cells in mice. Gastroenterology.
147:1119–1133.e4. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Bose C, Zhang H, Udupa KB and Chowdhury P:
Activation of p-ERK1/2 by nicotine in pancreatic tumor cell line
AR42J: Effects on proliferation and secretion. Am J Physiol
Gastrointest Liver Physiol. 289:G926–G934. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chowdhury P and Walker A: A cell-based
approach to study changes in the pancreas following nicotine
exposure in an animal model of injury. Langenbecks Arch Surg.
393:547–555. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Schuller HM, Al-Wadei HA and Majidi M:
GABA B receptor is a novel drug target for pancreatic cancer.
Cancer. 112:767–778. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Momi N, Ponnusamy MP, Kaur S, Rachagani S,
Kunigal SS, Chellappan S, Ouellette MM and Batra SK:
Nicotine/cigarette smoke promotes metastasis of pancreatic cancer
through α7nAChR-mediated MUC4 upregulation. Oncogene. 32:1384–1395.
2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kunigal S, Ponnusamy MP, Momi N, Batra SK
and Chellappan SP: Nicotine, IFN-γ and retinoic acid mediated
induction of MUC4 in pancreatic cancer requires E2F1 and STAT-1
transcription factors and utilize different signaling cascades. Mol
Cancer. 11:242012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Chipitsyna G, Gong Q, Anandanadesan R,
Alnajar A, Batra SK, Wittel UA, Cullen DM, Akhter MP, Denhardt DT,
Yeo CJ, et al: Induction of osteopontin expression by nicotine and
cigarette smoke in the pancreas and pancreatic ductal
adenocarcinoma cells. Int J Cancer. 125:276–285. 2009. View Article : Google Scholar : PubMed/NCBI
|
41
|
Lazar M, Sullivan J, Chipitsyna G, Gong Q,
Ng CY, Salem AF, Aziz T, Witkiewicz A, Denhardt DT, Yeo CJ, et al:
Involvement of osteopontin in the matrix-degrading and
proangiogenic changes mediated by nicotine in pancreatic cancer
cells. J Gastrointest Surg. 14:1566–1577. 2010. View Article : Google Scholar : PubMed/NCBI
|
42
|
Shin VY, Jin HC, Ng EK, Yu J, Leung WK,
Cho CH and Sung JJ: Nicotine and
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induce
cyclooxygenase-2 activity in human gastric cancer cells:
Involvement of nicotinic acetylcholine receptor (nAChR) and
beta-adrenergic receptor signaling pathways. Toxicol Appl
Pharmacol. 233:254–261. 2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Chen WY, Huang CY, Cheng WL, Hung CS,
Huang MT, Tai CJ, Liu YN, Chen CL and Chang YJ: Alpha 7-nicotinic
acetylcholine receptor mediates the sensitivity of gastric cancer
cells to 5-fluorouracil. Tumour Biol. 36:9537–9544. 2015.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Kalantari-Dehaghi M, Parnell EA, Armand T,
Bernard HU and Grando SA: The nicotinic acetylcholine
receptor-mediated reciprocal effects of the tobacco nitrosamine NNK
and SLURP-1 on human mammary epithelial cells. Int Immunopharmacol.
29:99–104. 2015. View Article : Google Scholar : PubMed/NCBI
|