1
|
Swerdlow SH, Campo E, Harris NL, Jaffe ES,
Pileri SA, Stein H, Thiele J and Vardiman JW: WHO Classification of
Tumours of Haematopioetic and Lymphoid Tissues. World Health
Organization; Lyon: 2008
|
2
|
Arber DA, Orazi A, Hasserjian R, Thiele J,
Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M and Vardiman JW:
The 2016 revision to the World Health Organization classification
of myeloid neoplasms and acute leukemia. Blood. 127:2391–2405.
2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Titmarsh GJ, Duncombe AS, McMullin MF,
O'Rorke M, Mesa R, De Vocht F, Horan S, Fritschi L, Clarke M and
Anderson LA: How common are myeloproliferative neoplasms? A
systematic review and meta-analysis. Am J Hematol. 89:581–587.
2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Moulard O, Mehta J, Fryzek J, Olivares R,
Iqbal U and Mesa RA: Epidemiology of myelofibrosis, essential
thrombocythemia, and polycythemia vera in the European Union. Eur J
Haematol. 92:289–297. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cross NC: Genetic and epigenetic
complexity in myeloproliferative neoplasms. Hematology (Am Soc
Hematol Educ Program). 2011:208–214. 2011.PubMed/NCBI
|
6
|
Tefferi A and Pardanani A:
Myeloproliferative Neoplasms: A Contemporary Review. JAMA Oncol.
1:97–105. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Duletić AN, Dekanić A, Hadzisejdić I,
Kusen I, Matusan-Ilijas K, Grohovac D, Grahovac B and Jonjić N:
JAK2-v617F mutation is associated with clinical and laboratory
features of myeloproliferative neoplasms. Coll Antropol.
36:859–865. 2012.PubMed/NCBI
|
8
|
Tefferi A and Vardiman JW: Classification
and diagnosis of myeloproliferative neoplasms: The 2008 World
Health Organization criteria and point-of-care diagnostic
algorithms. Leukemia. 22:14–22. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
James C, Ugo V, Le Couédic JP, Staerk J,
Delhommeau F, Lacout C, Garçon L, Raslova H, Berger R,
Bennaceur-Griscelli A, et al: A unique clonal JAK2 mutation leading
to constitutive signalling causes polycythaemia vera. Nature.
434:1144–1148. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kralovics R, Passamonti F, Buser AS, Teo
SS, Tiedt R, Passweg JR, Tichelli A, Cazzola M and Skoda RC: A
gain-of-function mutation of JAK2 in myeloproliferative disorders.
N Engl J Med. 352:1779–1790. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Levine RL, Wadleigh M, Cools J, Ebert BL,
Wernig G, Huntly BJ, Boggon TJ, Wlodarska I, Clark JJ, Moore S, et
al: Activating mutation in the tyrosine kinase JAK2 in polycythemia
vera, essential thrombocythemia, and myeloid metaplasia with
myelofibrosis. Cancer Cell. 7:387–397. 2005. View Article : Google Scholar : PubMed/NCBI
|
12
|
Baxter EJ, Scott LM, Campbell PJ, East C,
Fourouclas N, Swanton S, Vassiliou GS, Bench AJ, Boyd EM and Curtin
N: Cancer Genome Project: Acquired mutation of the tyrosine kinase
JAK2 in human myeloproliferative disorders. Lancet. 365:1054–1061.
2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Scott LM, Tong W, Levine RL, Scott MA,
Beer PA, Stratton MR, Futreal PA, Erber WN, McMullin MF, Harrison
CN, et al: JAK2 exon 12 mutations in polycythemia vera and
idiopathic erythrocytosis. N Engl J Med. 356:459–468. 2007.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Nangalia J, Massie CE, Baxter EJ, Nice FL,
Gundem G, Wedge DC, Avezov E, Li J, Kollmann K, Kent DG, et al:
Somatic CALR mutations in myeloproliferative neoplasms with
nonmutated JAK2. N Engl J Med. 369:2391–2405. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Levine RL: Mechanisms of mutations in
myeloproliferative neoplasms. Best Pract Res Clin Haematol.
22:489–494. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Hinds DA, Barnholt KE, Mesa RA, Kiefer AK,
Do CB, Eriksson N, Mountain JL, Francke U, Tung JY, Nguyen HM, et
al: Germ line variants predispose to both JAK2 V617F clonal
hematopoiesis and myeloproliferative neoplasms. Blood.
128:1121–1128. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Cazzola M and Kralovics R: From Janus
kinase 2 to calreticulin: The clinically relevant genomic landscape
of myeloproliferative neoplasms. Blood. 123:3714–3719. 2014.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Oh ST and Gotlib J: JAK2 V617F and beyond:
Role of genetics and aberrant signaling in the pathogenesis of
myeloproliferative neoplasms. Expert Rev Hematol. 3:323–337. 2010.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Bolufer P, Barragan E, Collado M, Cervera
J, López JA and Sanz MA: Influence of genetic polymorphisms on the
risk of developing leukemia and on disease progression. Leuk Res.
30:1471–1491. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Delhommeau F, Jeziorowska D, Marzac C and
Casadevall N: Molecular aspects of myeloproliferative neoplasms.
Int J Hematol. 91:165–173. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Beer PA, Delhommeau F, LeCouédic JP,
Dawson MA, Chen E, Bareford D, Kusec R, McMullin MF, Harrison CN,
Vannucchi AM, et al: Two routes to leukemic transformation after a
JAK2 mutation-positive myeloproliferative neoplasm. Blood.
115:2891–2900. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kilpivaara O and Levine RL: JAK2 and MPL
mutations in myeloproliferative neoplasms: Discovery and science.
Leukemia. 22:1813–1817. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Björkholm M, Hultcrantz M and Derolf ÅR:
Leukemic transformation in myeloproliferative neoplasms:
Therapy-related or unrelated? Best Pract Res Clin Haematol.
27:141–153. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Rueff J and Rodrigues AS: Cancer Drug
Resistance: A Brief Overview from a Genetic Viewpoint. Methods Mol
Biol. 1395:1–18. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Rice KL, Lin X, Wolniak K, Ebert BL,
Berkofsky-Fessler W, Buzzai M, Sun Y, Xi C, Elkin P, Levine R, et
al: Analysis of genomic aberrations and gene expression profiling
identifies novel lesions and pathways in myeloproliferative
neoplasms. Blood Cancer J. 1:e402011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Campregher PV, Santos FP, Perini GF and
Hamerschlak N: Molecular biology of Philadelphia-negative
myeloproliferative neoplasms. Rev Bras Hematol Hemoter. 34:150–155.
2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ebid GT, Ghareeb M, Salaheldin O and Kamel
MM: Prevalence of the frequency of JAK2 (V617F) mutation in
different myeloproliferative disorders in Egyptian patients. Int J
Clin Exp Pathol. 8:11555–11559. 2015.PubMed/NCBI
|
28
|
Jatiani SS, Baker SJ, Silverman LR and
Reddy EP: Jak/STAT pathways in cytokine signaling and
myeloproliferative disorders: Approaches for targeted therapies.
Genes Cancer. 1:979–993. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Anand S, Stedham F, Beer P, Gudgin E,
Ortmann CA, Bench A, Erber W, Green AR and Huntly BJ: Effects of
the JAK2 mutation on the hematopoietic stem and progenitor
compartment in human myeloproliferative neoplasms. Blood.
118:177–181. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Reuther GW: Myeloproliferative Neoplasms:
Molecular Drivers and Therapeutics. Prog Mol Biol Transl Sci.
144:437–484. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Steensma DP, McClure RF, Karp JE, Tefferi
A, Lasho TL, Powell HL, DeWald GW and Kaufmann SH: JAK2 V617F is a
rare finding in de novo acute myeloid leukemia, but STAT3
activation is common and remains unexplained. Leukemia. 20:971–978.
2006. View Article : Google Scholar : PubMed/NCBI
|
32
|
Green DR and Llambi F: Cell Death
Signaling. Cold Spring Harb Perspect Biol. 7:72015. View Article : Google Scholar
|
33
|
Chen E and Mullally A: How does JAK2V617F
contribute to the pathogenesis of myeloproliferative neoplasms?
Hematology (Am Soc Hematol Educ Program). 2014:268–276.
2014.PubMed/NCBI
|
34
|
Godfrey AL, Chen E, Massie CE, Silber Y,
Pagano F, Bellosillo B, Guglielmelli P, Harrison CN, Reilly JT,
Stegelmann F, et al: STAT1 activation in association with JAK2 exon
12 mutations. Haematologica. 101:e15–e19. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Passamonti F, Elena C, Schnittger S, Skoda
RC, Green AR, Girodon F, Kiladjian JJ, McMullin MF, Ruggeri M,
Besses C, et al: Molecular and clinical features of the
myeloproliferative neoplasm associated with JAK2 exon 12 mutations.
Blood. 117:2813–2816. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Nielsen C, Bojesen SE, Nordestgaard BG,
Kofoed KF and Birgens HS: JAK2V617F somatic mutation in the general
population: Myeloproliferative neoplasm development and progression
rate. Haematologica. 99:1448–1455. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ha JS, Kim YK, Jung SI, Jung HR and Chung
IS: Correlations between Janus kinase 2 V617F allele burdens and
clinicohematologic parameters in myeloproliferative neoplasms. Ann
Lab Med. 32:385–391. 2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Larsen TS, Pallisgaard N, Møller MB and
Hasselbalch HC: The JAK2 V617F allele burden in essential
thrombocythemia, polycythemia vera and primary myelofibrosis -
impact on disease phenotype. Eur J Haematol. 79:508–515. 2007.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Barbui T, Vannucchi AM, Buxhofer-Ausch V,
De Stefano V, Betti S, Rambaldi A, Rumi E, Ruggeri M, Rodeghiero F,
Randi ML, et al: Practice-relevant revision of IPSET-thrombosis
based on 1019 patients with WHO-defined essential thrombocythemia.
Blood Cancer J. 5:e3692015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Vannucchi AM, Pieri L and Guglielmelli P:
JAK2 Allele Burden in the Myeloproliferative Neoplasms: Effects on
Phenotype, Prognosis and Change with Treatment. Ther Adv Hematol.
2:21–32. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Guglielmelli P, Lasho TL, Rotunno G, Score
J, Mannarelli C, Pancrazzi A, Biamonte F, Pardanani A, Zoi K,
Reiter A, et al: The number of prognostically detrimental mutations
and prognosis in primary myelofibrosis: An international study of
797 patients. Leukemia. 28:1804–1810. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Vainchenker W and Constantinescu SN:
JAK/STAT signaling in hematological malignancies. Oncogene.
32:2601–2613. 2013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Thomas SJ, Snowden JA, Zeidler MP and
Danson SJ: The role of JAK/STAT signalling in the pathogenesis,
prognosis and treatment of solid tumours. Br J Cancer. 113:365–371.
2015. View Article : Google Scholar : PubMed/NCBI
|
44
|
Nielsen C, Birgens HS, Nordestgaard BG,
Kjaer L and Bojesen SE: The JAK2 V617F somatic mutation, mortality
and cancer risk in the general population. Haematologica.
96:450–453. 2011. View Article : Google Scholar : PubMed/NCBI
|
45
|
Mambet C, Matei L, Necula LG and Diaconu
CC: A link between the driver mutations and dysregulated apoptosis
in BCR-ABL1 negative myeloproliferative neoplasms. J Immunoassay
Immunochem. 37:331–345. 2016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Tefferi A and Barbui T: Polycythemia vera
and essential thrombocythemia: 2017 update on diagnosis,
risk-stratification, and management. Am J Hematol. 92:94–108. 2017.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Tefferi A: Myeloproliferative neoplasms: A
decade of discoveries and treatment advances. Am J Hematol.
91:50–58. 2016. View Article : Google Scholar : PubMed/NCBI
|
48
|
Hobbs GS, Rozelle S and Mullally A: The
Development and Use of Janus Kinase 2 Inhibitors for the Treatment
of Myeloproliferative Neoplasms. Hematol Oncol Clin North Am.
31:613–626. 2017. View Article : Google Scholar : PubMed/NCBI
|
49
|
Vannucchi AM and Harrison CN: Emerging
treatments for classical myeloproliferative neoplasms. Blood.
129:693–703. 2017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Stahl M and Zeidan AM: Management of
myelofibrosis: JAK inhibition and beyond. Expert Rev Hematol.
10:459–477. 2017. View Article : Google Scholar : PubMed/NCBI
|
51
|
Silva SN, Moita R, Azevedo AP, Gouveia R,
Manita I, Pina JE, Rueff J and Gaspar J: Menopausal age and XRCC1
gene polymorphisms: Role in breast cancer risk. Cancer Detect Prev.
31:303–309. 2007. View Article : Google Scholar : PubMed/NCBI
|
52
|
Bastos HN, Antão MR, Silva SN, Azevedo AP,
Manita I, Teixeira V, Pina JE, Gil OM, Ferreira TC, Limbert E, et
al: Association of polymorphisms in genes of the homologous
recombination DNA repair pathway and thyroid cancer risk. Thyroid.
19:1067–1075. 2009. View Article : Google Scholar : PubMed/NCBI
|
53
|
Conde J, Silva SN, Azevedo AP, Teixeira V,
Pina JE, Rueff J and Gaspar JF: Association of common variants in
mismatch repair genes and breast cancer susceptibility: A multigene
study. BMC Cancer. 9:3442009. View Article : Google Scholar : PubMed/NCBI
|
54
|
Gomes BC, Silva SN, Azevedo AP, Manita I,
Gil OM, Ferreira TC, Limbert E, Rueff J and Gaspar JF: The role of
common variants of non-homologous end-joining repair genes XRCC4,
LIG4 and Ku80 in thyroid cancer risk. Oncol Rep. 24:1079–1085.
2010.PubMed/NCBI
|
55
|
Silva SN, Azevedo AP, Teixeira V, Pina JE,
Rueff J and Gaspar JF: The role of GSTA2 polymorphisms and
haplotypes in breast cancer susceptibility: A case-control study in
the Portuguese population. Oncol Rep. 22:593–598. 2009.PubMed/NCBI
|
56
|
Solé X, Guinó E, Valls J, Iniesta R and
Moreno V: SNPStats: A web tool for the analysis of association
studies. Bioinformatics. 22:1928–1929. 2006. View Article : Google Scholar : PubMed/NCBI
|
57
|
Rumi E and Cazzola M: Diagnosis, risk
stratification, and response evaluation in classical
myeloproliferative neoplasms. Blood. 129:680–692. 2017. View Article : Google Scholar : PubMed/NCBI
|
58
|
Jones AV, Kreil S, Zoi K, Waghorn K,
Curtis C, Zhang L, Score J, Seear R, Chase AJ, Grand FH, et al:
Widespread occurrence of the JAK2 V617F mutation in chronic
myeloproliferative disorders. Blood. 106:2162–2168. 2005.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Lundberg P, Takizawa H, Kubovcakova L, Guo
G, Hao-Shen H, Dirnhofer S, Orkin SH, Manz MG and Skoda RC:
Myeloproliferative neoplasms can be initiated from a single
hematopoietic stem cell expressing JAK2-V617F. J Exp Med.
211:2213–2230. 2014. View Article : Google Scholar : PubMed/NCBI
|
60
|
Butcher CM, Hahn U, To LB, Gecz J, Wilkins
EJ, Scott HS, Bardy PG and D'Andrea RJ: Two novel JAK2 exon 12
mutations in JAK2V617F-negative polycythaemia vera patients.
Leukemia. 22:870–873. 2008. View Article : Google Scholar : PubMed/NCBI
|
61
|
Park CH, Lee KO, Jang JH, Jung CW, Kim JW,
Kim SH and Kim HJ: High frequency of JAK2 exon 12 mutations in
Korean patients with polycythaemia vera: Novel mutations and
clinical significance. J Clin Pathol. 69:737–741. 2016. View Article : Google Scholar : PubMed/NCBI
|
62
|
Passamonti F, Rumi E, Pietra D, Elena C,
Boveri E, Arcaini L, Roncoroni E, Astori C, Merli M, Boggi S, et
al: A prospective study of 338 patients with polycythemia vera: The
impact of JAK2 (V617F) allele burden and leukocytosis on fibrotic
or leukemic disease transformation and vascular complications.
Leukemia. 24:1574–1579. 2010. View Article : Google Scholar : PubMed/NCBI
|
63
|
Rumi E, Pietra D, Ferretti V, Klampfl T,
Harutyunyan AS, Milosevic JD, Them NC, Berg T, Elena C, Casetti IC,
et al: Associazione Italiana per la Ricerca sul Cancro Gruppo
Italiano Malattie Mieloproliferative Investigators: JAK2 or CALR
mutation status defines subtypes of essential thrombocythemia with
substantially different clinical course and outcomes. Blood.
123:1544–1551. 2014. View Article : Google Scholar : PubMed/NCBI
|
64
|
Scott LM: The JAK2 exon 12 mutations: A
comprehensive review. Am J Hematol. 86:668–676. 2011. View Article : Google Scholar : PubMed/NCBI
|
65
|
Scott LM, Beer PA, Bench AJ, Erber WN and
Green AR: Prevalance of JAK2 V617F and exon 12 mutations in
polycythaemia vera. Br J Haematol. 139:511–512. 2007. View Article : Google Scholar : PubMed/NCBI
|
66
|
Pardanani A, Lasho TL, Finke C, Hanson CA
and Tefferi A: Prevalence and clinicopathologic correlates of JAK2
exon 12 mutations in JAK2V617F-negative polycythemia vera.
Leukemia. 21:1960–1963. 2007. View Article : Google Scholar : PubMed/NCBI
|
67
|
Azevedo AP, Silva SN, De Lima JP, Reichert
A, Lima F, Júnior E and Rueff J: DNA repair genes polymorphisms and
genetic susceptibility to Philadelphia-negative myeloproliferative
neoplasms in a Portuguese population: The role of base excision
repair genes polymorphisms. Oncol Lett. 13:4641–4650.
2017.PubMed/NCBI
|
68
|
Lindholm Sørensen A and Hasselbalch HC:
Smoking and philadelphia-negative chronic myeloproliferative
neoplasms. Eur J Haematol. 97:63–69. 2015. View Article : Google Scholar : PubMed/NCBI
|
69
|
Hasselbalch HC: Smoking as a contributing
factor for development of polycythemia vera and related neoplasms.
Leuk Res. 15:30373–30378. 2015.
|