1
|
Fricker LD: Neuropeptides and Other
Bioactive Peptides: From Discovery to Function. Morgan &
Claypool Life Sciences; San Rafael, CA: pp. 1182012
|
2
|
Rozengurt E: Neuropeptides as growth
factors for normal and cancerous cells. Trends Endocrinol Metab.
13:128–134. 2002. View Article : Google Scholar : PubMed/NCBI
|
3
|
Liu S, Zeng Y, Li Y, Guo W, Liu J and
Ouyang N: VPAC1 overexpression is associated with poor
differentiation in colon cancer. Tumour Biol. 35:6397–6404. 2014.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Evers BM, Parekh D, Townsend CM Jr and
Thompson JC: Somatostatin and analogues in the treatment of cancer.
A review. Ann Surg. 213:190–198. 1991. View Article : Google Scholar : PubMed/NCBI
|
5
|
Reubi JC, Gugger M, Waser B and Schaer
JCY: Y(1)-mediated effect of neuropeptide Y in cancer: Breast
carcinomas as targets. Cancer Res. 61:4636–4641. 2001.PubMed/NCBI
|
6
|
Tomita H, Takaishi S, Menheniott TR, Yang
X, Shibata W, Jin G, Betz KS, Kawakami K, Minamoto T and Tomasetto
C: Inhibition of gastric carcinogenesis by the hormone gastrin is
mediated by suppression of TFF1 epigenetic silencing.
Gastroenterology. 140:879–891. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Galoian K, Temple HT and Galoyan A: mTORC1
inhibition and ECM-cell adhesion-independent drug resistance via
PI3K-AKT and PI3K-RAS-MAPK feedback loops. Tumour Biol. 33:885–890.
2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Galoian K, Scully S and Galoyan A:
Myc-oncogene inactivating effect by proline rich polypeptide
(PRP-1) in chondrosarcoma JJ012 cells. Neurochem Res. 34:379–385.
2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Galoian K, Scully S, McNamara G, Flynn P
and Galoyan A: Antitumorigenic effect of brain proline rich
polypeptide-1 in human chondrosarcoma. Neurochem Res. 34:2117–2121.
2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Galoian KA, Temple TH and Galoyan A:
Cytostatic effect of novel mTOR inhibitor, PRP-1 (galarmin) in MDA
231 (ER-) breast carcinoma cell line. PRP-1 inhibits mesenchymal
tumors. Tumour Biol. 32:745–751. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang X and Ho SM: Epigenetics meets
endocrinology. J Mol Endocrinol. 46:R11–R32. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kulis M and Esteller M: DNA methylation
and cancer. Adv Genet. 70:27–56. 2010.PubMed/NCBI
|
13
|
Klose RJ, Kallin EM and Zhang Y:
JmjC-domain-containing proteins and histone demethylation. Nat Rev
Genet. 7:715–727. 2006. View
Article : Google Scholar : PubMed/NCBI
|
14
|
Bannister AJ, Zegerman P, Partridge JF,
Miska EA, Thomas JO, Allshire RC and Kouzarides T: Selective
recognition of methylated lysine 9 on histone H3 by the HP1 chromo
domain. Nature. 410:120–124. 2001. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Shi Y, Lan F, Matson C, Mulligan P,
Whetstine JR, Cole PA, Casero RA and Shi Y: Histone demethylation
mediated by the nuclear amine oxidase homolog LSD1. Cell.
119:941–953. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Whetstine JR, Nottke A, Lan F, Huarte M,
Smolikov S, Chen Z, Spooner E, Li E, Zhang G, Colaiacovo M, et al:
Reversal of histone lysine trimethylation by the JMJD2 family of
histone demethylases. Cell. 125:467–481. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Klose RJ, Yamane K, Bae Y, Zhang D,
Erdjument-Bromage H, Tempst P, Wong J and Zhang Y: The
transcriptional repressor JHDM3A demethylates trimethyl histone H3
lysine 9 and lysine 36. Nature. 442:312–316. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sato F, Tsuchiya S, Meltzer SJ and Shimizu
K: MicroRNAs and epigenetics. FEBS J. 278:1598–1609. 2011.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Subramanian S and Kartha RV:
MicroRNA-mediated gene regulations in human sarcomas. Cell Mol Life
Sci. 69:3571–3585. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Galoyan A: Neurochemistry of brain
neuroendocrine immune system: Signal molecules. Neurochem Res.
25:1343–1355. 2000. View Article : Google Scholar : PubMed/NCBI
|
21
|
Galoyan AA, Korochkin LI, Rybalkina EJ,
Pavlova GV, Saburina IN, Zaraiski EI, Galoyan NA, Davtyan TK,
Bezirganyan KB and Revishchin AV: Hypothalamic proline-rich
polypeptide enhances bone marrow colony-forming cell proliferation
and stromal progenitor cell differentiation. Cell Transplant.
17:1061–1066. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Galoyan A: Concepts of neuroendocrine
cardiology and neuroendocrine immunology, chemistry and biology of
signal molecules. Neurochem Res. 35:2001–2017. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Abrahamyan SS, Davtyan TK, Khachatryan AR,
Tumasyan NV, Sahakyan IK, Harutyunyan HA, Chailyan SG and Galoyan
A: Quantification of the hypothalamic proline rich polypeptide-1 in
rat blood serum. Neurochem J. 8:38–43. 2014. View Article : Google Scholar
|
24
|
Galoian K, Temple TH and Galoyan A:
Cytostatic effect of the hypothalamic cytokine PRP-1 is mediated by
mTOR and cMyc inhibition in high grade chondrosarcoma. Neurochem
Res. 36:812–818. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ozaki T, Hillmann A, Lindner N, Blasius S
and Winkelmann W: Metastasis of chondrosarcoma. J Cancer Res Clin
Oncol. 122:625–628. 1996. View Article : Google Scholar : PubMed/NCBI
|
26
|
Galoian K, Qureshi A, Wideroff G and
Temple HT: Restoration of desmosomal junction protein expression
and inhibition of H3K9-specific histone demethylase activity by
cytostatic proline-rich polypeptide-1 leads to suppression of
tumorigenic potential in human chondrosarcoma cells. Mol Clin
Oncol. 3:171–178. 2015.PubMed/NCBI
|
27
|
Galoian KA, Guettouche T, Issac B, Qureshi
A and Temple HT: Regulation of onco and tumor suppressor MiRNAs by
mTORC1 inhibitor PRP-1 in human chondrosarcoma. Tumour Biol.
35:2335–2341. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Galoian K, Qureshi A, D'Ippolito G,
Schiller PC, Molinari M, Johnstone AL, Brothers SP, Paz AC and
Temple HT: Epigenetic regulation of embryonic stem cell marker
miR302C in human chondrosarcoma as determinant of antiproliferative
activity of proline-rich polypeptide 1. Int J Oncol. 47:465–472.
2015.PubMed/NCBI
|
29
|
Zhang B, Pan X and Anderson TA: MicroRNA:
A new player in stem cells. J Cell Physiol. 209:266–269. 2006.
View Article : Google Scholar : PubMed/NCBI
|
30
|
D'Ippolito G, Diabira S, Howard GA, Menei
P, Roos BA and Schiller PC: Marrow-isolated adult multilineage
inducible (MIAMI) cells, a unique population of postnatal young and
old human cells with extensive expansion and differentiation
potential. J Cell Sci. 117:2971–2981. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Chailakhyan RK, Gerasimov YV, Chailakhyan
MR and Galoyan AA: Proline-rich hypothalamic polypeptide has
opposite effects on the proliferation of human normal bone marrow
stromal cells and human giant-cell tumour stromal cells. Neurochem
Res. 35:934–939. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hadjimichael C, Chanoumidou K,
Papadopoulou N, Arampatzi P, Papamatheakis J and Kretsovali A:
Common stemness regulators of embryonic and cancer stem cells.
World J Stem Cells. 7:1150–1184. 2015.PubMed/NCBI
|
33
|
Moody TW and Gozes I: Vasoactive
intestinal peptide receptors: A molecular target in breast and lung
cancer. Curr Pharm Des. 13:1099–1104. 2007. View Article : Google Scholar : PubMed/NCBI
|
34
|
Dorsam GP, Benton K, Failing J and Batra
S: Vasoactive intestinal peptide signaling axis in human leukemia.
World J Biol Chem. 2:146–160. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang HY, Jiang XM and Ganea DJ: The
neuropeptides VIP and PACAP inhibit IL-2 transcription by
decreasing cJun and increasing JunB expression in T cells. J
Neuroimmunol. 104:68–78. 2000. View Article : Google Scholar : PubMed/NCBI
|
36
|
Balster DA, O'Dorisio MS, Albers AR, Park
SK and Qualman SJ: Suppression of tumorigenicity in neuroblastoma
cells by upregulation of human vasoactive intestinal peptide
receptor type 1. Regul Pept. 109:155–165. 2002. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ibrahim H, Barrow P and Foster N:
Transcriptional modulation by VIP: A rational target against
inflammatory disease. Clin Epigenetics. 2:213–222. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lee JH, Lee JY, Rho SB, Choi JS, Lee DG,
An S, Oh T, Choi DC and Lee SH: PACAP inhibits tumor growth and
interferes with clusterin in cervical carcinomas. FEBS Lett.
588:4730–4739. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Jung S, Yi L, Jeong D, Kim J, An S, Oh TJ,
Kim CH, Kim CJ, Yang Y, Kim KI, et al: The role of ADCYAP1,
adenylate cyclase activating polypeptide 1, as a methylation
biomarker for the early detection of cervical cancer. Oncol Rep.
25:245–252. 2011.PubMed/NCBI
|
40
|
Ki EY, Lee KH, Hur SY, Rhee JE, Kee MK,
Kang C and Park JS: Methylation of Cervical Neoplastic Cells
Infected With Human Papillomavirus 16. Int J Gynecol Cancer.
26:176–183. 2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Merali Z, McIntosh J and Anisman H: Role
of bombesin-related peptides in the control of food intake.
Neuropeptides. 33:376–386. 1999. View Article : Google Scholar : PubMed/NCBI
|
42
|
Uchida K, Kojima A, Morokawa N, Tanabe O,
Anzai C, Kawakami M, Eto Y and Yoshimura K: Expression of
progastrin-releasing peptide and gastrin-releasing peptide receptor
mRNA transcripts in tumor cells of patients with small cell lung
cancer. J Cancer Res Clin Oncol. 128:633–640. 2002. View Article : Google Scholar : PubMed/NCBI
|
43
|
Miyake Y, Kodama T and Yamaguchi K:
Pro-gastrin-releasing peptide(31–98) is a specific tumor marker in
patients with small cell lung carcinoma. Cancer Res. 54:2136–2140.
1994.PubMed/NCBI
|
44
|
Begum AA, Moyle PM and Toth I:
Investigation of bombesin peptide as a targeting ligand for the
gastrin releasing peptide (GRP) receptor. Bioorg Med Chem.
25:5834–5841. 2016. View Article : Google Scholar
|
45
|
Tell R, Rivera CA, Eskra J, Taglia LN,
Blunier A, Wang QT and Benya RV: Gastrin-releasing peptide
signaling alters colon cancer invasiveness via heterochromatin
protein 1Hsβ. Am J Pathol. 178:672–678. 2011. View Article : Google Scholar : PubMed/NCBI
|
46
|
Rivera CA, Ahlberg NC, Taglia L, Kumar M,
Blunier A and Benya RV: Expression of GRP and its receptor is
associated with improved survival in patients with colon cancer.
Clin Exp Metastasis. 26:663–671. 2009. View Article : Google Scholar : PubMed/NCBI
|
47
|
Abujamra AL, Almeida VR, Brunetto AL,
Schwartsmann G and Roesler R: A gastrin-releasing peptide receptor
antagonist stimulates Neuro2a neuroblastoma cell growth: Prevention
by a histone deacetylase inhibitor. Cell Biol Int. 33:899–903.
2009. View Article : Google Scholar : PubMed/NCBI
|
48
|
Gong J, Zhu J, Goodman OB Jr, Pestell RG,
Schlegel PN, Nanus DM and Shen R: Activation of p300 histone
acetyltransferase activity and acetylation of the androgen receptor
by bombesin in prostate cancer cells. Oncogene. 25:2011–2021. 2006.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Moody TW, Nakagawa T, Kang Y, Jakowlew S,
Chan D and Jensen RT: Bombesin/gastrin-releasing peptide receptor
antagonists increase the ability of histone deacetylase inhibitors
to reduce lung cancer proliferation. J Mol Neurosci. 28:231–238.
2006. View Article : Google Scholar : PubMed/NCBI
|
50
|
Grewal SI and Jia S: Heterochromatin
revisited. Nat Rev Genet. 8:35–46. 2007. View Article : Google Scholar : PubMed/NCBI
|
51
|
Tell R, Wang QT, Blunier A and Benya RV:
Identification of ChIP-seq mapped targets of HP1β due to
bombesin/GRP receptor activation. Clin Epigenetics. 2:331–338.
2011. View Article : Google Scholar : PubMed/NCBI
|
52
|
Lloyd KA, Moore AR, Parsons BN, O'Hara A,
Boyce M, Dockray GJ, Varro A and Pritchard DM: Gastrin-induced
miR-222 promotes gastric tumor development by suppressing p27kip1.
Oncotarget. Jun 14–2016.(Epub ahead of print).
|
53
|
Qiao J, Kang J, Ishola TA, Rychahou PG,
Evers BM and Chung DH: Gastrin-releasing peptide receptor silencing
suppresses the tumorigenesis and metastatic potential of
neuroblastoma. Proc Natl Acad Sci USA. 105:12891–12896. 2008.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Qiao J, Lee S, Paul P, Theiss L, Tiao J,
Qiao L, Kong A and Chung DH: miR-335 and miR-363 regulation of
neuroblastoma tumorigenesis and metastasis. Surgery. 154:226–233.
2013. View Article : Google Scholar : PubMed/NCBI
|
55
|
Jackson K, Soutto M, Peng D, Hu T, Marshal
D and El-Rifai W: Epigenetic silencing of somatostatin in gastric
cancer. Dig Dis Sci. 56:125–130. 2011. View Article : Google Scholar : PubMed/NCBI
|
56
|
Friry C, Feliciangeli S, Richard F,
Kitabgi P and Rovere C: Production of recombinant large
proneurotensin/neuromedin N-derived peptides and characterization
of their binding and biological activity. Biochem Biophys Res
Commun. 290:1161–1168. 2002. View Article : Google Scholar : PubMed/NCBI
|
57
|
Wang X, Wang Q, Ives KL and Evers BM:
Curcumin inhibits neurotensin-mediated interleukin-8 production and
migration of HCT116 human colon cancer cells. Clin Cancer Res.
12:5346–5355. 2006. View Article : Google Scholar : PubMed/NCBI
|
58
|
Bakirtzi K, Hatziapostolou M,
Karagiannides I, Polytarchou C, Jaeger S, Iliopoulos D and
Pothoulakis C: Neurotensin signaling activates microRNAs-21 and
−155 and Akt, promotes tumor growth in mice, and is increased in
human colon tumors. Gastroenterology. 141:1749–61.e1. 2011.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Ouyang Q, Chen G, Zhou J, Li L, Dong Z,
Yang R, Xu L, Cui H, Xu M and Yi L: Neurotensin signaling
stimulates glioblastoma cell proliferation by upregulating c-Myc
and inhibiting miR-29b-1 and miR-129-3p. Neuro-oncol. 18:216–226.
2016. View Article : Google Scholar : PubMed/NCBI
|
60
|
Lund AH and van Lohuizen M: Epigenetics
and cancer. Genes Dev. 18:2315–2335. 2004. View Article : Google Scholar : PubMed/NCBI
|
61
|
Misawa K, Misawa Y, Kanazawa T, Mochizuki
D, Imai A, Endo S, Carey TE and Mineta H: Epigenetic inactivation
of galanin and GALR1/2 is associated with early recurrence in head
and neck cancer. Clin Exp Metastasis. 33:187–195. 2016. View Article : Google Scholar : PubMed/NCBI
|
62
|
Misawa Y, Misawa K, Kanazawa T, Uehara T,
Endo S, Mochizuki D, Yamatodani T, Carey TE and Mineta H: Tumor
suppressor activity and inactivation of galanin receptor type 2 by
aberrant promoter methylation in head and neck cancer. Cancer.
120:205–213. 2014. View Article : Google Scholar : PubMed/NCBI
|
63
|
Misawa K, Misawa Y, Kondo H, Mochizuki D,
Imai A, Fukushima H, Uehara T, Kanazawa T and Mineta H: Aberrant
methylation inactivates somatostatin and somatostatin receptor type
1 in head and neck squamous cell carcinoma. PLoS One.
10:e01185882015. View Article : Google Scholar : PubMed/NCBI
|
64
|
David S, Kan T, Cheng Y, Agarwal R, Jin Z
and Mori Y: Aberrant silencing of the endocrine peptide gene
tachykinin-1 in gastric cancer. Biochem Biophys Res Commun.
378:605–609. 2009. View Article : Google Scholar : PubMed/NCBI
|
65
|
Misawa K, Kanazawa T, Misawa Y, Imai A,
Uehara T, Mochizuki D, Endo S, Takahashi G and Mineta H: Frequent
promoter hypermethylation of tachykinin-1 and tachykinin receptor
type 1 is a potential biomarker for head and neck cancer. J Cancer
Res Clin Oncol. 139:879–889. 2013. View Article : Google Scholar : PubMed/NCBI
|
66
|
Mori Y, Cai K, Cheng Y, Wang S, Paun B,
Hamilton JP, Jin Z, Sato F, Berki AT, Kan T, et al: A genome-wide
search identifies epigenetic silencing of somatostatin,
tachykinin-1, and 5 other genes in colon cancer. Gastroenterology.
131:797–808. 2006. View Article : Google Scholar : PubMed/NCBI
|
67
|
Kamimae S, Yamamoto E, Kai M, Niinuma T,
Yamano HO, Nojima M, Yoshikawa K, Kimura T, Takagi R, Harada E, et
al: Epigenetic silencing of NTSR1 is associated with lateral and
noninvasive growth of colorectal tumors. Oncotarget. 6:29975–29990.
2015.PubMed/NCBI
|
68
|
Zhong S, Fields CR, Su N, Pan YX and
Robertson KD: Pharmacologic inhibition of epigenetic modifications,
coupled with gene expression profiling, reveals novel targets of
aberrant DNA methylation and histone deacetylation in lung cancer.
Oncogene. 26:2621–2634. 2007. View Article : Google Scholar : PubMed/NCBI
|