Metabolic role of fibroblast growth factor 21 in liver, adipose and nervous system tissues (Review)
- Authors:
- Xiaolong Lin
- Yuan Bo Liu
- Huijun Hu
-
Affiliations: Department of Pathology, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, Guangdong 516002, P.R. China, The Medical Department of Neurology, The Sixth People's Hospital of Huizhou (The People's Hospital of Huiyang), Huizhou, Guangdong 516211, P.R. China - Published online on: April 10, 2017 https://doi.org/10.3892/br.2017.890
- Pages: 495-502
-
Copyright: © Lin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Itoh N: Hormone-like (endocrine) Fgfs: Their evolutionary history and roles in development, metabolism, and disease. Cell Tissue Res. 342:1–11. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kelleher FC, O'Sullivan H, Smyth E, Mc Dermott R and Viterbo A: Fibroblast growth factor receptors, developmental corruption and malignant disease. Carcinogenesis. 34:2198–2205. 2013. View Article : Google Scholar : PubMed/NCBI | |
Evans SJ, Choudary PV, Neal CR, Li JZ, Vawter MP, Tomita H, Lopez JF, Thompson RC, Meng F, Stead JD, et al: Dysregulation of the fibroblast growth factor system in major depression. Proc Natl Acad Sci USA. 101:15506–15511. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hutley L, Shurety W, Newell F, Mc Geary R, Pelton N, Grant J, Herington A, Cameron D, Whitehead J and Prins J: Fibroblast growth factor 1: A key regulator of human adipogenesis. Diabetes. 53:3097–3106. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yamagata H, Chen Y, Akatsu H, Kamino K, Ito J, Yokoyama S, Yamamoto T, Kosaka K, Miki T and Kondo I: Promoter polymorphism in fibroblast growth factor 1 gene increases risk of definite Alzheimer's disease. Biochem Biophys Res Commun. 321:320–323. 2004. View Article : Google Scholar : PubMed/NCBI | |
van der Walt JM, Noureddine MA, Kittappa R, Hauser MA, Scott WK, McKay R, Zhang F, Stajich JM, Fujiwara K, Scott BL, et al: Fibroblast growth factor 20 polymorphisms and haplotypes strongly influence risk of Parkinson disease. Am J Hum Genet. 74:1121–1127. 2004. View Article : Google Scholar : PubMed/NCBI | |
Nishimura T, Nakatake Y, Konishi M and Itoh N: Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta. 1492:203–206. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, et al: FGF-21 as a novel metabolic regulator. J Clin Invest. 115:1627–1635. 2005. View Article : Google Scholar : PubMed/NCBI | |
Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y, Moller DE and Kharitonenkov A: Fibroblast growth factor 21 corrects obesity in mice. Endocrinology. 149:6018–6027. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Lloyd DJ, Hale C, Stanislaus S, Chen M, Sivits G, Vonderfecht S, Hecht R, Li YS, Lindberg RA, et al: Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in dietinduced obese mice. Diabetes. 58:250–259. 2009. View Article : Google Scholar : PubMed/NCBI | |
Berglund ED, Li CY, Bina HA, Lynes SE, Michael MD, Shanafelt AB, Kharitonenkov A and Wasserman DH: Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity. Endocrinology. 150:4084–4093. 2009. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Stanislaus S, Chinookoswong N, Lau YY, Hager T, Patel J, Ge H, Weiszmann J, Lu SC, Graham M, et al: Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models-association with liver and adipose tissue effects. Am J Physiol Endocrinol Metab. 297:E1105–E1114. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kharitonenkov A, Wroblewski VJ, Koester A, Chen YF, Clutinger CK, Tigno XT, Hansen BC, Shanafelt AB and Etgen GJ: The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology. 148:774–781. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ogawa Y, Kurosu H, Yamamoto M, Nandi A, Rosenblatt KP, Goetz R, Eliseenkova AV, Mohammadi M and Kuro-o M: BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci USA. 104:7432–7437. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kharitonenkov A, Dunbar JD, Bina HA, Bright S, Moyers JS, Zhang C, Ding L, Micanovic R, Mehrbod SF, Knierman MD, et al: FGF-21/FGF-21 receptor interaction and activation is determined by betaKlotho. J Cell Physiol. 215:1–7. 2008. View Article : Google Scholar : PubMed/NCBI | |
Suzuki M, Uehara Y, Motomura-Matsuzaka K, Oki J, Koyama Y, Kimura M, Asada M, Komi-Kuramochi A, Oka S and Imamura T: betaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Mol Endocrinol. 22:1006–1014. 2008. View Article : Google Scholar : PubMed/NCBI | |
Moyers JS, Shiyanova TL, Mehrbod F, Dunbar JD, Noblitt TW, Otto KA, Reifel-Miller A and Kharitonenkov A: Molecular determinants of FGF-21 activitysynergy and cross-talk with PPARgamma signaling. J Cell Physiol. 210:1–6. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yie J, Hecht R, Patel J, Stevens J, Wang W, Hawkins N, Steavenson S, Smith S, Winters D, Fisher S, et al: FGF21 N- and C-termini play different roles in receptor interaction and activation. FEBS Lett. 583:19–24. 2009. View Article : Google Scholar : PubMed/NCBI | |
Micanovic R, Raches DW, Dunbar JD, Driver DA, Bina HA, Dickinson CD and Kharitonenkov A: Different roles of N- and C- termini in the functional activity of FGF21. J Cell Physiol. 219:227–234. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tacer Fon K, Bookout AL, Ding X, Kurosu H, John GB, Wang L, Goetz R, Mohammadi M, Kuro-o M, Mangelsdorf DJ and Kliewer SA: Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol. 24:2050–2064. 2010. View Article : Google Scholar : PubMed/NCBI | |
Adams AC, Coskun T, Rovira AR, Schneider MA, Raches DW, Micanovic R, Bina HA, Dunbar JD and Kharitonenkov A: Fundamentals of FGF19 & FGF21 action in vitro and in vivo. PLo S One. 7:e384382012. View Article : Google Scholar | |
Markan KR, Naber MC, Ameka MK, Anderegg MD, Mangelsdorf DJ, Kliewer SA, Mohammadi M and Potthoff MJ: Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes. 63:4057–4063. 2014. View Article : Google Scholar : PubMed/NCBI | |
Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS and Maratos-Flier E: Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 5:426–437. 2007. View Article : Google Scholar : PubMed/NCBI | |
Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, Li Y, Goetz R, Mohammadi M, Esser V, et al: Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 5:415–425. 2007. View Article : Google Scholar : PubMed/NCBI | |
Potthoff MJ, Inagaki T, Satapati S, Ding X, He T, Goetz R, Mohammadi M, Finck BN, Mangelsdorf DJ, Kliewer SA and Burgess SC: FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci USA. 106:10853–10858. 2009. View Article : Google Scholar : PubMed/NCBI | |
Badman MK, Koester A, Flier JS, Kharitonenkov A and Maratos-Flier E: Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis. Endocrinology. 150:4931–4940. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wong K, Walsh K, Gao B and Zang M: Retinoic acid receptor β stimulates hepatic induction of fibroblast growth factor 21 to promote fatty acid oxidation and control whole-body energy homeostasis in mice. J Biol Chem. 288:10490–10504. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wong K, Giles A, Jiang J, Lee JW, Adams AC, Kharitonenkov A, Yang Q, Gao B, Guarente L and Zang M: Hepatic SIRT1 attenuates hepatic steatosis and controls energy balance in mice by inducing fibroblast growth factor 21. Gastroenterology. 146:539–549.e7. 2014. View Article : Google Scholar : PubMed/NCBI | |
Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X and Li X: Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 9:327–338. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim H, Mendez R, Zheng Z, Chang L, Cai J, Zhang R and Zhang K: Liver-enriched transcription factor CREBH interacts with peroxisome proliferator-activated receptor α to regulate metabolic hormone FGF21. Endocrinology. 155:769–782. 2014. View Article : Google Scholar : PubMed/NCBI | |
Estall JL, Ruas JL, Choi CS, Laznik D, Badman M, Flier Maratos E, Shulman GI and Spiegelman BM: PGC-1alpha negatively regulates hepatic FGF21 expression by modulating the heme/Rev-Erb (alpha) axis. Proc Natl Acad Sci USA. 106:22510–22515. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Solt LA and Burris TP: Regulation of FGF21 expression and secretion by retinoic acid receptor-related orphan receptor alpha. J Biol Chem. 285:15668–15673. 2010. View Article : Google Scholar : PubMed/NCBI | |
Iizuka K, Takeda J and Horikawa Y: Glucose induces FGF21 mRNA expression through ChREBP activation in rat hepatocytes. FEBS Lett. 583:2882–2886. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shao M, Shan B, Liu Y, Deng Y, Yan C, Wu Y, Mao T, Qiu Y, Zhou Y, Jiang S, et al: Hepatic IRE1α regulates fasting-induced metabolic adaptive programs through the XBP1s-PPARalpha axis signalling. Nat Commun. 5:35282014. View Article : Google Scholar : PubMed/NCBI | |
Lin Z, Tian H, Lam KS, Lin S, Hoo RC, Konishi M, Itoh N, Wang Y, Bornstein SR, Xu A and Li X: Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 17:779–789. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kurosu H, Choi M, Ogawa Y, Dickson AS, Goetz R, Eliseenkova AV, Mohammadi M, Rosenblatt KP, Kliewer SA and Kuro-o M: Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem. 282:26687–26695. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J, Kharitonenkov A, Flier JS, Maratos-Flier E and Spiegelman BM: FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26:271–281. 2012. View Article : Google Scholar : PubMed/NCBI | |
Holland WL, Adams AC, Brozinick JT, Bui HH, Miyauchi Y, Kusminski CM, Bauer SM, Wade M, Singhal E, Cheng CC, et al: An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab. 17:790–797. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hondares E, Iglesias R, Giralt A, Gonzalez FJ, Giralt M, Mampel T and Villarroya F: Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem. 286:12983–12990. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ding X, Boney-Montoya J, Owen BM, Bookout AL, Coate KC, Mangelsdorf DJ and Kliewer SA: βKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab. 16:387–393. 2012. View Article : Google Scholar : PubMed/NCBI | |
Muise ES, Azzolina B, Kuo DW, El-Sherbeini M, Tan Y, Yuan X, Mu J, Thompson JR, Berger JP and Wong KK: Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states. Mol Pharmacol. 74:403–412. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Qiang L and Farmer SR: Identification of a domain within peroxisome proliferator-activated receptor gamma regulating expression of a group of genes containing fibroblast growth factor 21 that are selectively repressed by SIRT1 in adipocytes. Mol Cell Biol. 28:188–200. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Yeung DC, Karpisek M, Stejskal D, Zhou ZG, Liu F, Wong RL, Chow WS, Tso AW, Lam KS and Xu A: Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes. 57:1246–1253. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dutchak PA, Katafuchi T, Bookout AL, Choi JH, Yu RT, Mangelsdorf DJ and Kliewer SA: Fibroblast growth factor-21 regulate PPARγ activity and the antidiabetic actions of thiazolidinediones. Cell. 148:556–567. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chartoumpekis DV, Habeos IG, Ziros PG, Psyrogiannis AI, Kyriazopoulou VE and Papavassiliou AG: Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21. Mol Med. 17:736–740. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wu AL, Kolumam G, Stawicki S, Chen Y, Li J, Zavala-Solorio J, Phamluong K, Feng B, Li L, Marsters S, et al: Amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1. Sci Transl Med. 3:113ra1262011. View Article : Google Scholar : PubMed/NCBI | |
Adams AC, Yang C, Coskun T, Cheng CC, Gimeno RE, Luo Y and Kharitonenkov A: The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue. Mol Metab. 2:31–37. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tan BK, Hallschmid M, Adya R, Kern W, Lehnert H and Randeva HS: Fibroblast growth factor 21 (FGF21) in human cerebrospinal fluid: Relationship with plasma FGF21 and body adiposity. Diabetes. 60:2758–2762. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liang Q, Zhong L, Zhang J, Wang Y, Bornstein SR, Triggle CR, Ding H, Lam KS and Xu A: FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting. Diabetes. 63:4064–4075. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang C, Jin C, Li X, Wang F, Mc Keehan WL and Luo Y: Differential specificity of endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in complex with KLB. PLoS One. 7:e338702012. View Article : Google Scholar : PubMed/NCBI | |
Sarruf DA, Thaler JP, Morton GJ, German J, Fischer JD, Ogimoto K and Schwartz MW: Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes. 59:1817–1824. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hsuchou H, Pan W and Kastin AJ: The fasting polypeptide FGF21 can enter brain from blood. Peptides. 28:2382–2386. 2007. View Article : Google Scholar : PubMed/NCBI | |
Owen BM, Ding X, Morgan DA, Coate KC, Bookout AL, Rahmouni K, Kliewer SA and Mangelsdorf DJ: FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 20:670–677. 2014. View Article : Google Scholar : PubMed/NCBI | |
Owen BM, Bookout AL, Ding X, Lin VY, Atkin SD, Gautron L, Kliewer SA and Mangelsdorf DJ: FGF21 contributes to neuroendocrine control of female reproduction. Nat Med. 19:1153–1156. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bookout AL, de Groot MH, Owen BM, Lee S, Gautron L, Lawrence HL, Ding X, Elmquist JK, Takahashi JS, Mangelsdorf DJ and Kliewer SA: FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med. 19:1147–1152. 2013. View Article : Google Scholar : PubMed/NCBI | |
Arase K, York DA, Shimizu H, Shargill N and Bray GA: Effects of corticotropin-releasing factor on food intake and brown adipose tissue thermogenesis in rats. Am J Physiol. 255:e255–e259. 1988.PubMed/NCBI | |
Adams AC, Cheng CC, Coskun T and Kharitonenkov A: FGF21 requires βklotho to act in vivo. PLoS One. 7:e499772012. View Article : Google Scholar : PubMed/NCBI | |
Johnson CL, Weston JY, Chadi SA, Fazio EN, Huff MW, Kharitonenkov A, Köester A and Pin CL: Fibroblast growth factor 21 reduces the severity of cerulein-induced pancreatitis in mice. Gastroenterology. 137:1795–1804. 2009. View Article : Google Scholar : PubMed/NCBI | |
Johnson CL, Mehmood R, Laing SW, Stepniak CV, Kharitonenkov A and Pin CL: Silencing of the fibroblast growth factor 21 gene is an underlying cause of acinar cell injury in mice lacking MIST1. Am J Physiol Endocrinol Metab. 306:E916–E928. 2014. View Article : Google Scholar : PubMed/NCBI | |
Uonaga T, Toyoda K, Okitsu T, Zhuang X, Yamane S, Uemoto S and Inagaki N: FGF-21 enhances islet engraftment in mouse syngeneic islet transplantation model. Islets. 2:247–251. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kharitonenkov A and Adams AC: Inventing new medicines: The FGF21 story. Mol Metab. 3:221–229. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Stanislaus S, Chinookoswong N, Lau YY, Hager T, Patel J, Ge H, Weiszmann J, Lu SC, Graham M, et al: Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin resistant mouse models-association with liver and adipose tissue effects. Am J Physiol Endocrinol Metab. 297:E1105–E1114. 2009. View Article : Google Scholar : PubMed/NCBI | |
So WY, Cheng Q, Chen L, Evans-Molina C, Xu A, Lam KS and Leung PS: High glucose represses β-klotho expression and impairs fibroblast growth factor 21 action in mouse pancreatic islets: Involvement of peroxisome proliferator-activated receptor γ signaling. Diabetes. 62:3751–3759. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tyynismaa H, Carroll CJ, Raimundo N, Ahola-Erkkilä S, Wenz T, Ruhanen H, Guse K, Hemminki A, Peltola-Mjøsund KE, Tulkki V, et al: Mitochondrial myopathy induces a starvationlike response. Hum Mol Genet. 19:3948–3958. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kim KH, Jeong YT, Oh H, Kim SH, Cho JM, Kim YN, Kim SS, Kim DH, Hur KY, Kim HK, et al: Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med. 19:83–92. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gälman C, Lundåsen T, Kharitonenkov A, Bina HA, Eriksson M, Hafström I, Dahlin M, Amark P, Angelin B and Rudling M: The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man. Cell Metab. 8:169–174. 2008. View Article : Google Scholar : PubMed/NCBI | |
Christodoulides C, Dyson P, Sprecher D, Tsintzas K and Karpe F: Circulating fibroblast growth factor 21 is induced by peroxisome proliferator-activated receptor agonists but not ketosis in man. J Clin Endocrinol Metab. 94:3594–3601. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mráz M, Lacinová Z, Kaválková P, Haluzíková D, Trachta P, Drápalová J, Hanušová V and Haluzík M: Serum concentrations of fibroblast growth factor 19 in patients with obesity and type 2 diabetes mellitus: The influence of acute hyperinsulinemia, very-low calorie diet and PPAR-α agonist treatment. Physiol Res. 60:627–636. 2011.PubMed/NCBI | |
Dushay J, Chui PC, Gopalakrishnan GS, Varela-Rey M, Crawley M, Fisher FM, Badman MK, Martinez-Chantar ML and Maratos-Flier E: Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology. 139:456–463. 2010. View Article : Google Scholar : PubMed/NCBI | |
Laeger T, Henagan TM, Albarado DC, Redman LM, Bray GA, Noland RC, Münzberg H, Hutson SM, Gettys TW, Schwartz MW and Morrison CD: FGF21 is an endocrine signal of protein restriction. J Clin Invest. 124:3913–3922. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mraz M, Bartlova M, Lacinova Z, Michalsky D, Kasalicky M, Haluzikova D, Matoulek M, Dostalova I, Humenanska V and Haluzik M: Serum concentrations and tissue expression of a novel endocrine regulator fibroblast growth factor-21 in patients with type 2 diabetes and obesity. Clin Endocrinol (Oxf). 71:369–375. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen WW, Li L, Yang GY, Li K, Qi XY, Zhu W, Tang Y, Liu H and Boden G: Circulating FGF-21 levels in normal subjects and in newly diagnose patients with type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes. 116:65–68. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chavez AO, Molina-Carrion M, Abdul-Ghani MA, Folli F, Defronzo RA and Tripathy D: Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance. Diabetes Care. 32:1542–1546. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fisher FM, Chui PC, Antonellis PJ, Bina HA, Kharitonenkov A, Flier JS and Maratos-Flier E: Obesity is a fibroblast growth factor 21 (FGF21) resistant state. Diabetes. 59:2781–2789. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lundasen T, Hunt MC, Nilsson LM, Sanyal S, Angelin B, Alexson SE and Rudling M: PPARalpha is a key regulator of hepatic FGF21. Biochem Biophys Res Commun. 360:437–440. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hale C, Chen MM, Stanislaus S, Chinookoswong N, Hager T, Wang M, Véniant MM and Xu J: Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance. Endocrinology. 153:69–80. 2012. View Article : Google Scholar : PubMed/NCBI | |
Maruthur NM: The growing prevalence of type 2 diabetes: Increased incidence or improved survival? Curr Diab Rep. 13:786–794. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kharitonenkov A, Beals JM, Micanovic R, Strifler BA, Rathnachalam R, Wroblewski VJ, Li S, Koester A, Ford AM, Coskun T, et al: Rational design of a fibroblast growth factor 21-based clinical candidate, LY2405319. PLoS One. 8:e585752013. View Article : Google Scholar : PubMed/NCBI | |
Gaich G, Chien JY, Fu H, Glass LC, Deeg MA, Holland WL, Kharitonenkov A, Bumol T, Schilske HK and Moller DE: The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 18:333–340. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fisher FM, Estall JL, Adams AC, Antonellis PJ, Bina HA, Flier JS, Kharitonenkov A, Spiegelman BM and Maratos-Flier E: Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology. 152:2996–3004. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mai K, Bobbert T, Groth C, Assmann A, Meinus S, Kraatz J, Andres J, Arafat AM, Pfeiffer AF, Möhlig M and Spranger J: Physiological modulation of circulating FGF21: Relevance of free fatty acids and insulin. Am J Physiol Endocrinol Metab. 299:E126–E130. 2010. View Article : Google Scholar : PubMed/NCBI | |
Adams AC, Halstead CA, Hansen BC, Irizarry AR, Martin JA, Myers SR, Reynolds VL, Smith HW, Wroblewski VJ and Kharitonenkov A: LY2405319, an engineered FGF21 variant, improves the metabolic status of diabetic monkeys. PLoS One. 8:e657632013. View Article : Google Scholar : PubMed/NCBI |