Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications (Review)
- Authors:
- Zhengrong Guo
- Huanyan Peng
- Jiwen Kang
- Dianxing Sun
-
Affiliations: The Liver Diseases Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, P.R. China - Published online on: March 23, 2016 https://doi.org/10.3892/br.2016.639
- Pages: 528-534
This article is mentioned in:
Abstract
Lindgren M, Hallbrink M, Prochiantz A and Langel U: Cell-penetrating peptides. Trends Pharmacol Sci. 21:99–103. 2000. View Article : Google Scholar : PubMed/NCBI | |
Green M and Loewenstein PM: Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell. 55:1179–1188. 1988. View Article : Google Scholar : PubMed/NCBI | |
Frankel AD and Pabo CO: Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 55:1189–1193. 1988. View Article : Google Scholar : PubMed/NCBI | |
Joliot A, Pernelle C, Deagostini-Bazin H and Prochiantz A: Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci USA. 88:1864–1868. 1991. View Article : Google Scholar : PubMed/NCBI | |
Elliott G and O'Hare P: Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell. 88:223–233. 1997. View Article : Google Scholar : PubMed/NCBI | |
Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B and Barsoum J: Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci USA. 91:664–668. 1994. View Article : Google Scholar : PubMed/NCBI | |
Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT and Weissleder R: Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol. 18:410–414. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kumar P, Wu H, McBride JL, Jung KE, Kim MH, Davidson BL, Lee SK, Shankar P and Manjunath N: Transvascular delivery of small interfering RNA to the central nervous system. Nature. 448:39–43. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jafari S, Maleki Dizaj S and Adibkia K: Cell-penetrating peptides and their analogues as novel nanocarriers for drug delivery. Bioimpacts. 5:103–111. 2015. View Article : Google Scholar : PubMed/NCBI | |
Milletti F: Cell-penetrating peptides: Classes, origin, and current landscape. Drug Discov Today. 17:850–860. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L and Rothbard JB: The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: Peptoid molecular transporters. Proc Natl Acad Sci USA. 97:13003–13008. 2000. View Article : Google Scholar : PubMed/NCBI | |
Mai JC, Shen H, Watkins SC, Cheng T and Robbins PD: Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate. J Biol Chem. 277:30208–30218. 2002. View Article : Google Scholar : PubMed/NCBI | |
Tunnemann G, Ter-Avetisyan G, Martin RM, Stockl M, Herrmann A and Cardoso MC: Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. J Pept Sci. 14:469–476. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zahid M and Robbins PD: Cell-type specific penetrating peptides: Therapeutic promises and challenges. Molecules. 20:13055–13070. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ragin AD, Morgan RA and Chmielewski J: Cellular import mediated by nuclear localization signal Peptide sequences. Chem Biol. 9:943–948. 2002. View Article : Google Scholar : PubMed/NCBI | |
Oehlke J, Scheller A, Wiesner B, Krause E, Beyermann M, Klauschenz E, Melzig M and Bienert M: Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim Biophys Acta. 1414:127–139. 1998. View Article : Google Scholar : PubMed/NCBI | |
Deshayes S, Plénat T, Aldrian-Herrada G, Divita G, Le Grimellec C and Heitz F: Primary amphipathic cell-penetrating peptides: Structural requirements and interactions with model membranes. Biochemistry. 43:7698–7706. 2004. View Article : Google Scholar : PubMed/NCBI | |
Nan YH, Park IS, Hahm KS and Shin SY: Antimicrobial activity, bactericidal mechanism and LPS-neutralizing activity of the cell-penetrating peptide pVEC and its analogs. J Pept Sci. 17:812–817. 2011. View Article : Google Scholar : PubMed/NCBI | |
Johansson HJ, El-Andaloussi S, Holm T, Mäe M, Jänes J, Maimets T and Langel U: Characterization of a novel cytotoxic cell-penetrating peptide derived from p14ARF protein. Mol Ther. 16:115–123. 2008. View Article : Google Scholar : PubMed/NCBI | |
Magzoub M, Sandgren S, Lundberg P, Oglecka K, Lilja J, Wittrup A, Eriksson Göran LE, Langel U, Belting M and Gräslund A: N-terminal peptides from unprocessed prion proteins enter cells by macropinocytosis. Biochem Biophys Res Commun. 348:379–385. 2006. View Article : Google Scholar : PubMed/NCBI | |
Eguchi A and Dowdy SF: siRNA delivery using peptide transduction domains. Trends Pharmacol Sci. 30:341–345. 2009. View Article : Google Scholar : PubMed/NCBI | |
Oehlke J, Krause E, Wiesner B, Beyermann M and Bienert M: Extensive cellular uptake into endothelial cells of an amphipathic beta-sheet forming peptide. FEBS Lett. 415:196–199. 1997. View Article : Google Scholar : PubMed/NCBI | |
Pujals S and Giralt E: Proline-rich, amphipathic cell-penetrating peptides. Adv Drug Deliv Rev. 60:473–484. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pooga M, Hällbrink M, Zorko M and Langel U: Cell penetration by transportan. FASEB J. 12:67–77. 1998.PubMed/NCBI | |
Schafmeister CE, Po J and Verdine GL: An all-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J Am Chem Soc. 122:5891–5892. 2000. View Article : Google Scholar | |
Ochocki JD, Mullen DG, Wattenberg EV and Distefano MD: Evaluation of a cell penetrating prenylated peptide lacking an intrinsic fluorophore via in situ click reaction. Bioorg Med Chem Lett. 21:4998–5001. 2011. View Article : Google Scholar : PubMed/NCBI | |
Covic L, Gresser AL, Talavera J, Swift S and Kuliopulos A: Activation and inhibition of G protein-coupled receptors by cell-penetrating membrane-tethered peptides. Proc Natl Acad Sci USA. 99:643–648. 2002. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Simon MJ, Hue CD, Morrison B III and Banta S: An unusual cell penetrating peptide identified using a plasmid display-based functional selection platform. ACS Chem Biol. 6:484–491. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gao C, Mao S, Ditzel HJ, Farnaes L, Wirsching P, Lerner RA and Janda KD: A cell-penetrating peptide from a novel pVII-pIX phage-displayed random peptide library. Bioorg Med Chem. 10:4057–4065. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nakayama F, Yasuda T, Umeda S, Asada M, Imamura T, Meineke V and Akashi M: Fibroblast growth factor-12 (FGF12) translocation into intestinal epithelial cells is dependent on a novel cell-penetrating peptide domain: Involvement of internalization in the in vivo role of exogenous FGF12. J Biol Chem. 286:25823–25834. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fonseca SB, Pereira MP and Kelley SO: Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv Drug Deliv Rev. 61:953–964. 2009. View Article : Google Scholar : PubMed/NCBI | |
Madani F, Lindberg S, Langel U, Futaki S and Graslund A: Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys. 2011:4147292011.PubMed/NCBI | |
Choi YS and David AE: Cell penetrating peptides and the mechanisms for intracellular entry. Curr Pharm Biotechnol. 15:192–199. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wu X and Gehring W: Cellular uptake of the Antennapedia homeodomain polypeptide by macropinocytosis. Biochem Biophys Res Commun. 443:1136–1140. 2014. View Article : Google Scholar : PubMed/NCBI | |
Polanco C, Samaniego JL, Castañón-González JA, Buhse T and Sordo ML: Characterization of a possible uptake mechanism of selective antibacterial peptides. Acta Biochim Pol. 60:629–633. 2013.PubMed/NCBI | |
Vivès E, Brodin P and Lebleu B: A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem. 272:16010–16017. 1997. View Article : Google Scholar : PubMed/NCBI | |
Derossi D, Joliot AH, Chassaing G and Prochiantz A: The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem. 269:10444–10450. 1994.PubMed/NCBI | |
Veach RA, Liu D, Yao S, Chen Y, Liu XY, Downs S and Hawiger J: Receptor/transporter-independent targeting of functional peptides across the plasma membrane. J Biol Chem. 279:11425–11431. 2004. View Article : Google Scholar : PubMed/NCBI | |
Herce HD and Garcia AE: Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes. Proc Natl Acad Sci USA. 104:20805–20810. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pouny Y, Rapaport D, Mor A, Nicolas P and Shai Y: Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry. 31:12416–12423. 1992. View Article : Google Scholar : PubMed/NCBI | |
Lee MT, Hung WC, Chen FY and Huang HW: Many-body effect of antimicrobial peptides: On the correlation between lipid's spontaneous curvature and pore formation. Biophys J. 89:4006–4016. 2005. View Article : Google Scholar : PubMed/NCBI | |
Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV and Lebleu B: Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem. 278:585–590. 2003. View Article : Google Scholar : PubMed/NCBI | |
Vivès E, Schmidt J and Pèlegrin A: Cell-penetrating and cell-targeting peptides in drug delivery. Biochim Biophys Acta. 1786:126–138. 2008.PubMed/NCBI | |
Jones AT: Macropinocytosis: Searching for an endocytic identity and role in the uptake of cell penetrating peptides. J Cell Mol Med. 11:670–684. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mayor S, Parton RG and Donaldson JG: Clathrin-independent pathways of endocytosis. Cold Spring Harb Perspect Biol. 6:62014. View Article : Google Scholar | |
Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G and Prochiantz A: Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem. 271:18188–18193. 1996. View Article : Google Scholar : PubMed/NCBI | |
Kawamoto S, Takasu M, Miyakawa T, Morikawa R, Oda T, Futaki S and Nagao H: Inverted micelle formation of cell-penetrating peptide studied by coarse-grained simulation: Importance of attractive force between cell-penetrating peptides and lipid head group. J Chem Phys. 134:0951032011. View Article : Google Scholar : PubMed/NCBI | |
Tünnemann G, Martin RM, Haupt S, Patsch C, Edenhofer F and Cardoso MC: Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells. FASEB J. 20:1775–1784. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lundberg P, El-Andaloussi S, Sütlü T, Johansson H and Langel U: Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB J. 21:2664–2671. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jones AT and Sayers EJ: Cell entry of cell penetrating peptides: tales of tails wagging dogs. J Control Release. 161:582–591. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mueller J, Kretzschmar I, Volkmer R and Boisguerin P: Comparison of cellular uptake using 22 CPPs in 4 different cell lines. Bioconjug Chem. 19:2363–2374. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pysz MA, Gambhir SS and Willmann JK: Molecular imaging: Current status and emerging strategies. Clin Radiol. 65:500–516. 2010. View Article : Google Scholar : PubMed/NCBI | |
Condeelis J and Weissleder R: In vivo imaging in cancer. Cold Spring Harb Perspect Biol. 2:a0038482010. View Article : Google Scholar : PubMed/NCBI | |
Walling MA, Novak JA and Shepard JRE: Quantum dots for live cell and in vivo imaging. Int J Mol Sci. 10:441–491. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ruan G, Agrawal A, Marcus AI and Nie S: Imaging and tracking of tat peptide-conjugated quantum dots in living cells: New insights into nanoparticle uptake, intracellular transport, and vesicle shedding. J Am Chem Soc. 129:14759–14766. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lei Y, Tang H, Yao L, Yu R, Feng M and Zou B: Applications of mesenchymal stem cells labeled with Tat peptide conjugated quantum dots to cell tracking in mouse body. Bioconjug Chem. 19:421–427. 2008. View Article : Google Scholar : PubMed/NCBI | |
Prantner AM, Sharma V, Garbow JR and Piwnica-Worms D: Synthesis and characterization of a Gd-DOTA-D-permeation peptide for magnetic resonance relaxation enhancement of intracellular targets. Mol Imaging. 2:333–341. 2003. View Article : Google Scholar : PubMed/NCBI | |
Polyakov V, Sharma V, Dahlheimer JL, Pica CM, Luker GD and Piwnica-Worms D: Novel Tat-peptide chelates for direct transduction of technetium-99m and rhenium into human cells for imaging and radiotherapy. Bioconjug Chem. 11:762–771. 2000. View Article : Google Scholar : PubMed/NCBI | |
Jiménez-Mancilla N, Ferro-Flores G, Santos-Cuevas C, Ocampo-García B, Luna-Gutiérrez M, Azorín-Vega E, Isaac-Olivé K, Camacho-López M and Torres-García E: Multifunctional targeted therapy system based on (99m) Tc/(177) Lu-labeled gold nanoparticles-Tat(49–57)-Lys(3) -bombesin internalized in nuclei of prostate cancer cells. J Labelled Comp Radiopharm. 56:663–671. 2013. View Article : Google Scholar : PubMed/NCBI | |
Santos-Cuevas CL, Ferro-Flores G, Rojas-Calderón EL, García-Becerra R, Ordaz-Rosado D, de Arteaga Murphy C and Pedraza-López M: 99mTc-N2S2-Tat (49–57)-bombesin internalized in nuclei of prostate and breast cancer cells: Kinetics, dosimetry and effect on cellular proliferation. Nucl Med Commun. 32:303–313. 2011. View Article : Google Scholar : PubMed/NCBI | |
Weinstain R, Savariar EN, Felsen CN and Tsien RY: In vivo targeting of hydrogen peroxide by activatable cell-penetrating peptides. J Am Chem Soc. 136:874–877. 2014. View Article : Google Scholar : PubMed/NCBI | |
Good L, Awasthi SK, Dryselius R, Larsson O and Nielsen PE: Bactericidal antisense effects of peptide-PNA conjugates. Nat Biotechnol. 19:360–364. 2001. View Article : Google Scholar : PubMed/NCBI | |
Deshayes S, Konate K, Aldrian G, Crombez L, Heitz F and Divita G: Structural polymorphism of non-covalent peptide-based delivery systems: Highway to cellular uptake. Biochim Biophys Acta. 1798:2304–2314. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tan XX, Actor JK and Chen Y: Peptide nucleic acid antisense oligomer as a therapeutic strategy against bacterial infection: Proof of principle using mouse intraperitoneal infection. Antimicrob Agents Chemother. 49:3203–3207. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tilley LD, Mellbye BL, Puckett SE, Iversen PL and Geller BL: Antisense peptide-phosphorodiamidate morpholino oligomer conjugate: Dose-response in mice infected with Escherichia coli. J Antimicrob Chemother. 59:66–73. 2007. View Article : Google Scholar : PubMed/NCBI | |
Makarov SS: NF-kappa B in rheumatoid arthritis: A pivotal regulator of inflammation, hyperplasia, and tissue destruction. Arthritis Res. 3:200–206. 2001. View Article : Google Scholar : PubMed/NCBI | |
Brown JD, Lin CY, Duan Q, Griffin G, Federation AJ, Paranal RM, Bair S, Newton G, Lichtman AH, Kung AL, et al: NF-κB directs dynamic super enhancer formation in inflammation and atherogenesis. Mol Cell. 56:219–231. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, Faucheux BA, Agid Y and Hirsch EC: Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with parkinson disease. Proc Natl Acad Sci USA. 94:7531–7536. 1997. View Article : Google Scholar : PubMed/NCBI | |
Karin M and Greten FR: NF-kappaB: Linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 5:749–759. 2005. View Article : Google Scholar : PubMed/NCBI | |
May MJ, D'Acquisto F, Madge LA, Glöckner J, Pober JS and Ghosh S: Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex. Science. 289:1550–1554. 2000. View Article : Google Scholar : PubMed/NCBI | |
Davé SH, Tilstra JS, Matsuoka K, Li F, Karrasch T, Uno JK, Sepulveda AR, Jobin C, Baldwin AS, Robbins PD and Plevy SE: Amelioration of chronic murine colitis by peptide-mediated transduction of the IkappaB kinase inhibitor NEMO binding domain peptide. J Immunol. 179:7852–7859. 2007. View Article : Google Scholar : PubMed/NCBI | |
Peterson JM, Kline W, Canan BD, Ricca DJ, Kaspar B, Delfín DA, DiRienzo K, Clemens PR, Robbins PD, Baldwin AS, et al: Peptide-based inhibition of NF-κB rescues diaphragm muscle contractile dysfunction in a murine model of Duchenne muscular dystrophy. Mol Med. 17:508–515. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hegedüs R, Manea M, Orbán E, Szabó I, Kiss E, Sipos E, Halmos G and Mező G: Enhanced cellular uptake and in vitro antitumor activity of short-chain fatty acid acylated daunorubicin-GnRH-III bioconjugates. Eur J Med Chem. 56:155–165. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pan L, Liu J, He Q, Wang L and Shi J: Overcoming multidrug resistance of cancer cells by direct intranuclear drug delivery using TAT-conjugated mesoporous silica nanoparticles. Biomaterials. 34:2719–2730. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kondo E, Saito K, Tashiro Y, Kamide K, Uno S, Furuya T, Mashita M, Nakajima K, Tsumuraya T, Kobayashi N, et al: Tumour lineage-homing cell-penetrating peptides as anticancer molecular delivery systems. Nat Commun. 3:9512012. View Article : Google Scholar : PubMed/NCBI | |
Koshkaryev A, Piroyan A and Torchilin VP: Bleomycin in octaarginine-modified fusogenic liposomes results in improved tumor growth inhibition. Cancer Lett. 334:293–301. 2013. View Article : Google Scholar : PubMed/NCBI | |
Walker L, Perkins E, Kratz F and Raucher D: Cell penetrating peptides fused to a thermally targeted biopolymer drug carrier improve the delivery and antitumor efficacy of an acid-sensitive doxorubicin derivative. Int J Pharm. 436:825–832. 2012. View Article : Google Scholar : PubMed/NCBI | |
Aroui S, Mili D, Brahim S, De Waard M and Kenani A: Doxorubicin coupled to penetratin promotes apoptosis in CHO cells by a mechanism involving c-Jun NH2-terminal kinase. Biochem Biophys Res Commun. 396:908–914. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dubikovskaya EA, Thorne SH, Pillow TH, Contag CH and Wender PA: Overcoming multidrug resistance of small-molecule therapeutics through conjugation with releasable octaarginine transporters. Proc Natl Acad Sci USA. 105:12128–12133. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lindgren M, Rosenthal-Aizman K, Saar K, Eiríksdóttir E, Jiang Y, Sassian M, Ostlund P, Hällbrink M and Langel U: Overcoming methotrexate resistance in breast cancer tumour cells by the use of a new cell-penetrating peptide. Biochem Pharmacol. 71:416–425. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kanasty R, Dorkin JR, Vegas A and Anderson D: Delivery materials for siRNA therapeutics. Nat Mater. 12:967–977. 2013. View Article : Google Scholar : PubMed/NCBI | |
Muratovska A and Eccles MR: Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett. 558:63–68. 2004. View Article : Google Scholar : PubMed/NCBI | |
Favaro MT, de Toledo MA, Alves RF, Santos CA, Beloti LL, Janissen R, de la Torre LG, Souza AP and Azzoni AR: Development of a non-viral gene delivery vector based on the dynein light chain Rp3 and the TAT peptide. J Biotechnol. 173:10–18. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang HY, Chen JX, Sun YX, Deng JZ, Li C, Zhang XZ and Zhuo RX: Construction of cell penetrating peptide vectors with N-terminal stearylated nuclear localization signal for targeted delivery of DNA into the cell nuclei. J Control Release. 155:26–33. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schott JW, Galla M, Godinho T, Baum C and Schambach A: Viral and non-viral approaches for transient delivery of mRNA and proteins. Curr Gene Ther. 11:382–398. 2011. View Article : Google Scholar : PubMed/NCBI | |
Eto Y, Yoshioka Y, Asavatanabodee R, Kida S, Maeda M, Mukai Y, Mizuguchi H, Kawasaki K, Okada N and Nakagawa S: Transduction of adenovirus vectors modified with cell-penetrating peptides. Peptides. 30:1548–1552. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gratton JP, Yu J, Griffith JW, Babbitt RW, Scotland RS, Hickey R, Giordano FJ and Sessa WC: Cell-permeable peptides improve cellular uptake and therapeutic gene delivery of replication-deficient viruses in cells and in vivo. Nat Med. 9:357–362. 2003. View Article : Google Scholar : PubMed/NCBI | |
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K and Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131:861–872. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ebrahimi B: Reprogramming barriers and enhancers: Strategies to enhance the efficiency and kinetics of induced pluripotency. Cell Regen (Lond). 4:102015. View Article : Google Scholar : PubMed/NCBI | |
Gotoh S, Ito I, Nagasaki T, Yamamoto Y, Konishi S, Korogi Y, Matsumoto H, Muro S, Hirai T, Funato M, et al: Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Rep. 3:394–403. 2014. View Article : Google Scholar | |
Kamao H, Mandai M, Okamoto S, Sakai N, Suga A, Sugita S, Kiryu J and Takahashi M: Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Rep. 2:205–218. 2014. View Article : Google Scholar | |
Waehler R, Russell SJ and Curiel DT: Engineering targeted viral vectors for gene therapy. Nat Rev Genet. 8:573–587. 2007. View Article : Google Scholar : PubMed/NCBI | |
Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hämäläinen R, Cowling R, Wang W, Liu P, Gertsenstein M, et al: piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 458:766–770. 2009. View Article : Google Scholar : PubMed/NCBI |