1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Poh Z, Shen L, Yang H-I, Seto WK, Wong VW,
Lin CY, Goh BB, Chang PE, Chan HL, Yuen MF, et al: Real-world risk
score for hepatocellular carcinoma (RWS-HCC): A clinically
practical risk predictor for HCC in chronic hepatitis B. Gut.
65:887–888. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lan T, Chang L, Wu L and Yuan Y:
Downregulation of ZEB2-AS1 decreased tumor growth and metastasis in
hepatocellular carcinoma. Mol Med Rep. 14:4606–4612. 2016.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Aravalli RN, Steer CJ and Cressman ENK:
Molecular mechanisms of hepatocellular carcinoma. Hepatology.
48:2047–2063. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kiss T: Small nucleolar RNAs: An abundant
group of noncoding RNAs with diverse cellular functions. Cell.
109:145–148. 2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Thorenoor N and Slaby O: Small nucleolar
RNAs functioning and potential roles in cancer. Tumour Biol.
36:41–53. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Stepanov GA, Filippova JA, Komissarov AB,
Kuligina EV, Richter VA and Semenov DV: Regulatory role of Small
nucleolar RNAs in human diseases. Biomed Res Int. 2015:2068492015.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Ma P, Wang H, Han L, Jing W, Zhou X and
Liu Z: Up-regulation of small nucleolar RNA 78 is correlated with
aggressive phenotype and poor prognosis of hepatocellular
carcinoma. Tumour Biol. 37:15753–15761. 2016. View Article : Google Scholar
|
9
|
Gao L, Ma J, Mannoor K, Guarnera MA,
Shetty A, Zhan M, Xing L, Stass SA and Jiang F: Genome-wide small
nucleolar RNA expression analysis of lung cancer by next-generation
deep sequencing. Int J Cancer. 136:E623–E629. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mannoor K, Shen J, Liao J, Liu Z and Jiang
F: Small nucleolar RNA signatures of lung tumor-initiating cells.
Mol Cancer. 13:1042014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Liao J, Yu L, Mei Y, Guarnera M, Shen J,
Li R, Liu Z and Jiang F: Small nucleolar RNA signatures as
biomarkers for non-small-cell lung cancer. Mol Cancer. 9:1982010.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Mei Y-P, Liao J-P, Shen J, Yu L, Liu BL,
Liu L, Li RY, Ji L, Dorsey SG, Jiang ZR, et al: Small nucleolar RNA
42 acts as an oncogene in lung tumorigenesis. Oncogene.
31:2794–2804. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Okugawa Y, Toiyama Y, Toden S, Mitoma H,
Nagasaka T, Tanaka K, Inoue Y, Kusunoki M, Boland CR and Goel A:
Clinical significance of SNORA42 as an oncogene and a prognostic
biomarker in colorectal cancer. Gut. 66:107–117. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Su H, Xu T, Ganapathy S, Shadfan M, Long
M, Huang TH, Thompson I and Yuan ZM: Elevated snoRNA biogenesis is
essential in breast cancer. Oncogene. 33:1348–1358. 2014.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Dong X-Y, Guo P, Boyd J, Sun X, Li Q, Zhou
W and Dong JT: Implication of snoRNA U50 in human breast cancer. J
Genet Genomics. 36:447–454. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Dong XY, Rodriguez C, Guo P, Sun X, Talbot
JT, Zhou W, Petros J, Li Q, Vessella RL, Kibel AS, et al: SnoRNA
U50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation
associated with clinically significant prostate cancer. Hum Mol
Genet. 17:1031–1042. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tanaka R, Satoh H, Moriyama M, Satoh K,
Morishita Y, Yoshida S, Watanabe T, Nakamura Y and Mori S: Intronic
U50 small-nucleolar-RNA (snoRNA) host gene of no protein-coding
potential is mapped at the chromosome breakpoint t(3;6)(q27;q15) of
human B-cell lymphoma. Genes Cells. 5:277–287. 2000. View Article : Google Scholar : PubMed/NCBI
|
18
|
Valleron W, Ysebaert L, Berquet L,
Fataccioli V, Quelen C, Martin A, Parrens M, Lamant L, de Leval L,
Gisselbrecht C, et al: Small nucleolar RNA expression profiling
identifies potential prognostic markers in peripheral T-cell
lymphoma. Blood. 120:3997–4005. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Giakoustidis A, Giakoustidis D, Mudan S,
Sklavos A and Williams R: Molecular signalling in hepatocellular
carcinoma: Role of and crosstalk among WNT/ß-catenin, Sonic
Hedgehog, Notch and Dickkopf-1. Can J Gastroenterol Hepatol.
29:209–217. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Li G, He Y, Liu X, Zheng Z, Zhang M, Qin F
and Lan X: Small nucleolar RNA 47 promotes tumorigenesis by
regulating EMT markers in hepatocellular carcinoma. Minerva Med.
108:396–404. 2017.PubMed/NCBI
|
21
|
Xu G, Yang F, Ding C-L, Zhao LJ, Ren H,
Zhao P, Wang W and Qi ZT: Small nucleolar RNA 113-1 suppresses
tumorigenesis in hepatocellular carcinoma. Mol Cancer. 13:2162014.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Wu L, Zheng J, Chen P, Liu Q and Yuan Y:
Small nucleolar RNA ACA11 promotes proliferation, migration and
invasion in hepatocellular carcinoma by targeting the PI3K/AKT
signaling pathway. Biomed Pharmacother. 90:705–712. 2017.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Wu L, Chang L, Wang H, Ma W, Peng Q and
Yuan Y: Clinical significance of C/D box small nucleolar RNA U76 as
an oncogene and a prognostic biomarker in hepatocellular carcinoma.
Clin Res Hepatol Gastroenterol. May 31–2017.(Epub ahead of
print).
|
24
|
Fang X, Yang D, Luo H, Wu S, Dong W, Xiao
J, Yuan S, Ni A, Zhang KJ, Liu XY, et al: SNORD126 promotes HCC and
CRC cell growth by activating the PI3K-AKT pathway through FGFR2. J
Mol Cell Biol. 9:243–255. 2017.PubMed/NCBI
|
25
|
Piao Z, Park C, Park JH and Kim H:
Allelotype analysis of hepatocellular carcinoma. Int J Cancer.
75:29–33. 1998. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yang JH, Zhang XC, Huang ZP, Zhou H, Huang
MB, Zhang S, Chen YQ and Qu LH: snoSeeker: An advanced
computational package for screening of guide and orphan snoRNA
genes in the human genome. Nucleic Acids Res. 34:5112–5123. 2006.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Katoh H, Shibata T, Kokubu A, Ojima H,
Loukopoulos P, Kanai Y, Kosuge T, Fukayama M, Kondo T, Sakamoto M,
et al: Genetic profile of hepatocellular carcinoma revealed by
array-based comparative genomic hybridization: Identification of
genetic indicators to predict patient outcome. J Hepatol.
43:863–874. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yoshihama M, Nakao A and Kenmochi N:
snOPY: A small nucleolar RNA orthological gene database. BMC Res
Notes. 6:4262013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Makarova JA, Ivanova SM, Tonevitsky AG and
Grigoriev AI: New functions of small nucleolar RNAs. Biochemistry
(Mosc). 78:638–650. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sun M, Jin FY, Xia R, Kong R, Li JH, Xu
TP, Liu YW, Zhang EB, Liu XH and De W: Decreased expression of long
noncoding RNA GAS5 indicates a poor prognosis and promotes cell
proliferation in gastric cancer. BMC Cancer. 14:3192014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Shi X, Sun M, Liu H, Yao Y, Kong R, Chen F
and Song Y: A critical role for the long non-coding RNA GAS5 in
proliferation and apoptosis in non-small-cell lung cancer. Mol
Carcinog. 54 Suppl 1:E1–E12. 2015. View
Article : Google Scholar : PubMed/NCBI
|
32
|
Zheng D, Zhang J, Ni J, Luo J, Wang J,
Tang L, Zhang L, Wang L, Xu J, Su B, et al: Small nucleolar RNA 78
promotes the tumorigenesis in non-small cell lung cancer. J Exp
Clin Cancer Res. 34:492015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yin D, He X, Zhang E, Kong R, De W and
Zhang Z: Long noncoding RNA GAS5 affects cell proliferation and
predicts a poor prognosis in patients with colorectal cancer. Med
Oncol. 31:2532014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhou P, Wu LL, Wu KM, Jiang W, Li JD, Zhou
LD, Li XY, Chang S, Huang Y, Tan H, et al: Overexpression of MMSET
is correlation with poor prognosis in hepatocellular carcinoma.
Pathol Oncol Res. 19:303–309. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yu F, Shen XY, Fan L and Yu ZC:
Genome-wide analysis of genetic variations assisted by Ingenuity
Pathway Analysis to comprehensively investigate potential genetic
targets associated with the progression of hepatocellular
carcinoma. Eur Rev Med Pharmacol Sci. 18:2102–2108. 2014.PubMed/NCBI
|
36
|
Chu L, Su MY, Maggi LB Jr, Lu L, Mullins
C, Crosby S, Huang G, Chng WJ, Vij R and Tomasson MH: Multiple
myeloma-associated chromosomal translocation activates orphan
snoRNA ACA11 to suppress oxidative stress. J Clin Invest.
122:2793–2806. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Liu L, He YZ, Dong PP, et al: Protein
tyrosine phosphatase PTP4A1 promotes proliferation and transition
in intrahepatic cholangiocarcinoma via the PI3K/AKT pathway.
Oncotarget. 7:75210–75220. 2016.PubMed/NCBI
|
38
|
Lestrade L and Weber MJ: snoRNA-LBME-db, a
comprehensive database of human H/ACA and C/D box snoRNAs. Nucleic
Acids Res. 34:D158–D162. 2006. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kalluri R and Weinberg RA: The basics of
epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428.
2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Fagoonee S, Famulari ES, Silengo L,
Camussi G and Altruda F: Prospects for Adult Stem Cells in the
Treatment of Liver Diseases. Stem Cells Dev. 25:1471–1482. 2016.
View Article : Google Scholar
|
41
|
Leung TH-Y, Wong N, Lai PB-S, Chan A, To
KF, Liew CT, Lau WY and Johnson PJ: Identification of four distinct
regions of allelic imbalances on chromosome 1 by the combined
comparative genomic hybridization and microsatellite analysis on
hepatocellular carcinoma. Mod Pathol. 15:1213–1220. 2002.
View Article : Google Scholar : PubMed/NCBI
|