Extracellular vesicle microRNAs mediate skeletal muscle myogenesis and disease (Review)
- Authors:
- Haidong Wang
- Bin Wang
-
Affiliations: College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China, Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China - Published online on: July 27, 2016 https://doi.org/10.3892/br.2016.725
- Pages: 296-300
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Güller I and Russell AP: MicroRNAs in skeletal muscle: Their role and regulation in development, disease and function. J Physiol. 588:4075–4087. 2010. View Article : Google Scholar : PubMed/NCBI | |
Drummond MJ, Glynn EL, Fry CS, Dhanani S, Volpi E and Rasmussen BB: Essential amino acids increase microRNA-499, −208b, and −23a and downregulate myostatin and myocyte enhancer factor 2C mRNA expression in human skeletal muscle. J Nutr. 139:2279–2284. 2009. View Article : Google Scholar : PubMed/NCBI | |
Allegra A, Alonci A, Campo S, Penna G, Petrungaro A, Gerace D and Musolino C: Circulating microRNAs: New biomarkers in diagnosis, prognosis and treatment of cancer (Review). Int J Oncol. 41:1897–1912. 2012.PubMed/NCBI | |
Alexandrov PN, Dua P, Hill JM, Bhattacharjee S, Zhao Y and Lukiw WJ: microRNA (miRNA) speciation in Alzheimer's disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). Int J Biochem Mol Biol. 3:365–373. 2012.PubMed/NCBI | |
He WA, Calore F, Londhe P, Canella A, Guttridge DC and Croce CM: Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7. Proc Natl Acad Sci USA. 111:4525–4529. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lo Cicero A, Delevoye C, Gilles-Marsens F, Loew D, Dingli F, Guéré C, André N, Vié K, van Niel G and Raposo G: Exosomes released by keratinocytes modulate melanocyte pigmentation. Nat Commun. 6:75062015. View Article : Google Scholar : PubMed/NCBI | |
Al-Nedawi K, Szemraj J and Cierniewski CS: Mast cell-derived exosomes activate endothelial cells to secrete plasminogen activator inhibitor type 1. Arterioscler Thromb Vasc Biol. 25:1744–1749. 2005. View Article : Google Scholar : PubMed/NCBI | |
Buschow SI, van Balkom BWM, Aalberts M, Heck AJR, Wauben M and Stoorvogel W: MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis. Immunol Cell Biol. 88:851–856. 2010. View Article : Google Scholar : PubMed/NCBI | |
Forterre A, Jalabert A, Chikh K, Pesenti S, Euthine V, Granjon A, Errazuriz E, Lefai E, Vidal H and Rome S: Myotube-derived exosomal miRNAs downregulate Sirtuin1 in myoblasts during muscle cell differentiation. Cell Cycle. 13:78–89. 2014. View Article : Google Scholar : PubMed/NCBI | |
Guescini M, Guidolin D, Vallorani L, Casadei L, Gioacchini AM, Tibollo P, Battistelli M, Falcieri E, Battistin L, Agnati LF, et al: C2C12 myoblasts release micro-vesicles containing mtDNA and proteins involved in signal transduction. Exp Cell Res. 316:1977–1984. 2010. View Article : Google Scholar : PubMed/NCBI | |
Heijnen HFG, Schiel AE, Fijnheer R, Geuze HJ and Sixma JJ: Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood. 94:3791–3799. 1999.PubMed/NCBI | |
Rabesandratana H, Toutant JP, Reggio H and Vidal M: Decay-accelerating factor (CD55) and membrane inhibitor of reactive lysis (CD59) are released within exosomes during In vitro maturation of reticulocytes. Blood. 91:2573–2580. 1998.PubMed/NCBI | |
Romancino DP, Paterniti G, Campos Y, De Luca A, Di Felice V, d'Azzo A and Bongiovanni A: Identification and characterization of the nano-sized vesicles released by muscle cells. FEBS Lett. 587:1379–1384. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wolfers J, Lozier A, Raposo G, Regnault A, Théry C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, et al: Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med. 7:297–303. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Xiu F, Cai Z, Wang J, Wang Q, Fu Y and Cao X: Increased induction of antitumor response by exosomes derived from interleukin-2 gene-modified tumor cells. J Cancer Res Clin Oncol. 133:389–399. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Huang C, Song B, Xiao Y, Fang M, Feng J and Wang P: CD4+CD25+ regulatory T cells-derived exosomes prolonged kidney allograft survival in a rat model. Cell Immunol. 285:62–68. 2013. View Article : Google Scholar : PubMed/NCBI | |
Matsuzaka Y and Hashido K: Roles of miR-1, miR-133a, and miR-206 in calcium, oxidative stress, and NO signaling involved in muscle diseases. RNA Dis. 2:558. 2015. | |
Peter ME: Targeting of mRNAs by multiple miRNAs: the next step. Oncogene. 29:2161–2164. 2010. View Article : Google Scholar : PubMed/NCBI | |
Aoi W: Frontier impact of microRNAs in skeletal muscle research: a future perspective. Front Physiol. 5:4952015. View Article : Google Scholar : PubMed/NCBI | |
Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL and Wang DZ: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 38:228–233. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kim HK, Lee YS, Sivaprasad U, Malhotra A and Dutta A: Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol. 174:677–687. 2006. View Article : Google Scholar : PubMed/NCBI | |
Berardi E and Sampaolesi M: Novel therapeutic approaches for skeletal muscle dystrophies. Muscle Cell and Tissue. Sakuma K: InTechOpen. (Rijeka). 393–412. 2015. | |
Cheng G: Circulating miRNAs: Roles in cancer diagnosis, prognosis and therapy. Adv Drug Deliv Rev. 81:75–93. 2015. View Article : Google Scholar : PubMed/NCBI | |
Consalvi S, Sandoná M and Saccone V: Epigenetic reprogramming of muscle progenitors: inspiration for clinical therapies. Stem Cells Int. 2016:60936012016. View Article : Google Scholar : PubMed/NCBI | |
Lee Y, El Andaloussi S and Wood MJA: Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet. 21(R1): R125–R134. 2012. View Article : Google Scholar : PubMed/NCBI | |
Suzuki T, Yamashita K, Jomen W, Ueki S, Aoyagi T, Fukai M, Furukawa H, Umezawa K, Ozaki M and Todo S: The novel NF-kappaB inhibitor, dehydroxymethylepoxyquinomicin, prevents local and remote organ injury following intestinal ischemia/reperfusion in rats. J Surg Res. 149:69–75. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lai RC, Chen TS and Lim SK: Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen Med. 6:481–492. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jenjaroenpun P, Kremenska Y, Nair VM, Kremenskoy M, Joseph B and Kurochkin IV: Characterization of RNA in exosomes secreted by human breast cancer cell lines using next-generation sequencing. PeerJ. 1:e2012013. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Ma W, Ma Y, Feng D, Chen H and Cai B: Exosomes in mesenchymal stem cells, a new therapeutic strategy for cardiovascular diseases? Int J Biol Sci. 11:238–245. 2015. View Article : Google Scholar : PubMed/NCBI | |
Burke M, Choksawangkarn W, Edwards N, Ostrand-Rosenberg S and Fenselau C: Exosomes from myeloid-derived suppressor cells carry biologically active proteins. J Proteome Res. 13:836–843. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MAJ, Hopmans ES, Lindenberg JL, de Gruijl TD, Würdinger T and Middeldorp JM: Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci USA. 107:6328–6333. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yoon YJ, Kim OY and Gho YS: Extracellular vesicles as emerging intercellular communicasomes. BMB Rep. 47:531–539. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yellon DM and Davidson SM: Exosomes: Nanoparticles involved in cardioprotection? Circ Res. 114:325–332. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ban JJ, Lee M, Im W and Kim M: Low pH increases the yield of exosome isolation. Biochem Biophys Res Commun. 461:76–79. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang JC, Lin MW, Rau CS, Jeng SF, Lu TH, Wu YC, Chen YC, Tzeng SL, Wu CJ and Hsieh CH: Altered exosomal protein expression in the serum of NF-κB knockout mice following skeletal muscle ischemia-reperfusion injury. J Biomed Sci. 22:402015. View Article : Google Scholar : PubMed/NCBI | |
Nakamura Y, Miyaki S, Ishitobi H, Matsuyama S, Nakasa T, Kamei N, Akimoto T, Higashi Y and Ochi M: Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett. 589:1257–1265. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zablocki D and Sadoshima J: Inside-Out Signaling: moving the AT1 Receptor in to Get the Message Out. Circulation. 131:2097–2100. 2015. View Article : Google Scholar : PubMed/NCBI | |
O'Rourke JR, Georges SA, Seay HR, Tapscott SJ, McManus MT, Goldhamer DJ, Swanson MS and Harfe BD: Essential role for Dicer during skeletal muscle development. Dev Biol. 311:359–368. 2007. View Article : Google Scholar : PubMed/NCBI | |
McCarthy JJ, Esser KA and Andrade FH: MicroRNA-206 is overexpressed in the diaphragm but not the hindlimb muscle of mdx mouse. Am J Physiol Cell Physiol. 293:C451–C457. 2007. View Article : Google Scholar : PubMed/NCBI | |
Forterre A, Jalabert A, Berger E, Baudet M, Chikh K, Errazuriz E, De Larichaudy J, Chanon S, Weiss-Gayet M, Hesse AM, et al: Proteomic analysis of C2C12 myoblast and myotube exosome-like vesicles: a new paradigm for myoblast-myotube cross talk? PLoS One. 9:e841532014. View Article : Google Scholar : PubMed/NCBI | |
Hudson MB, Woodworth-Hobbs ME, Zheng B, Rahnert JA, Blount MA, Gooch JL, Searles CD and Price SR: miR-23a is decreased during muscle atrophy by a mechanism that includes calcineurin signaling and exosome-mediated export. Am J Physiol Cell Physiol. 306:C551–C558. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hudson MB, Rahnert JA, Zheng B, Woodworth-Hobbs ME, Franch HA and Price SR: miR-182 attenuates atrophy-related gene expression by targeting FoxO3 in skeletal muscle. Am J Physiol Cell Physiol. 307:C314–C319. 2014. View Article : Google Scholar : PubMed/NCBI | |
Quattrocelli M and Sampaolesi M: The mesmiRizing complexity of microRNAs for striated muscle tissue engineering. Adv Drug Deliv Rev. 88:37–52. 2015. View Article : Google Scholar : PubMed/NCBI | |
Safdar A, Abadi A, Akhtar M, Hettinga BP and Tarnopolsky MA: miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice. PLoS One. 4:e56102009. View Article : Google Scholar : PubMed/NCBI | |
Muroya S, Ogasawara H and Hojito M: Grazing affects exosomal circulating microRNAs in cattle. PLoS One. 10:e01364752015. View Article : Google Scholar : PubMed/NCBI | |
Atay S and Godwin AK: Tumor-derived exosomes: A message delivery system for tumor progression. Commun Integr Biol. 7:e282312014. View Article : Google Scholar : PubMed/NCBI | |
De Guire V, Robitaille R, Tétreault N, Guérin R, Ménard C, Bambace N and Sapieha P: Circulating miRNAs as sensitive and specific biomarkers for the diagnosis and monitoring of human diseases: promises and challenges. Clin Biochem. 46:846–860. 2013. View Article : Google Scholar : PubMed/NCBI | |
Van Roosbroeck K, Pollet J and Calin GA: miRNAs and long noncoding RNAs as biomarkers in human diseases. Expert Rev Mol Diagn. 13:183–204. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bloch SA, Donaldson AV, Lewis A, Banya WA, Polkey MI, Griffiths MJ and Kemp PR: miR-181a: a potential biomarker of acute muscle wasting following elective high-risk cardiothoracic surgery. Crit Care. 19:1472015. View Article : Google Scholar : PubMed/NCBI | |
Chen JF, Callis TE and Wang DZ: MicroRNAs and muscle disorders. J Cell Sci. 122:13–20. 2009. View Article : Google Scholar : PubMed/NCBI | |
Donaldson A, Natanek SA, Lewis A, Man WDC, Hopkinson NS, Polkey MI and Kemp PR: Increased skeletal muscle-specific microRNA in the blood of patients with COPD. Thorax. 68:1140–1149. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lewis A, Riddoch-Contreras J, Natanek SA, Donaldson A, Man WDC, Moxham J, Hopkinson NS, Polkey MI and Kemp PR: Downregulation of the serum response factor/miR-1 axis in the quadriceps of patients with COPD. Thorax. 67:26–34. 2012. View Article : Google Scholar : PubMed/NCBI | |
Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, Cuvellier S and Harel-Bellan A: The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol. 8:278–284. 2006. View Article : Google Scholar : PubMed/NCBI | |
Croce CM: Novel function of microRNAs. Clin Cancer Res. 21:2015. View Article : Google Scholar | |
Camargo RG, Quintas Teixeira Ribeiro H, Geraldo MV, Matos-Neto E, Neves RX, Carnevali LC Jr, Donatto FF, Alcântara PS, Ottoch JP and Seelaender M: Cancer Cachexia and MicroRNAs. Mediators Inflamm. 2015:3675612015. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Li R, Workeneh B, Dong Y, Wang X and Hu Z: Transcription factor FoxO1, the dominant mediator of muscle wasting in chronic kidney disease, is inhibited by microRNA-486. Kidney Int. 82:401–411. 2012. View Article : Google Scholar : PubMed/NCBI | |
Soares RJ, Cagnin S, Chemello F, Silvestrin M, Musaro A, De Pitta C, Lanfranchi G and Sandri M: Involvement of microRNAs in the regulation of muscle wasting during catabolic conditions. J Biol Chem. 289:21909–21925. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi T, Izumi Y, Nakamura Y, Yamazaki T, Shiota M, Sano S, Tanaka M, Osada-Oka M, Shimada K, Miura K, et al: Repeated remote ischemic conditioning attenuates left ventricular remodeling via exosome-mediated intercellular communication on chronic heart failure after myocardial infarction. Int J Cardiol. 178:239–246. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hu Z, Klein JD, Mitch WE, Zhang L, Martinez I and Wang XH: MicroRNA-29 induces cellular senescence in aging muscle through multiple signaling pathways. Aging (Albany NY). 6:160–175. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Du J, Zhang L, Price SR, Klein JD and Wang XH: XIAP reduces muscle proteolysis induced by CKD. J Am Soc Nephrol. 21:1174–1183. 2010. View Article : Google Scholar : PubMed/NCBI | |
Russell AP and Lamon S: Exercise, skeletal muscle and circulating microRNAs. Prog Mol Biol Transl Sci. 135:471–496. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mooren FC, Viereck J, Krüger K and Thum T: Circulating microRNAs as potential biomarkers of aerobic exercise capacity. Am J Physiol Heart Circ Physiol. 306:H557–H563. 2014. View Article : Google Scholar : PubMed/NCBI | |
Baggish AL, Hale A, Weiner RB, Lewis GD, Systrom D, Wang F, Wang TJ and Chan SY: Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. J Physiol. 589:3983–3994. 2011. View Article : Google Scholar : PubMed/NCBI | |
Uhlemann M, Möbius-Winkler S, Fikenzer S, Adam J, Redlich M, Möhlenkamp S, Hilberg T, Schuler GC and Adams V: Circulating microRNA-126 increases after different forms of endurance exercise in healthy adults. Eur J Prev Cardiol. 21:484–491. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nielsen S, Åkerström T, Rinnov A, Yfanti C, Scheele C, Pedersen BK and Laye MJ: The miRNA plasma signature in response to acute aerobic exercise and endurance training. PLoS One. 9:e873082014. View Article : Google Scholar : PubMed/NCBI | |
Guescini M, Canonico B, Lucertini F, Maggio S, Annibalini G, Barbieri E, Luchetti F, Papa S and Stocchi V: Muscle releases alpha-sarcoglycan positive extracellular vesicles carrying miRNAs in the bloodstream. PLoS One. 10:e01250942015. View Article : Google Scholar : PubMed/NCBI | |
Zierath JR and Wallberg-Henriksson H: Looking ahead perspective: where will the future of exercise biology take us? Cell Metab. 22:25–30. 2015. View Article : Google Scholar : PubMed/NCBI | |
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ and Lötvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hamrick MW: The skeletal muscle secretome: an emerging player in muscle-bone crosstalk. Bonekey Rep. 1:602012. View Article : Google Scholar : PubMed/NCBI | |
Rondon-Berrios H, Wang Y and Mitch WE: Can muscle-kidney crosstalk slow progression of CKD? J Am Soc Nephrol. 25:2681–2683. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhu YG, Feng XM, Abbott J, Fang XH, Hao Q, Monsel A, Qu JM, Matthay MA and Lee JW: Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells. 32:116–125. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tran L, Campbell L, Coletta D, Mandarino L and Katsanos C: Skeletal muscle β-F1-ATPase translation is inhibited by hyperlipidemia-induced miR-127-5p expression in human obesity. FASEB J. 29(Suppl 1): 974–976. 2015. | |
Nolta JA: New advances in understanding stem cell fate and function. Stem Cells. 33:313–315. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hanatani S, Izumiya Y, Araki S, Rokutanda T, Kimura Y, Walsh K and Ogawa H: Akt1-mediated fast/glycolytic skeletal muscle growth attenuates renal damage in experimental kidney disease. J Am Soc Nephrol. 25:2800–2811. 2014. View Article : Google Scholar : PubMed/NCBI |