Unraveling the genes implicated in Alzheimer's disease (Review)
- Authors:
- Mohan Giri
- Abhilasha Shah
- Bibhuti Upreti
- Jayanti Chamling Rai
-
Affiliations: National Center for Rheumatic Diseases, Ratopul, Kathmandu 44600, Nepal - Published online on: June 14, 2017 https://doi.org/10.3892/br.2017.927
- Pages: 105-114
This article is mentioned in:
Abstract
Bertram L, Lill CM and Tanzi RE: The genetics of Alzheimer disease: Back to the future. Neuron. 68:270–281. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tanzi RE: The genetics of Alzheimer disease. Cold Spring Harb Perspect Med. 2:a0062962012. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Basak JM and Holtzman DM: The role of apolipoprotein E in Alzheimer's disease. Neuron. 63:287–303. 2009. View Article : Google Scholar : PubMed/NCBI | |
Puig KL and Combs CK: Expression and function of APP and its metabolites outside the central nervous system. Exp Gerontol. 48:608–611. 2013. View Article : Google Scholar : PubMed/NCBI | |
De Strooper B, Vassar R and Golde T: The secretases: Enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol. 6:99–107. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Brouwers N, Benilova I, Vandersteen A, Mercken M, van Laere K, van Damme P, Demedts D, van Leuven F, Sleegers K, et al: Amyloid precursor protein mutation E682K at the alternative β-secretase cleavage β'-site increases Aβ generation. EMBO Mol Med. 3:291–302. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang X and Song W: The role of APP and BACE1 trafficking in APP processing and amyloid-β generation. Alzheimers Res Ther. 5:462013. View Article : Google Scholar : PubMed/NCBI | |
Cohen SI, Linse S, Luheshi LM, Hellstrand E, White DA, Rajah L, Otzen DE, Vendruscolo M, Dobson CM and Knowles TP: Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc Natl Acad Sci USA. 110:9758–9763. 2013. View Article : Google Scholar : PubMed/NCBI | |
Le TV, Crook R, Hardy J and Dickson DW: Cotton wool plaques in non-familial late-onset Alzheimer disease. J Neuropathol Exp Neurol. 60:1051–1061. 2001. View Article : Google Scholar : PubMed/NCBI | |
Davis W Jr: The ATP-Binding Cassette Transporter-2 (ABCA2) Overexpression modulates sphingosine levels and transcription of the amyloid precursor protein (APP) gene. Curr Alzheimer Res. 12:847–859. 2015. View Article : Google Scholar : PubMed/NCBI | |
Macé S, Cousin E, Ricard S, Génin E, Spanakis E, Lafargue-Soubigou C, Génin B, Fournel R, Roche S, Haussy G, et al: ABCA2 is a strong genetic risk factor for early-onset Alzheimer's disease. Neurobiol Dis. 18:119–125. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ertekin-Taner N, Graff-Radford N, Younkin LH, Eckman C, Baker M, Adamson J, Ronald J, Blangero J, Hutton M and Younkin SG: Linkage of plasma Abeta42 to a quantitative locus on chromosome 10 in late-onset Alzheimer's disease pedigrees. Science. 290:2303–2304. 2000. View Article : Google Scholar : PubMed/NCBI | |
Miyashita A, Arai H, Asada T, Imagawa M, Matsubara E, Shoji M, Higuchi S, Urakami K, Kakita A, Takahashi H, et al: Japanese genetic study consortium for Alzeheimer's disease: Genetic association of CTNNA3 with late-onset Alzheimer's disease in females. Hum Mol Genet. 16:2854–2869. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dermaut B, Croes EA, Rademakers R, Van den Broeck M, Cruts M, Hofman A, van Duijn CM and Van Broeckhoven C: PRNP Val129 homozygosity increases risk for early-onset Alzheimer's disease. Ann Neurol. 53:409–412. 2003. View Article : Google Scholar : PubMed/NCBI | |
Riemenschneider M, Klopp N, Xiang W, Wagenpfeil S, Vollmert C, Müller U, Förstl H, Illig T, Kretzschmar H and Kurz A: Prion protein codon 129 polymorphism and risk of Alzheimer disease. Neurology. 63:364–366. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yu JT, Tan L and Hardy J: Apolipoprotein E in Alzheimer's disease: An update. Annu Rev Neurosci. 37:79–100. 2014. View Article : Google Scholar : PubMed/NCBI | |
Castano EM, Prelli F, Wisniewski T, Golabek A, Kumar RA, Soto C and Frangione B: Fibrillogenesis in Alzheimer's disease of amyloid β peptides and apolipoprotein E. Biochem J. 306:599–604. 1995. View Article : Google Scholar : PubMed/NCBI | |
Wisniewski T, Castaño EM, Golabek A, Vogel T and Frangione B: Acceleration of Alzheimer's fibril formation by apolipoprotein E in vitro. Am J Pathol. 145:1030–1035. 1994.PubMed/NCBI | |
Zlokovic BV: Cerebrovascular effects of apolipoprotein E: Implications for Alzheimer disease. JAMA Neurol. 70:440–444. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Hollingworth P, Moore P, Foy C, Archer N, Powell J, Nowotny P, Holmans P, O'Donovan M, Tacey K, et al: Genetic association of the APP binding protein 2 gene (APBB2) with late onset Alzheimer disease. Hum Mutat. 25:270–277. 2005. View Article : Google Scholar : PubMed/NCBI | |
Golanska E, Sieruta M, Gresner SM, Pfeffer A, Chodakowska-Zebrowska M, Sobow TM, Klich I, Mossakowska M, Szybinska A, Barcikowska M, et al: APBB2 genetic polymorphisms are associated with severe cognitive impairment in centenarians. Exp Gerontol. 48:391–394. 2013. View Article : Google Scholar : PubMed/NCBI | |
Finckh U, van Hadeln K, Müller-Thomsen T, Alberici A, Binetti G, Hock C, Nitsch RM, Stoppe G, Reiss J and Gal A: Association of late-onset Alzheimer disease with a genotype of PLAU, the gene encoding urokinase-type plasminogen activator on chromosome 10q22.2. Neurogenetics. 4:213–217. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ozturk A, Minster RL, DeKosky ST and Kamboh MI: Association of tagSNPs in the urokinase-plasminogen activator (PLAU) gene with Alzheimer's disease and associated quantitative traits. Am J Med Genet B Neuropsychiatr Genet. 144B:79–82. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wu W, Jiang H, Wang M and Zhang D: Meta-analysis of the association between urokinase-plasminogen activator gene rs2227564 polymorphism and Alzheimer's disease. Am J Alzheimers Dis Other Demen. 28:517–523. 2013. View Article : Google Scholar : PubMed/NCBI | |
Paloneva J, Kestilä M, Wu J, Salminen A, Böhling T, Ruotsalainen V, Hakola P, Bakker AB, Phillips JH, Pekkarinen P, et al: Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts. Nat Genet. 25:357–361. 2000. View Article : Google Scholar : PubMed/NCBI | |
Neumann H and Daly MJ: Variant TREM2 as risk factor for Alzheimer's disease. N Engl J Med. 368:182–184. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JS, Younkin S, et al: Alzheimer Genetic Analysis Group: TREM2 variants in Alzheimer's disease. N Engl J Med. 368:117–127. 2013. View Article : Google Scholar : PubMed/NCBI | |
Singaraja RR: TREM2: A new risk factor for Alzheimer's disease. Clin Genet. 83:525–526. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, et al: Variant of TREM2 associated with the risk of Alzheimer's disease. N Engl J Med. 368:107–116. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hickman SE and El Khoury J: TREM2 and the neuroimmunology of Alzheimer's disease. Biochem Pharmacol. 88:495–498. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML, Gilfillan S, Krishnan GM, Sudhakar S, Zinselmeyer BH, et al: TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model. Cell. 160:1061–1071. 2015. View Article : Google Scholar : PubMed/NCBI | |
Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A, et al: Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat Genet. 41:1088–1093. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B, et al: European Alzheimer's Disease Initiative Investigators: Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet. 41:1094–1099. 2009. View Article : Google Scholar : PubMed/NCBI | |
Koo SJ, Markovic S, Puchkov D, Mahrenholz CC, Beceren-Braun F, Maritzen T, Dernedde J, Volkmer R, Oschkinat H and Haucke V: SNARE motif-mediated sorting of synaptobrevin by the endocytic adaptors clathrin assembly lymphoid myeloid leukemia (CALM) and AP180 at synapses. Proc Natl Acad Sci USA. 108:13540–13545. 2011. View Article : Google Scholar : PubMed/NCBI | |
Moreau K, Fleming A, Imarisio S, Ramirez A Lopez, Mercer L, Jimenez-Sanchez M, Bento CF, Puri C, Zavodszky E, Siddiqi F, et al: PICALM modulates autophagy activity and tau accumulation. Nat Commun. 5:49982014. View Article : Google Scholar : PubMed/NCBI | |
Baig S, Joseph SA, Tayler H, Abraham R, Owen MJ, Williams J, Kehoe PG and Love S: Distribution and expression of picalm in Alzheimer disease. J Neuropathol Exp Neurol. 69:1071–1077. 2010. View Article : Google Scholar : PubMed/NCBI | |
Parikh I, Medway C, Younkin S, Fardo DW and Estus S: An intronic PICALM polymorphism, rs588076, is associated with allelic expression of a PICALM isoform. Mol Neurodegener. 9:322014. View Article : Google Scholar : PubMed/NCBI | |
Schjeide BM, Schnack C, Lambert JC, Lill CM, Kirchheiner J, Tumani H, Otto M, Tanzi RE, Lehrach H, Amouyel P, et al: The role of clusterin, complement receptor 1, and phosphatidylinositol binding clathrin assembly protein in Alzheimer disease risk and cerebrospinal fluid biomarker levels. Arch Gen Psychiatry. 68:207–213. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dulabon L, Olson EC, Taglienti MG, Eisenhuth S, McGrath B, Walsh CA, Kreidberg JA and Anton ES: Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron. 27:33–44. 2000. View Article : Google Scholar : PubMed/NCBI | |
Sanada K, Gupta A and Tsai LH: Disabled-1-regulated adhesion of migrating neurons to radial glial fiber contributes to neuronal positioning during early corticogenesis. Neuron. 42:197–211. 2004. View Article : Google Scholar : PubMed/NCBI | |
Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, Bis JC, Smith AV, Carassquillo MM, Lambert JC, et al: CHARGE Consortium; GERAD1 Consortium; EADI1 Consortium: Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA. 303:1832–1840. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jacobsen L, Madsen P, Jacobsen C, Nielsen MS, Gliemann J and Petersen CM: Activation and functional characterization of the mosaic receptor SorLA/LR11. J Biol Chem. 276:22788–22796. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sager KL, Wuu J, Leurgans SE, Rees HD, Gearing M, Mufson EJ, Levey AI and Lah JJ: Neuronal LR11/sorLA expression is reduced in mild cognitive impairment. Ann Neurol. 62:640–647. 2007. View Article : Google Scholar : PubMed/NCBI | |
Louwersheimer E, Ramirez A, Cruchaga C, Becker T, Kornhuber J, Peters O, Heilmann S, Wiltfang J, Jessen F, Visser PJ, et al: Influence of genetic variants in SORL1 gene on the manifestation of Alzheimer's disease. Neurobiol Aging. 36:e13–e20. 2015. View Article : Google Scholar | |
Sudoh S, Frosch MP and Wolf BA: Differential effects of proteases involved in intracellular degradation of amyloid beta-protein between detergent-soluble and -insoluble pools in CHO-695 cells. Biochemistry. 41:1091–1099. 2002. View Article : Google Scholar : PubMed/NCBI | |
Jiang Q, Lee CY, Mandrekar S, Wilkinson B, Cramer P, Zelcer N, Mann K, Lamb B, Willson TM, Collins JL, et al: Apo E promotes the proteolytic degradation of Abeta. Neuron. 58:681–693. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cook DG, Leverenz JB, McMillan PJ, Kulstad JJ, Ericksen S, Roth RA, Schellenberg GD, Jin LW, Kovacina KS and Craft S: Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer's disease is associated with the apolipoprotein E-epsilon4 allele. Am J Pathol. 162:313–319. 2003. View Article : Google Scholar : PubMed/NCBI | |
Rehman AA, Ahsan H and Khan FH: α-2-Macroglobulin: A physiological guardian. J Cell Physiol. 228:1665–1675. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wilson MR, Yerbury JJ and Poon S: Potential roles of abundant extracellular chaperones in the control of amyloid formation and toxicity. Mol Biosyst. 4:42–52. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yerbury JJ, Kumita JR, Meehan S, Dobson CM and Wilson MR: alpha2-Macroglobulin and haptoglobin suppress amyloid formation by interacting with prefibrillar protein species. J Biol Chem. 284:4246–4254. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cucullo L, Marchi N, Marroni M, Fazio V, Namura S and Janigro D: Blood-brain barrier damage induces release of alpha2-macroglobulin. Mol Cell Proteomics. 2:234–241. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ozawa D, Hasegawa K, Lee YH, Sakurai K, Yanagi K, Ookoshi T, Goto Y and Naiki H: Inhibition of beta2-microglobulin amyloid fibril formation by alpha2-macroglobulin. J Biol Chem. 286:9668–9676. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kamboh MI, Minster RL, Feingold E and DeKosky ST: Genetic association of ubiquilin with Alzheimer's disease and related quantitative measures. Mol Psychiatry. 11:273–279. 2006. View Article : Google Scholar : PubMed/NCBI | |
Stieren ES, El Ayadi A, Xiao Y, Siller E, Landsverk ML, Oberhauser AF, Barral JM and Boehning D: Ubiquilin-1 is a molecular chaperone for the amyloid precursor protein. J Biol Chem. 286:35689–35698. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hiltunen M, Lu A, Thomas AV, Romano DM, Kim M, Jones PB, Xie Z, Kounnas MZ, Wagner SL, Berezovska O, et al: Ubiquilin 1 modulates amyloid precursor protein trafficking and Abeta secretion. J Biol Chem. 281:32240–32253. 2006. View Article : Google Scholar : PubMed/NCBI | |
Patel VP and Chu CT: Nuclear transport, oxidative stress, and neurodegeneration. Int J Clin Exp Pathol. 4:215–229. 2011.PubMed/NCBI | |
Liu S, Zeng F, Wang C, Chen Z, Zhao B and Li K: The nitric oxide synthase 3 G894T polymorphism associated with Alzheimer's disease risk: A meta-analysis. Sci Rep. 5:135982015. View Article : Google Scholar : PubMed/NCBI | |
Austin SA, Santhanam AV, Hinton DJ, Choi DS and Katusic ZS: Endothelial nitric oxide deficiency promotes Alzheimer's disease pathology. J Neurochem. 127:691–700. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu F, Arias-Vásquez A, Sleegers K, Aulchenko YS, Kayser M, Sanchez-Juan P, Feng BJ, Bertoli-Avella AM, van Swieten J, Axenovich TI, et al: A genomewide screen for late-onset Alzheimer disease in a genetically isolated Dutch population. Am J Hum Genet. 81:17–31. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Kurnasov OV, Karthikeyan S, Grishin NV, Osterman AL and Zhang H: Structural characterization of a human cytosolic NMN/NaMN adenylyltransferase and implication in human NAD biosynthesis. J Biol Chem. 278:13503–13511. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hikosaka K, Ikutani M, Shito M, Kazuma K, Gulshan M, Nagai Y, Takatsu K, Konno K, Tobe K, Kanno H, et al: Deficiency of nicotinamide mononucleotide adenylyltransferase 3 (nmnat3) causes hemolytic anemia by altering the glycolytic flow in mature erythrocytes. J Biol Chem. 289:14796–14811. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dreses-Werringloer U, Lambert JC, Vingtdeux V, Zhao H, Vais H, Siebert A, Jain A, Koppel J, Rovelet-Lecrux A, Hannequin D, et al: A polymorphism in CALHM1 influences Ca2+ homeostasis, Abeta levels, and Alzheimer's disease risk. Cell. 133:1149–1161. 2008. View Article : Google Scholar : PubMed/NCBI | |
Demuro A, Parker I and Stutzmann GE: Calcium signaling and amyloid toxicity in Alzheimer disease. J Biol Chem. 285:12463–12468. 2010. View Article : Google Scholar : PubMed/NCBI | |
Boada M, Antúnez C, López-Arrieta J, Galán JJ, Morón FJ, Hernández I, Marín J, Martínez-Lage P, Alegret M, Carrasco JM, et al: CALHM1 P86L polymorphism is associated with late-onset Alzheimer's disease in a recessive model. J Alzheimers Dis. 20:247–251. 2010. View Article : Google Scholar : PubMed/NCBI | |
Koppel J, Campagne F, Vingtdeux V, Dreses-Werringloer U, Ewers M, Rujescu D, Hampel H, Gordon ML, Christen E, Chapuis J, et al: CALHM1 P86L polymorphism modulates CSF Aβ levels in cognitively healthy individuals at risk for Alzheimer's disease. Mol Med. 17:974–979. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rubio-Moscardo F, Setó-Salvia N, Pera M, Bosch-Morató M, Plata C, Belbin O, Gené G, Dols-Icardo O, Ingelsson M, Helisalmi S, et al: Rare variants in calcium homeostasis modulator 1 (CALHM1) found in early onset Alzheimer's disease patients alter calcium homeostasis. PLoS One. 8:e742032013. View Article : Google Scholar : PubMed/NCBI | |
Perez-García GS and Meneses A: Effects of the potential 5-HT7 receptor agonist AS 19 in an autoshaping learning task. Behav Brain Res. 163:136–140. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kehoe PG, Miners S and Love S: Angiotensins in Alzheimer's disease - friend or foe? Trends Neurosci. 32:619–628. 2009. View Article : Google Scholar : PubMed/NCBI | |
Oba R, Igarashi A, Kamata M, Nagata K, Takano S and Nakagawa H: The N-terminal active centre of human angiotensin-converting enzyme degrades Alzheimer amyloid beta-peptide. Eur J Neurosci. 21:733–740. 2005. View Article : Google Scholar : PubMed/NCBI | |
Qiu WW, Lai A, Mon T, Mwamburi M, Taylor W, Rosenzweig J, Kowall N, Stern R, Zhu H and Steffens DC: Angiotensin converting enzyme inhibitors and Alzheimer disease in the presence of the apolipoprotein E4 allele. Am J Geriatr Psychiatry. 22:177–185. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zlokovic BV, Deane R, Sagare AP, Bell RD and Winkler EA: Low-density lipoprotein receptor-related protein-1: A serial clearance homeostatic mechanism controlling Alzheimer's amyloid β-peptide elimination from the brain. J Neurochem. 115:1077–1089. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jaeger LB, Dohgu S, Hwang MC, Farr SA, Murphy MP, Fleegal-DeMotta MA, Lynch JL, Robinson SM, Niehoff ML, Johnson SN, et al: Testing the neurovascular hypothesis of Alzheimer's disease: LRP-1 antisense reduces blood-brain barrier clearance, increases brain levels of amyloid-beta protein, and impairs cognition. J Alzheimers Dis. 17:553–570. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tanokashira D, Motoki K, Minegishi S, Hosaka A, Mamada N, Tamaoka A, Okada T, Lakshmana MK and Araki W: LRP1 downregulates the Alzheimer's β-secretase BACE1 by modulating its intraneuronal trafficking(1,2,3). eNeuro. 2:ENEURO.0006–15.2015. 2015. View Article : Google Scholar | |
Karch CM and Goate AM: Alzheimer's disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry. 77:43–51. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa JS, Moskvina V, et al: Alzheimer's Disease Neuroimaging Initiative; CHARGE consortium; EADI1 consortium: Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat Genet. 43:429–435. 2011. View Article : Google Scholar : PubMed/NCBI | |
Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK, et al: Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nat Genet. 43:436–441. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, DeStafano AL, Bis JC, Beecham GW, Grenier-Boley B, et al: Cohorts for Heart and Aging Research in Genomic Epidemiology: Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet. 45:1452–1458. 2013. View Article : Google Scholar : PubMed/NCBI | |
Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K, Hooli B, Choi SH, Hyman BT and Tanzi RE: Alzheimer's disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron. 78:631–643. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bao J, Wang XJ and Mao ZF: Associations between genetic variants in 19p13 and 19q13 regions and susceptibility to Alzheimer disease: A meta-analysis. Med Sci Monit. 22:234–243. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bradshaw EM, Chibnik LB, Keenan BT, Ottoboni L, Raj T, Tang A, Rosenkrantz LL, Imboywa S, Lee M, Von Korff A, et al: Alzheimer Disease Neuroimaging Initiative: CD33 Alzheimer's disease locus: Altered monocyte function and amyloid biology. Nat Neurosci. 16:848–850. 2013.PubMed/NCBI | |
Khera R and Das N: Complement Receptor 1: Disease associations and therapeutic implications. Mol Immunol. 46:761–772. 2009. View Article : Google Scholar : PubMed/NCBI | |
Danik M, Chabot JG, Hassan-Gonzalez D, Suh M and Quirion R: Localization of sulfated glycoprotein-2/clusterin mRNA in the rat brain by in situ hybridization. J Comp Neurol. 334:209–227. 1993. View Article : Google Scholar : PubMed/NCBI | |
Schrijvers EM, Koudstaal PJ, Hofman A and Breteler MM: Plasma clusterin and the risk of Alzheimer disease. JAMA. 305:1322–1326. 2011. View Article : Google Scholar : PubMed/NCBI | |
Crehan H, Hardy J and Pocock J: Blockage of CR1 prevents activation of rodent microglia. Neurobiol Dis. 54:139–149. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dunkelberger JR and Song WC: Complement and its role in innate and adaptive immune responses. Cell Res. 20:34–50. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sleegers K, Lambert JC, Bertram L, Cruts M, Amouyel P and Van Broeckhoven C: The pursuit of susceptibility genes for Alzheimer's disease: Progress and prospects. Trends Genet. 26:84–93. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kok EH, Luoto T, Haikonen S, Goebeler S, Haapasalo H and Karhunen PJ: CLU, CR1 and PICALM genes associate with Alzheimer's-related senile plaques. Alzheimers Res Ther. 3:122011. View Article : Google Scholar : PubMed/NCBI | |
Lopes AM, Ross N, Close J, Dagnall A, Amorim A and Crow TJ: Inactivation status of PCDH11X: Sexual dimorphisms in gene expression levels in brain. Hum Genet. 119:267–275. 2006. View Article : Google Scholar : PubMed/NCBI | |
Carrasquillo MM, Zou F, Pankratz VS, Wilcox SL, Ma L, Walker LP, Younkin SG, Younkin CS, Younkin LH, Bisceglio GD, et al: Genetic variation in PCDH11X is associated with susceptibility to late-onset Alzheimer's disease. Nat Genet. 41:192–198. 2009. View Article : Google Scholar : PubMed/NCBI | |
Haas IG, Frank M, Véron N and Kemler R: Presenilin-dependent processing and nuclear function of gamma-protocadherins. J Biol Chem. 280:9313–9319. 2005. View Article : Google Scholar : PubMed/NCBI | |
Connor JR and Lee SY: HFE mutations and Alzheimer's disease. J Alzheimers Dis. 10:267–276. 2006. View Article : Google Scholar : PubMed/NCBI | |
Robson KJ, Lehmann DJ, Wimhurst VL, Livesey KJ, Combrinck M, Merryweather-Clarke AT, Warden DR and Smith AD: Synergy between the C2 allele of transferrin and the C282Y allele of the haemochromatosis gene (HFE) as risk factors for developing Alzheimer's disease. J Med Genet. 41:261–265. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mariani S, Ventriglia M, Simonelli I, Spalletta G, Bucossi S, Siotto M, Assogna F, Melgari JM, Vernieri F and Squitti R: Effects of hemochromatosis and transferrin gene mutations on peripheral iron dyshomeostasis in mild cognitive impairment and Alzheimer's and Parkinson's diseases. Front Aging Neurosci. 5:372013. View Article : Google Scholar : PubMed/NCBI | |
Percy M, Somerville MJ, Hicks M, Garcia A, Colelli T, Wright E, Kitaygorodsky J, Jiang A, Ho V, Parpia A, et al: Risk factors for development of dementia in a unique six-year cohort study. I. An exploratory, pilot study of involvement of the E4 allele of apolipoprotein E, mutations of the hemochromatosis-HFE gene, type 2 diabetes, and stroke. J Alzheimers Dis. 38:907–922. 2014.PubMed/NCBI | |
Lehmann DJ, Schuur M, Warden DR, Hammond N, Belbin O, Kölsch H, Lehmann MG, Wilcock GK, Brown K, Kehoe PG, et al: Transferrin and HFE genes interact in Alzheimer's disease risk: The Epistasis Project. Neurobiol Aging. 33:202.e1–202.e13. 2012. View Article : Google Scholar | |
Montoya SE, Thiels E, Card JP and Lazo JS: Astrogliosis and behavioral changes in mice lacking the neutral cysteine protease bleomycin hydrolase. Neuroscience. 146:890–900. 2007. View Article : Google Scholar : PubMed/NCBI | |
Suszyńska-Zajczyk J, Luczak M, Marczak L and Jakubowski H: Hyperhomocysteinemia and bleomycin hydrolase modulate the expression of mouse brain proteins involved in neurodegeneration. J Alzheimers Dis. 40:713–726. 2014.PubMed/NCBI | |
Goedken M, McCormick S, Leidal KG, Suzuki K, Kameoka Y, Astern JM, Huang M, Cherkasov A and Nauseef WM: Impact of two novel mutations on the structure and function of human myeloperoxidase. J Biol Chem. 282:27994–28003. 2007. View Article : Google Scholar : PubMed/NCBI | |
Maki RA, Tyurin VA, Lyon RC, Hamilton RL, DeKosky ST, Kagan VE and Reynolds WF: Aberrant expression of myeloperoxidase in astrocytes promotes phospholipid oxidation and memory deficits in a mouse model of Alzheimer disease. J Biol Chem. 284:3158–3169. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tzikas S, Schlak D, Sopova K, Gatsiou A, Stakos D, Stamatelopoulos K, Stellos K and Laske C: Increased myeloperoxidase plasma levels in patients with Alzheimer's disease. J Alzheimers Dis. 39:557–564. 2014.PubMed/NCBI | |
Gauthier S, Kaur G, Mi W, Tizon B and Levy E: Protective mechanisms by cystatin C in neurodegenerative diseases. Front Biosci (Schol Ed). 3:541–554. 2011.PubMed/NCBI | |
Hansson SF, Andréasson U, Wall M, Skoog I, Andreasen N, Wallin A, Zetterberg H and Blennow K: Reduced levels of amyloid-β-binding proteins in cerebrospinal fluid from Alzheimer's disease patients. J Alzheimers Dis. 16:389–397. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hua Y, Zhao H, Lu X, Kong Y and Jin H: Meta-analysis of the cystatin C(CST3) gene G73A polymorphism and susceptibility to Alzheimer's disease. Int J Neurosci. 122:431–438. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tizon B, Ribe EM, Mi W, Troy CM and Levy E: Cystatin C protects neuronal cells from amyloid-beta-induced toxicity. J Alzheimers Dis. 19:885–894. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kaur G and Levy E: Cystatin C in Alzheimer's disease. Front Mol Neurosci. 5:792012. View Article : Google Scholar : PubMed/NCBI | |
Butler JM, Sharif U, Ali M, McKibbin M, Thompson JP, Gale R, Yang YC, Inglehearn C and Paraoan L: A missense variant in CST3 exerts a recessive effect on susceptibility to age-related macular degeneration resembling its association with Alzheimer's disease. Hum Genet. 134:705–715. 2015. View Article : Google Scholar : PubMed/NCBI | |
Iqbal K, Liu F, Gong CX and Grundke-Iqbal I: Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res. 7:656–664. 2010. View Article : Google Scholar : PubMed/NCBI | |
Myers AJ, Kaleem M, Marlowe L, Pittman AM, Lees AJ, Fung HC, Duckworth J, Leung D, Gibson A, Morris CM, et al: The H1c haplotype at the MAPT locus is associated with Alzheimer's disease. Hum Mol Genet. 14:2399–2404. 2005. View Article : Google Scholar : PubMed/NCBI | |
Li T, Wen H, Brayton C, Laird FM, Ma G, Peng S, Placanica L, Wu TC, Crain BJ, Price DL, et al: Moderate reduction of gamma-secretase attenuates amyloid burden and limits mechanism-based liabilities. J Neurosci. 27:10849–10859. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhong Z, Ewers M, Teipel S, Bürger K, Wallin A, Blennow K, He P, McAllister C, Hampel H and Shen Y: Levels of beta-secretase (BACE1) in cerebrospinal fluid as a predictor of risk in mild cognitive impairment. Arch Gen Psychiatry. 64:718–726. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cheng X, He P, Lee T, Yao H, Li R and Shen Y: High activities of BACE1 in brains with mild cognitive impairment. Am J Pathol. 184:141–147. 2014. View Article : Google Scholar : PubMed/NCBI | |
Modarresi F, Faghihi MA, Patel NS, Sahagan BG, Wahlestedt C and Lopez-Toledano MA: Knockdown of BACE1-AS nonprotein-coding transcript modulates beta-amyloid-related hippocampal neurogenesis. Int J Alzheimers Dis. 2011.929042https://doi.org/10.4061/2011/929042PubMed/NCBI | |
Forsell C, Björk BF, Lilius L, Axelman K, Fabre SF, Fratiglioni L, Winblad B and Graff C: Genetic association to the amyloid plaque associated protein gene COL25A1 in Alzheimer's disease. Neurobiol Aging. 31:409–415. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tong Y, Xu Y, Scearce-Levie K, Ptácek LJ and Fu YH: COL25A1 triggers and promotes Alzheimer's disease-like pathology in vivo. Neurogenetics. 11:41–52. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li D, Zhao H, Kranzler HR, Oslin D, Anton RF, Farrer LA and Gelernter J: Association of COL25A1 with comorbid antisocial personality disorder and substance dependence. Biol Psychiatry. 71:733–740. 2012. View Article : Google Scholar : PubMed/NCBI | |
Keller M, Rüegg A, Werner S and Beer HD: Active caspase-1 is a regulator of unconventional protein secretion. Cell. 132:818–831. 2008. View Article : Google Scholar : PubMed/NCBI | |
Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, et al: NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature. 493:674–678. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cacabelos R, Martinez R, Fernandez-Novoa L, Carril JC, Lombardi V, Carrera I, et al: Genomics of dementia: APOE- and CYP2D6-related pharmacogenetics. Int J Alzheimers Dis. 2012.518901PubMed/NCBI | |
Bromek E, Haduch A and Daniel WA: The ability of cytochrome P450 2D isoforms to synthesize dopamine in the brain: An in vitro study. Eur J Pharmacol. 626:171–178. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pilotto A, Franceschi M, D'Onofrio G, Bizzarro A, Mangialasche F, Cascavilla L, Paris F, Matera MG, Pilotto A, Daniele A, et al: Effect of a CYP2D6 polymorphism on the efficacy of donepezil in patients with Alzheimer disease. Neurology. 73:761–767. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Zhang Y, Huo YR, Liu S, Liu S, Wang J, Wang C, Wang J and Ji Y: Influence of the rs1080985 single nucleotide polymorphism of the CYP2D6 gene and APOE polymorphism on the response to Donepezil treatment in patients with Alzheimer's disease in China. Dement Geriatr Cogn Dis Extra. 4:450–456. 2014. View Article : Google Scholar : PubMed/NCBI | |
Counts SE, He B, Che S, Ginsberg SD and Mufson EJ: Galanin hyperinnervation upregulates choline acetyltransferase expression in cholinergic basal forebrain neurons in Alzheimer's disease. Neurodegener Dis. 5:228–231. 2008. View Article : Google Scholar : PubMed/NCBI | |
Steiner RA, Hohmann JG, Holmes A, Wrenn CC, Cadd G, Juréus A, Clifton DK, Luo M, Gutshall M, Ma SY, et al: Galanin transgenic mice display cognitive and neurochemical deficits characteristic of Alzheimer's disease. Proc Natl Acad Sci USA. 98:4184–4189. 2001. View Article : Google Scholar : PubMed/NCBI | |
Zhou S, Zhou H, Walian PJ and Jap BK: CD147 is a regulatory subunit of the gamma-secretase complex in Alzheimer's disease amyloid beta-peptide production. Proc Natl Acad Sci USA. 102:7499–7504. 2005. View Article : Google Scholar : PubMed/NCBI |