Potential signaling pathways as therapeutic targets for overcoming chemoresistance in mucinous ovarian cancer (Review)
- Authors:
- Emiko Niiro
- Sachiko Morioka
- Kana Iwai
- Yuki Yamada
- Kenji Ogawa
- Naoki Kawahara
- Hiroshi Kobayashi
-
Affiliations: Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634‑8522, Japan - Published online on: January 17, 2018 https://doi.org/10.3892/br.2018.1045
- Pages: 215-223
This article is mentioned in:
Abstract
Kurman RJ and Shih IeM: The origin and pathogenesis of epithelial ovarian cancer: A proposed unifying theory. Am J Surg Pathol. 34:433–443. 2010. View Article : Google Scholar | |
Ryland GL, Hunter SM, Doyle MA, Caramia F, Li J, Rowley SM, Christie M, Allan PE, Stephens AN, Bowtell DD, et al Australian Ovarian Cancer Study Group, : Mutational landscape of mucinous ovarian carcinoma and its neoplastic precursors. Genome Med. 7:872015. View Article : Google Scholar | |
Ramalingam P: Morphologic, immunophenotypic, and molecular features of epithelial ovarian cancer. Oncology (Williston Park). 30:166–176. 2016. | |
Harrison ML, Jameson C and Gore ME: Mucinous ovarian cancer. Int J Gynecol Cancer. 18:209–214. 2008. View Article : Google Scholar | |
Brasseur K, Gévry N and Asselin E: Chemoresistance and targeted therapies in ovarian and endometrial cancers. Oncotarget. 8:4008–4042. 2017. View Article : Google Scholar | |
Hu T and Li C: Convergence between Wnt-β-catenin and EGFR signaling in cancer. Mol Cancer. 9:2362010. View Article : Google Scholar | |
Teer JK, Yoder S, Gjyshi A, Nicosia SV, Zhang C and Monteiro ANA: Mutational heterogeneity in non-serous ovarian cancers. Sci Rep. 7:97282017. View Article : Google Scholar | |
Hunter SM, Gorringe KL, Christie M, Rowley SM, Bowtell DD and Campbell IG; Australian Ovarian Cancer Study Group, : Pre-invasive ovarian mucinous tumors are characterized by CDKN2A and RAS pathway aberrations. Clin Cancer Res. 18:5267–5277. 2012. View Article : Google Scholar | |
Tafe LJ, Muller KE, Ananda G, Mitchell T, Spotlow V, Patterson SE, Tsongalis GJ and Mockus SM: Molecular genetic analysis of ovarian brenner tumors and associated mucinous epithelial neoplasms: High variant concordance and identification of mutually exclusive RAS driver mutations and MYC amplification. Am J Pathol. 186:671–677. 2016. View Article : Google Scholar | |
Mackenzie R, Kommoss S, Winterhoff BJ, Kipp BR, Garcia JJ, Voss J, Halling K, Karnezis A, Senz J, Yang W, et al: Targeted deep sequencing of mucinous ovarian tumors reveals multiple overlapping RAS-pathway activating mutations in borderline and cancerous neoplasms. BMC Cancer. 15:4152015. View Article : Google Scholar | |
Ascierto PA, Kirkwood JM, Grob JJ, Simeone E, Grimaldi AM, Maio M, Palmieri G, Testori A, Marincola FM and Mozzillo N: The role of BRAF V600 mutation in melanoma. J Transl Med. 10:852012. View Article : Google Scholar | |
Santarpia L, Lippman SM and El-Naggar AK: Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets. 16:103–119. 2012. View Article : Google Scholar | |
Cohen Y, Xing M, Mambo E, Guo Z, Wu G, Trink B, Beller U, Westra WH, Ladenson PW and Sidransky D: BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst. 95:625–627. 2003. View Article : Google Scholar | |
Obaid NM, Bedard K and Huang WY: Strategies for overcoming resistance in tumours harboring BRAF mutations. Int J Mol Sci. 18:E5852017. View Article : Google Scholar | |
Chang KL, Lee MY, Chao WR and Han CP: The status of Her2 amplification and Kras mutations in mucinous ovarian carcinoma. Hum Genomics. 10:402016. View Article : Google Scholar | |
Mesbah Ardakani N, Giardina T, Amanuel B and Stewart CJ: Molecular profiling reveals a clonal relationship between ovarian mucinous tumors and corresponding mural carcinomatous nodules. Am J Surg Pathol. 41:1261–1266. 2017. View Article : Google Scholar | |
Zou Y, Wang F, Liu FY, Huang MZ, Li W, Yuan XQ, Huang OP and He M: RNF43 mutations are recurrent in Chinese patients with mucinous ovarian carcinoma but absent in other subtypes of ovarian cancer. Gene. 531:112–116. 2013. View Article : Google Scholar | |
Vereczkey I, Serester O, Dobos J, Gallai M, Szakács O, Szentirmay Z and Tóth E: Molecular characterization of 103 ovarian serous and mucinous tumors. Pathol Oncol Res. 17:551–559. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pines G, Köstler WJ and Yarden Y: Oncogenic mutant forms of EGFR: Lessons in signal transduction and targets for cancer therapy. FEBS Lett. 584:2699–2706. 2010. View Article : Google Scholar : PubMed/NCBI | |
Barber TD, Vogelstein B, Kinzler KW and Velculescu VE: Somatic mutations of EGFR in colorectal cancers and glioblastomas. N Engl J Med. 351:28832004. View Article : Google Scholar : PubMed/NCBI | |
Wee P and Wang Z: Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel). 9:E522017. View Article : Google Scholar : PubMed/NCBI | |
Momeny M, Zarrinrad G, Moghaddaskho F, Poursheikhani A, Sankanian G, Zaghal A, Mirshahvaladi S, Esmaeili F, Eyvani H, Barghi F, et al: Dacomitinib, a pan-inhibitor of ErbB receptors, suppresses growth and invasive capacity of chemoresistant ovarian carcinoma cells. Sci Rep. 7:42042017. View Article : Google Scholar : PubMed/NCBI | |
Matsuo K, Nishimura M, Bottsford-Miller JN, Huang J, Komurov K, Armaiz-Pena GN, Shahzad MM, Stone RL, Roh JW, Sanguino AM, et al: Targeting SRC in mucinous ovarian carcinoma. Clin Cancer Res. 17:5367–5378. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rosner A, Miyoshi K, Landesman-Bollag E, Xu X, Seldin DC, Moser AR, MacLeod CL, Shyamala G, Gillgrass AE and Cardiff RD: Pathway pathology: Histological differences between ErbB/Ras and Wnt pathway transgenic mammary tumors. Am J Pathol. 161:1087–1097. 2002. View Article : Google Scholar : PubMed/NCBI | |
Li RN, Liu B, Li XM, Hou LS, Mu XL, Wang H and Linghu H: DACT1 overexpression in type I ovarian cancer inhibits malignant expansion and cis-platinum resistance by modulating canonical Wnt signalling and autophagy. Sci Rep. 7:92852017. View Article : Google Scholar : PubMed/NCBI | |
Rask K, Nilsson A, Brännström M, Carlsson P, Hellberg P, Janson PO, Hedin L and Sundfeldt K: Wnt-signalling pathway in ovarian epithelial tumours: Increased expression of beta-catenin and GSK3beta. Br J Cancer. 89:1298–1304. 2003. View Article : Google Scholar : PubMed/NCBI | |
Katoh M: Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int J Oncol. 51:1357–1369. 2017. View Article : Google Scholar : PubMed/NCBI | |
Barbolina MV, Burkhalter RJ and Stack MS: Diverse mechanisms for activation of Wnt signalling in the ovarian tumour microenvironment. Biochem J. 437:1–12. 2011. View Article : Google Scholar : PubMed/NCBI | |
Singh A and Settleman J: EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene. 29:4741–4751. 2010. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Jin Y, Feng S, Zou Y, Xu S, Qiu S, Li L and Zheng J: Role of Wnt/β-catenin, Wnt/c-Jun N-terminal kinase and Wnt/Ca2+ pathways in cisplatin-induced chemoresistance in ovarian cancer. Exp Ther Med. 12:3851–3858. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ohtsu H, Mifune M, Frank GD, Saito S, Inagami T, Kim-Mitsuyama S, Takuwa Y, Sasaki T, Rothstein JD, Suzuki H, et al: Signal-crosstalk between Rho/ROCK and c-Jun NH2-terminal kinase mediates migration of vascular smooth muscle cells stimulated by angiotensin II. Arterioscler Thromb Vasc Biol. 25:1831–1836. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zheng HC: The molecular mechanisms of chemoresistance in cancers. Oncotarget. 8:59950–59964. 2017.PubMed/NCBI | |
Karabuk E, Kose MF, Hizli D, Taşkin S, Karadağ B, Turan T, Boran N, Ozfuttu A and Ortaç UF: Comparison of advanced stage mucinous epithelial ovarian cancer and serous epithelial ovarian cancer with regard to chemosensitivity and survival outcome: A matched case-control study. J Gynecol Oncol. 24:160–166. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wamunyokoli FW, Bonome T, Lee JY, Feltmate CM, Welch WR, Radonovich M, Pise-Masison C, Brady J, Hao K, Berkowitz RS, et al: Expression profiling of mucinous tumors of the ovary identifies genes of clinicopathologic importance. Clin Cancer Res. 12:690–700. 2006. View Article : Google Scholar : PubMed/NCBI | |
Stewart DJ: Wnt signaling pathway in non-small cell lung cancer. J Natl Cancer Inst. 106:djt3562014. View Article : Google Scholar : PubMed/NCBI | |
Garrett AP, Lee KR, Colitti CR, Muto MG, Berkowitz RS and Mok SC: k-ras mutation may be an early event in mucinous ovarian tumorigenesis. Int J Gynecol Pathol. 20:244–251. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bahrami A, Amerizadeh F, ShahidSales S, Khazaei M, Ghayour-Mobarhan M, Sadeghnia HR, Maftouh M, Hassanian SM and Avan A: Therapeutic potential of targeting Wnt/β-catenin pathway in treatment of colorectal cancer: Rational and progress. J Cell Biochem. 118:1979–1983. 2017. View Article : Google Scholar : PubMed/NCBI | |
Luo K, Gu X, Liu J, Zeng G, Peng L, Huang H, Jiang M, Yang P, Li M, Yang Y, et al: Inhibition of disheveled-2 resensitizes cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling. Exp Cell Res. 347:105–113. 2016. View Article : Google Scholar : PubMed/NCBI | |
King TD, Zhang W, Suto MJ and Li Y: Frizzled7 as an emerging target for cancer therapy. Cell Signal. 24:846–851. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kawano Y and Kypta R: Secreted antagonists of the Wnt signalling pathway. J Cell Sci. 116:2627–2634. 2003. View Article : Google Scholar : PubMed/NCBI | |
Le PN, McDermott JD and Jimeno A: Targeting the Wnt pathway in human cancers: Therapeutic targeting with a focus on OMP-54F28. Pharmacol Ther. 146:1–11. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pez F, Lopez A, Kim M, Wands JR, Caron de Fromentel C and Merle P: Wnt signaling and hepatocarcinogenesis: Molecular targets for the development of innovative anticancer drugs. J Hepatol. 59:1107–1117. 2013. View Article : Google Scholar : PubMed/NCBI | |
Saran U, Arfuso F, Zeps N and Dharmarajan A: Secreted frizzled-related protein 4 expression is positively associated with responsiveness to cisplatin of ovarian cancer cell lines in vitro and with lower tumour grade in mucinous ovarian cancers. BMC Cell Biol. 13:252012. View Article : Google Scholar : PubMed/NCBI | |
Jacob F, Ukegjini K, Nixdorf S, Ford CE, Olivier J, Caduff R, Scurry JP, Guertler R, Hornung D, Mueller R, et al: Loss of secreted frizzled-related protein 4 correlates with an aggressive phenotype and predicts poor outcome in ovarian cancer patients. PLoS One. 7:e318852012. View Article : Google Scholar : PubMed/NCBI | |
Su HY, Lai HC, Lin YW, Liu CY, Chen CK, Chou YC, Lin SP, Lin WC, Lee HY and Yu MH: Epigenetic silencing of SFRP5 is related to malignant phenotype and chemoresistance of ovarian cancer through Wnt signaling pathway. Int J Cancer. 127:555–567. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bernaudo S, Salem M, Qi X, Zhou W, Zhang C, Yang W, Rosman D, Deng Z, Ye G, Yang B, et al: Cyclin G2 inhibits epithelial-to-mesenchymal transition by disrupting Wnt/β-catenin signaling. Oncogene. 35:4816–4827. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fischer MM, Cancilla B, Yeung VP, Cattaruzza F, Chartier C, Murriel CL, Cain J, Tam R, Cheng CY, Evans JW, et al: WNT antagonists exhibit unique combinatorial antitumor activity with taxanes by potentiating mitotic cell death. Sci Adv. 3:e17000902017. View Article : Google Scholar : PubMed/NCBI | |
Menezes ME, Devine DJ, Shevde LA and Samant RS: Dickkopf1: A tumor suppressor or metastasis promoter? Int J Cancer. 130:1477–1483. 2012. View Article : Google Scholar : PubMed/NCBI | |
Takata A, Terauchi M, Hiramitsu S, Uno M, Wakana K and Kubota T: Dkk-3 induces apoptosis through mitochondrial and Fas death receptor pathways in human mucinous ovarian cancer cells. Int J Gynecol Cancer. 25:372–379. 2015. View Article : Google Scholar : PubMed/NCBI | |
Duan H, Yan Z, Chen W, Wu Y, Han J, Guo H and Qiao J: TET1 inhibits EMT of ovarian cancer cells through activating Wnt/β-catenin signaling inhibitors DKK1 and SFRP2. Gynecol Oncol. 147:408–417. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Li B, Zhou L, Yu S, Su Z, Song J, Sun Q, Sha O, Wang X, Jiang W, et al: Prodigiosin inhibits Wnt/β-catenin signaling and exerts anticancer activity in breast cancer cells. Proc Natl Acad Sci USA. 113:pp. 13150–13155. 2016; View Article : Google Scholar : PubMed/NCBI | |
Grandy D, Shan J, Zhang X, Rao S, Akunuru S, Li H, Zhang Y, Alpatov I, Zhang XA, Lang RA, et al: Discovery and characterization of a small molecule inhibitor of the PDZ domain of dishevelled. J Biol Chem. 284:16256–16263. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ge YX, Wang CH, Hu FY, Pan LX, Min J, Niu KY, Zhang L, Li J and Xu T: New advances of TMEM88 in cancer initiation and progression, with special emphasis on Wnt signaling pathway. J Cell Physiol. 233:79–87. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen X and Deng Y: Simulations of a specific inhibitor of the dishevelled PDZ domain. J Mol Model. 15:91–96. 2009. View Article : Google Scholar : PubMed/NCBI | |
de Groot RE, Ganji RS, Bernatik O, Lloyd-Lewis B, Seipel K, Šedová K, Zdráhal Z, Dhople VM, Dale TC, Korswagen HC and Bryja V: Huwe1-mediated ubiquitylation of dishevelled defines a negative feedback loop in the Wnt signaling pathway. Sci Signal. 7:ra262014. View Article : Google Scholar : PubMed/NCBI | |
Bouteille N, Driouch K, Hage PE, Sin S, Formstecher E, Camonis J, Lidereau R and Lallemand F: Inhibition of the Wnt/beta-catenin pathway by the WWOX tumor suppressor protein. Oncogene. 28:2569–2580. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yin X, Xiang T, Li L, Su X, Shu X, Luo X, Huang J, Yuan Y, Peng W, Oberst M, et al: DACT1, an antagonist to Wnt/β-catenin signaling, suppresses tumor cell growth and is frequently silenced in breast cancer. Breast Cancer Res. 15:R232013. View Article : Google Scholar : PubMed/NCBI | |
Rosenberg LH, Lafitte M, Quereda V, Grant W, Chen W, Bibian M, Noguchi Y, Fallahi M, Yang C, Chang JC, et al: Therapeutic targeting of casein kinase 1δ in breast cancer. Sci Transl Med. 7:318ra2022015. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, McFarland BC, Drygin D, Yu H, Bellis SL, Kim H, Bredel M and Benveniste EN: Targeting protein kinase CK2 suppresses prosurvival signaling pathways and growth of glioblastoma. Clin Cancer Res. 19:6484–6494. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim J and Kim SH: Druggability of the CK2 inhibitor CX-4945 as an anticancer drug and beyond. Arch Pharm Res. 35:1293–1296. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hung MS, Xu Z, Lin YC, Mao JH, Yang CT, Chang PJ, Jablons DM and You L: Identification of hematein as a novel inhibitor of protein kinase CK2 from a natural product library. BMC Cancer. 9:1352009. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Luo F, Li J, Zhong X and Liu K: Tankyrase 1 inhibitior XAV939 increases chemosensitivity in colon cancer cell lines via inhibition of the Wnt signaling pathway. Int J Oncol. 48:1333–1340. 2016. View Article : Google Scholar : PubMed/NCBI | |
Thorvaldsen TE, Pedersen NM, Wenzel EM and Stenmark H: Differential roles of AXIN1 and AXIN2 in tankyrase inhibitor-induced formation of degradasomes and β-catenin degradation. PLoS One. 12:e01705082017. View Article : Google Scholar : PubMed/NCBI | |
Zhou A, Lin K, Zhang S, Chen Y, Zhang N, Xue J, Wang Z, Aldape KD, Xie K, Woodgett JR and Huang S: Nuclear GSK3β promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nat Cell Biol. 18:954–966. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sun A, Li C, Chen R, Huang Y, Chen Q, Cui X, Liu H, Thrasher JB and Li B: GSK-3β controls autophagy by modulating LKB1-AMPK pathway in prostate cancer cells. Prostate. 76:172–183. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ahn SY, Yang JH, Kim NH, Lee K, Cha YH, Yun JS, Kang HE, Lee Y, Choi J, Kim HS and Yook JI: Anti-helminthic niclosamide inhibits Ras-driven oncogenic transformation via activation of GSK-3. Oncotarget. 8:31856–31863. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jingushi K, Nakamura T, Takahashi-Yanaga F, Matsuzaki E, Watanabe Y, Yoshihara T, Morimoto S and Sasaguri T: Differentiation-inducing factor-1 suppresses the expression of c-Myc in the human cancer cell lines. J Pharmacol Sci. 121:103–109. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Chen WM, Zhang XX, Zhang HX, Wang HC, Zheng FY and Zhu FF: Overexpression of salusin-β is associated with poor prognosis in ovarian cancer. Oncol Rep. 37:1826–1832. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guo RJ, Funakoshi S, Lee HH, Kong J and Lynch JP: The intestine-specific transcription factor Cdx2 inhibits beta-catenin/TCF transcriptional activity by disrupting the beta-catenin-TCF protein complex. Carcinogenesis. 31:159–166. 2010. View Article : Google Scholar : PubMed/NCBI | |
Koh I, Hinoi T, Sentani K, Hirata E, Nosaka S, Niitsu H, Miguchi M, Adachi T, Yasui W, Ohdan H and Kudo Y: Regulation of multidrug resistance 1 expression by CDX2 in ovarian mucinous adenocarcinoma. Cancer Med. 5:1546–1555. 2016. View Article : Google Scholar : PubMed/NCBI | |
Takakura Y, Hinoi T, Oue N, Sasada T, Kawaguchi Y, Okajima M, Akyol A, Fearon ER, Yasui W and Ohdan H: CDX2 regulates multidrug resistance 1 gene expression in malignant intestinal epithelium. Cancer Res. 70:6767–6778. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yan X, Lyu T, Jia N, Yu Y, Hua K and Feng W: Huaier aqueous extract inhibits ovarian cancer cell motility via the AKT/GSK3β/β-catenin pathway. PLoS One. 8:e637312013. View Article : Google Scholar : PubMed/NCBI | |
Yamada T and Masuda M: Emergence of TNIK inhibitors in cancer therapeutics. Cancer Sci. 108:818–823. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shin SH, Lim DY, Reddy K, Malakhova M, Liu F, Wang T, Song M, Chen H, Bae KB, Ryu J, et al: A small molecule inhibitor of the β-catenin-TCF4 interaction suppresses colorectal cancer growth in vitro and in vivo. EBioMedicine. 25:22–31. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Zhang Z, Zhang S, Wang W and Hu P: Targeting of Wnt/β-catenin by anthelmintic drug pyrvinium enhances sensitivity of ovarian cancer cells to chemotherapy. Med Sci Monit. 23:266–275. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Ma Y and Huang X: Trefoil factor 1 elevates the malignant phenotype of mucinous ovarian cancer cell through Wnt/β-catenin signaling. Int J Clin Exp Pathol. 8:10412–10419. 2015.PubMed/NCBI | |
Wang J, Cai J, Han F, Yang C, Tong Q, Cao T, Wu L and Wang Z: Silencing of CXCR4 blocks progression of ovarian cancer and depresses canonical Wnt signaling pathway. Int J Gynecol Cancer. 21:981–987. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gao W, Liu Y, Qin R, Liu D and Feng Q: Silence of fibronectin 1 increases cisplatin sensitivity of non-small cell lung cancer cell line. Biochem Biophys Res Commun. 476:35–41. 2016. View Article : Google Scholar : PubMed/NCBI | |
Choi D, Ramu S, Park E, Jung E, Yang S, Jung W, Choi I, Lee S, Kim KE, Seong YJ, et al: Aberrant activation of notch signaling inhibits PROX1 activity to enhance the malignant behavior of thyroid cancer cells. Cancer Res. 76:582–593. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Wang Y, Fan Z, Ji G, Wang M, Lin J, Huang S and Meltzer SJ: Klotho: A tumor suppressor and modulator of the Wnt/β-catenin pathway in human hepatocellular carcinoma. Lab Invest. 96:197–205. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cloven NG, Kyshtoobayeva A, Burger RA, Yu IR and Fruehauf JP: In vitro chemoresistance and biomarker profiles are unique for histologic subtypes of epithelial ovarian cancer. Gynecol Oncol. 92:160–166. 2004. View Article : Google Scholar : PubMed/NCBI | |
Adams GP and Weiner LM: Monoclonal antibody therapy of cancer. Nat Biotechnol. 23:1147–1157. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gui T and Shen K: The epidermal growth factor receptor as a therapeutic target in epithelial ovarian cancer. Cancer Epidemiol. 36:490–496. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vaidyanathan A, Sawers L, Gannon AL, Chakravarty P, Scott AL, Bray SE, Ferguson MJ and Smith G: ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells. Br J Cancer. 115:431–441. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Liu E, Cui Y and Huang Y: Nanotechnology-based combination therapy for overcoming multidrug-resistant cancer. Cancer Biol Med. 14:212–227. 2017. View Article : Google Scholar : PubMed/NCBI |