1
|
Romero PR, Zaidi S, Fang YY, Uversky VN,
Radivojac P, Oldfield CJ, Cortese MS, Sickmeier M, LeGall T,
Obradovic Z, et al: Alternative splicing in concert with protein
intrinsic disorder enables increased functional diversity in
multicellular organisms. Proc Natl Acad Sci USA. 103:8390–8395.
2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Stamm S, BenAri S, Rafalska I, Tang Y,
Zhang Z, Toiber D, Thanaraj TA and Soreq H: Function of alternative
splicing. Gene. 344:1–20. 2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Soukarieh O, Gaildrat P, Hamieh M, Drouet
A, BaertDesurmont S, Frébourg T, Tosi M and Martins A: Exonic
splicing mutations are more prevalent than currently estimated and
can be predicted by using in silico tools. PLoS Genet.
12:e10057562016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Cartegni L, Wang J, Zhu Z, Zhang MQ and
Krainer AR: ESEfinder: a web resource to identify exonic splicing
enhancers. Nucleic Acids Res. 31:3568–3571. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Anastasiadou C, Malousi A, Maglaveras N
and Kouidou S: Human epigenome data reveal increased CpG
methylation in alternatively spliced sites and putative exonic
splicing enhancers. DNA Cell Biol. 30:267–275. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ong CT and Corces VG: CTCF: an
architectural protein bridging genome topology and function. Nat
Rev Genet. 15:234–246. 2014. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Malousi A and Kouidou S: DNA
hypermethylation of alternatively spliced and repeat sequences in
humans. Mol Genet Genomics. 287:631–642. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Shoemaker R, Deng J, Wang W and Zhang K:
Allele-specific methylation is prevalent and is contributed by
CpG-SNPs in the human genome. Genome Res. 20:883–889. 2010.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Scalet D, Balestra D, Rohban S, Bovolenta
M, Perrone D, Bernardi F, Campaner S and Pinotti M: Exploring
splicing-switching molecules for seckel syndrome therapy. Biochim
Biophys Acta. 1863:15–20. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Karambataki M, Malousi A, Maglaveras N and
Kouidou S: Synonymous polymorphisms at splicing regulatory sites
are associated with CpGs in neurodegenerative disease-related
genes. Neuromolecular Med. 12:260–269. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Karambataki M, Malousi A and Kouidou S:
Risk-associated coding synonymous SNPs in type 2 diabetes and
neurodegenerative diseases: Genetic silence and the underrated
association with splicing regulation and epigenetics. Mutat Res.
770:85–93. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Harlid S, Ivarsson MI, Butt S, Hussain S,
Grzybowska E, Eyfjörd JE, Lenner P, Försti A, Hemminki K, Manjer J,
et al: A candidate CpG SNP approach identifies a breast cancer
associated ESR1-SNP. Int J Cancer. 129:1689–1698. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Imamura M and Maeda S: Genetics of type 2
diabetes: the GWAS era and future perspectives (Review). Endocr J.
58:723–739. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kurzawski M, Dziewanowski K, Kedzierska K,
Gornik W, Banas A and Drozdzik M: Association of calpain-10 gene
polymorphism and posttransplant diabetes mellitus in kidney
transplant patients medicated with tacrolimus. Pharmacogenomics J.
10:120–125. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Shchetynsky K, Protsyuk D, Ronninger M,
DiazGallo LM, Klareskog L and Padyukov L: Gene-gene interaction and
RNA splicing profiles of MAP2K4 gene in rheumatoid arthritis. Clin
Immunol. 158:19–28. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Brown AE, Yeaman SJ and Walker M: Targeted
suppression of calpain-10 expression impairs insulin-stimulated
glucose uptake in cultured primary human skeletal muscle cells. Mol
Genet Metab. 91:318–324. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Alsaraj F, O'Gorman D, McAteer S,
McDermott J, Hawi Z and Sreenan S: Haplotype association of calpain
10 gene variants with type 2 diabetes mellitus in an Irish sample.
Ir J Med Sci. 179:269–272. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Song Y, You NC, Hsu YH, Sul J, Wang L,
Tinker L, Eaton CB and Liu S: Common genetic variation in
calpain-10 gene (CAPN10) and diabetes risk in a multi-ethnic cohort
of American postmenopausal women. Hum Mol Genet. 16:2960–2971.
2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Barroso I, Luan J, Middelberg RP, Harding
AH, Franks PW, Jakes RW, Clayton D, Schafer AJ, O'Rahilly S and
Wareham NJ: Candidate gene association study in type 2 diabetes
indicates a role for genes involved in beta-cell function as well
as insulin action. PLoS Biol. 1:E202003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Laukkanen O, Lindström J, Eriksson J,
Valle TT, Hämäläinen H, Ilanne-Parikka P, Keinänen-Kiukaanniemi S,
Tuomilehto J, Uusitupa M and Laakso M: Finnish Diabetes Prevention
Study: Polymorphisms in the SLC2A2 (GLUT2) gene are associated with
the conversion from impaired glucose tolerance to type 2 diabetes:
The Finnish Diabetes Prevention Study. Diabetes. 54:2256–2260.
2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kilpeläinen TO, Lakka TA, Laaksonen DE,
Mager U, Salopuro T, Kubaszek A, Todorova B, Laukkanen O, Lindström
J, Eriksson JG, et al: Finnish Diabetes Prevention Study Group:
Interaction of single nucleotide polymorphisms in ADRB2, ADRB3,
TNF, IL6, IGF1R, LIPC, LEPR, and GHRL with physical activity on the
risk of type 2 diabetes mellitus and changes in characteristics of
the metabolic syndrome: The Finnish Diabetes Prevention Study.
Metabolism. 57:428–436. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Willer CJ, Bonnycastle LL, Conneely KN,
Duren WL, Jackson AU, Scott LJ, Narisu N, Chines PS, Skol A,
Stringham HM, et al: Screening of 134 single nucleotide
polymorphisms (SNPs) previously associated with type 2 diabetes
replicates association with 12 SNPs in nine genes. Diabetes.
56:256–264. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
American Diabetes Association, . Standards
of medical care in diabetes - 2013. Diabetes Care. 36:(Suppl 1).
S11–S66. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ye J, Coulouris G, Zaretskaya I,
Cutcutache I, Rozen S and Madden TL: Primer-BLAST: A tool to design
target-specific primers for polymerase chain reaction. BMC
Bioinformatics. 13:1342012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Church GM: The personal genome project.
Mol Syst Biol. 1:2005.0030. 2005. View Article : Google Scholar
|
26
|
Chen HH, Wang YC and Fann MJ:
Identification and characterization of the CDK12/cyclin L1 complex
involved in alternative splicing regulation. Mol Cell Biol.
26:2736–2745. 2006. View Article : Google Scholar
|
27
|
Tian C, Yan R, Wen S, Li X, Li T, Cai Z,
Li X, Du H and Chen H: A splice mutation and mRNA decay of EXT2
provoke hereditary multiple exostoses. PLoS One. 9:e948482014.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Strohman RC: Linear genetics, non-linear
epigenetics: complementary approaches to understanding complex
diseases. Integr Physiol Behav Sci. 30:273–282. 1995. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lau E: Non-coding RNA: Zooming in on
lncRNA functions. Nat Rev Genet. 15:574–575. 2014. View Article : Google Scholar : PubMed/NCBI
|