Ecto‑protein kinase CK2, the neglected form of CK2 (Review)
- Authors:
- Mathias Montenarh
- Claudia Götz
-
Affiliations: Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Germany - Published online on: February 21, 2018 https://doi.org/10.3892/br.2018.1069
- Pages: 307-313
This article is mentioned in:
Abstract
Ehrlich YH, Davis TB, Bock E, Kornecki E and Lenox RH: Ecto protein kinase activity on the external surface of neural cells. Nature. 320:67–70. 1986. View Article : Google Scholar : PubMed/NCBI | |
Kübler D and Barnekow A: Ecto kinase activities in normal and transformed cells. Eur J Cell Biol. 40:58–63. 1986.PubMed/NCBI | |
Chen W, Wieraszko A, Hogan MV, Yang HA, Kornecki E and Ehrlich YH: Surface protein phosphorylation by ecto-protein kinase is required for the maintenance of hippocampal long-term potentiation. Proc Natl Acad Sci USA. 93:pp. 8688–8693. 1996; View Article : Google Scholar : PubMed/NCBI | |
Paas Y and Fishelson Z: Shedding of tyrosine and serine/threonine ecto-protein kinases from human leukemic cells. Arch Biochem Biophys. 316:780–788. 1995. View Article : Google Scholar : PubMed/NCBI | |
Ekdahl KN and Nilsson B: Alterations in C3 activation and binding caused by phosphorylation by a casein kinase released from activated human platelets. J Immunol. 162:7426–7433. 1999.PubMed/NCBI | |
Kalafatis M, Rand MD, Jenny RJ, Ehrlich YH and Mann KG: Phosphorylation of factor Va and factor VIIIa by activated platelets. Blood. 81:704–719. 1993.PubMed/NCBI | |
Rand MD, Kalafatis M and Mann KG: Platelet coagulation factor Va: The major secretory platelet phosphoprotein. Blood. 83:2180–2190. 1994.PubMed/NCBI | |
Martin SC: Phosphorylation of complement factor C3 in vivo. Biochem J. 261:1051–1054. 1989. View Article : Google Scholar : PubMed/NCBI | |
Hamilton KK and Sims PJ: Changes in cytosolic Ca2+ associated with von Willebrand factor release in human endothelial cells exposed to histamine. Study of microcarrier cell monolayers using the fluorescent probe indo-1. J Clin Invest. 79:600–608. 1987. View Article : Google Scholar : PubMed/NCBI | |
Gödecke S, Roderigo C, Rose CR, Rauch BH, Gödecke A and Schrader J: Thrombin-induced ATP release from human umbilical vein endothelial cells. Am J Physiol Cell Physiol. 302:C915–C923. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kübler D, Pyerin W, Bill O, Hotz A, Sonka J and Kinzel V: Evidence for ecto-protein kinase activity that phosphorylates Kemptide in a cyclic AMP-dependent mode. J Biol Chem. 264:14549–14555. 1989.PubMed/NCBI | |
Kübler D, Pyerin W, Burow E and Kinzel V: Substrate-effected release of surface-located protein kinase from intact cells. Proc Natl Acad Sci USA. 80:pp. 4021–4025. 1983; View Article : Google Scholar : PubMed/NCBI | |
Skubitz KM, Ehresmann DD and Ducker TP: Characterization of human neutrophil ecto-protein kinase activity released by kinase substrates. J Immunol. 147:638–650. 1991.PubMed/NCBI | |
Walter J, Schnölzer M, Pyerin W, Kinzel V and Kübler D: Induced release of cell surface protein kinase yields CK1- and CK2-like enzymes in tandem. J Biol Chem. 271:111–119. 1996. View Article : Google Scholar : PubMed/NCBI | |
Al-Nedawi KN, Pawłowska Z and Cierniewski CS: Interferon gamma bound to endothelial cells is phosphorylated by ecto-protein kinases. Acta Biochim Pol. 46:693–702. 1999.PubMed/NCBI | |
Hartmann M and Schrader J: Exo-protein kinase release from intact cultured aortic endothelial cells. Biochim Biophys Acta. 1136:189–195. 1992. View Article : Google Scholar : PubMed/NCBI | |
Eriksson S, Alston-Smith J and Ekman P: Endothelial cells release casein kinase II - like activity capable of phosphorylating fibrinogen in response to thrombin. Thromb Res. 72:315–320. 1993. View Article : Google Scholar : PubMed/NCBI | |
Manning G, Whyte DB, Martinez R, Hunter T and Sudarsanam S: The protein kinase complement of the human genome. Science. 298:1912–1934. 2002. View Article : Google Scholar : PubMed/NCBI | |
Litchfield DW: Protein kinase CK2: Structure, regulation and role in cellular decisions of life and death. Biochem J. 369:1–15. 2003. View Article : Google Scholar : PubMed/NCBI | |
Meggio F and Pinna LA: One-thousand-and-one substrates of protein kinase CK2? FASEB J. 17:349–368. 2003. View Article : Google Scholar : PubMed/NCBI | |
St-Denis NA and Litchfield DW: Protein kinase CK2 in health and disease: From birth to death: the role of protein kinase CK2 in the regulation of cell proliferation and survival. Cell Mol Life Sci. 66:1817–1829. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ahmad KA, Wang G, Unger G, Slaton J and Ahmed K: Protein kinase CK2 - a key suppressor of apoptosis. Adv Enzyme Regul. 48:179–187. 2008. View Article : Google Scholar : PubMed/NCBI | |
Montenarh M: Protein kinase CK2 in DNA damage and repair. Transl Cancer Res. 5:49–63. 2016. | |
Götz C and Montenarh M: Protein kinase CK2 in development and differentiation. Biomed Rep. 6:127–133. 2017. View Article : Google Scholar : PubMed/NCBI | |
Al Quobaili F and Montenarh M: CK2 and the regulation of the carbohydrate metabolism. Metabolism. 61:1512–1517. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lolli G, Naressi D, Sarno S and Battistutta R: Characterization of the oligomeric states of the CK2 α2β2 holoenzyme in solution. Biochem J. 474:2405–2416. 2017. View Article : Google Scholar : PubMed/NCBI | |
Filhol O, Martiel JL and Cochet C: Protein kinase CK2: A new view of an old molecular complex. EMBO Rep. 5:351–355. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pinna LA: The raison d'être of constitutively active protein kinases: The lesson of CK2. Acc Chem Res. 36:378–384. 2003. View Article : Google Scholar : PubMed/NCBI | |
Meggio F, Boldyreff B, Marin O, Pinna LA and Issinger OG: Role of the beta subunit of casein kinase-2 on the stability and specificity of the recombinant reconstituted holoenzyme. Eur J Biochem. 204:293–297. 1992. View Article : Google Scholar : PubMed/NCBI | |
Bidwai AP, Hanna DE and Glover CV: Purification and characterization of casein kinase II (CKII) from delta cka1 delta cka2 Saccharomyces cerevisiae rescued by Drosophila CKII subunits. The free catalytic subunit of casein kinase II is not toxic in vivo. J Biol Chem. 267:18790–18796. 1992.PubMed/NCBI | |
Grankowski N, Boldyreff B and Issinger OG: Isolation and characterization of recombinant human casein kinase II subunits alpha and beta from bacteria. Eur J Biochem. 198:25–30. 1991. View Article : Google Scholar : PubMed/NCBI | |
Cochet C and Chambaz EM: Oligomeric structure and catalytic activity of G type casein kinase. Isolation of the two subunits and renaturation experiments. J Biol Chem. 258:1403–1406. 1983.PubMed/NCBI | |
Meggio F, Boldyreff B, Marin O, Marchiori F, Perich JW, Issinger OG and Pinna LA: The effect of polylysine on casein-kinase-2 activity is influenced by both the structure of the protein/peptide substrates and the subunit composition of the enzyme. Eur J Biochem. 205:939–945. 1992. View Article : Google Scholar : PubMed/NCBI | |
Boldyreff B, Meggio F, Pinna LA and Issinger OG: Reconstitution of normal and hyperactivated forms of casein kinase-2 by variably mutated beta-subunits. Biochemistry. 32:12672–12677. 1993. View Article : Google Scholar : PubMed/NCBI | |
Filhol O, Cochet C, Delagoutte T and Chambaz EM: Polyamine binding activity of casein kinase II. Biochem Biophys Res Commun. 180:945–952. 1991. View Article : Google Scholar : PubMed/NCBI | |
Ulges A, Klein M, Reuter S, Gerlitzki B, Hoffmann M, Grebe N, Staudt V, Stergiou N, Bohn T, Brühl TJ, et al: Protein kinase CK2 enables regulatory T cells to suppress excessive TH2 responses in vivo. Nat Immunol. 16:267–275. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bolanos-Garcia VM, Fernandez-Recio J, Allende JE and Blundell TL: Identifying interaction motifs in CK2beta - a ubiquitous kinase regulatory subunit. Trends Biochem Sci. 31:654–661. 2006. View Article : Google Scholar : PubMed/NCBI | |
Boldyreff B and Issinger OG: A-Raf kinase is a new interacting partner of protein kinase CK2 β subunit. FEBS Lett. 403:197–199. 1997. View Article : Google Scholar : PubMed/NCBI | |
Singal SS, Nygard K, Dhruv MR, Biggar K, Shehab MA, Li SS, Jansson T and Gupta MB: Co-Localization of Insulin-Like Growth Factor Binding Protein-1, Casein Kinase-2β, and Mechanistic Target of Rapamycin in Human Hepatocellular Carcinoma Cells as Demonstrated by Dual Immunofluorescence and in Situ Proximity Ligation Assay. Am J Pathol. 188:111–124. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kraiss S, Barnekow A and Montenarh M: Protein kinase activity associated with immunopurified p53 protein. Oncogene. 5:845–855. 1990.PubMed/NCBI | |
Wagner P, Appel K, Issinger O and Montenarh M: On the interaction of p53 with casein kinase-ii. Int J Oncol. 4:491–498. 1994.PubMed/NCBI | |
Schuster N and Montenarh M: The role of protein kinase CK2 in p53 mediated growth arrest in mouse fibroblasts. Eur J Cell Biol. 72:71. 1997. | |
Schuster N, Götz C, Faust M, Schneider E, Prowald A, Jungbluth A and Montenarh M: Wild-type p53 inhibits protein kinase CK2 activity. J Cell Biochem. 81:172–183. 2001. View Article : Google Scholar : PubMed/NCBI | |
Cox ML and Meek DW: Phosphorylation of serine 392 in p53 is a common and integral event during p53 induction by diverse stimuli. Cell Signal. 22:564–571. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hériché JK, Lebrin F, Rabilloud T, Leroy D, Chambaz EM and Goldberg Y: Regulation of protein phosphatase 2A by direct interaction with casein kinase 2alpha. Science. 276:952–955. 1997. View Article : Google Scholar : PubMed/NCBI | |
Redwood C, Davies SL, Wells NJ, Fry AM and Hickson ID: Casein kinase II stabilizes the activity of human topoisomerase IIalpha in a phosphorylation-independent manner. J Biol Chem. 273:3635–3642. 1998. View Article : Google Scholar : PubMed/NCBI | |
Llorens F, Roher N, Miró FA, Sarno S, Ruiz FX, Meggio F, Plana M, Pinna LA and Itarte E: Eukaryotic translation-initiation factor eIF2β binds to protein kinase CK2: Effects on CK2α activity. Biochem J. 375:623–631. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ruzzene M, Brunati AM, Sarno S, Donella-Deana A and Pinna LA: Hematopoietic lineage cell specific protein 1 associates with and down-regulates protein kinase CK2. FEBS Lett. 461:32–36. 1999. View Article : Google Scholar : PubMed/NCBI | |
Montenarh M: Cellular regulators of protein kinase CK2. Cell Tissue Res. 342:139–146. 2010. View Article : Google Scholar : PubMed/NCBI | |
Guerra B, Issinger OG and Wang JYJ: Modulation of human checkpoint kinase Chk1 by the regulatory β-subunit of protein kinase CK2. Oncogene. 22:4933–4942. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kreutzer J and Guerra B: The regulatory beta-subunit of protein kinase CK2 accelerates the degradation of CDC25A phosphatase through the checkpoint kinase Chk1. Int J Oncol. 31:1251–1259. 2007.PubMed/NCBI | |
Olsen BB, Kreutzer JN, Watanabe N, Holm T and Guerra B: Mapping of the interaction sites between Wee1 kinase and the regulatory beta-subunit of protein kinase CK2. Int J Oncol. 36:1175–1182. 2010.PubMed/NCBI | |
Meggio F, Boldyreff B, Marin O, Issinger OG and Pinna LA: Phosphorylation and activation of protein kinase CK2 by p34cdc2 are independent events. Eur J Biochem. 230:1025–1031. 1995. View Article : Google Scholar : PubMed/NCBI | |
Meggio F, Boldyreff B, Issinger OG and Pinna LA: The autophosphorylation and p34cdc2 phosphorylation sites of casein kinase-2 beta-subunit are not essential for reconstituting the fully-active heterotetrameric holoenzyme. Biochim Biophys Acta. 1164:223–225. 1993. View Article : Google Scholar : PubMed/NCBI | |
Filhol O, Nueda A, Martel V, Gerber-Scokaert D, Benitez MJ, Souchier C, Saoudi Y and Cochet C: Live-cell fluorescence imaging reveals the dynamics of protein kinase CK2 individual subunits. Mol Cell Biol. 23:975–987. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ahmed K and Tawfic S: Mechanism of intracellular regulation of protein kinase CK2: Role of stimulus-mediated subnuclear association. Cell Mol Biol Res. 40:539–545. 1994.PubMed/NCBI | |
Wang H, Yu S, Davis AT and Ahmed K: Cell cycle dependent regulation of protein kinase CK2 signaling to the nuclear matrix. J Cell Biochem. 88:812–822. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yu S, Davis AT, Guo C, Green JE and Ahmed K: Differential targeting of protein kinase CK2 to the nuclear matrix upon transient overexpression of its subunits. J Cell Biochem. 74:127–134. 1999. View Article : Google Scholar : PubMed/NCBI | |
Pyerin W, Burow E, Michaely K, Kübler D and Kinzel V: Catalytic and molecular properties of highly purified phosvitin/casein kinase type II from human epithelial cells in culture (HeLa) and relation to ecto protein kinase. Biol Chem Hoppe Seyler. 368:215–227. 1987. View Article : Google Scholar : PubMed/NCBI | |
Sargiacomo M, Scherer PE, Tang ZL, Casanova JE and Lisanti MP: In vitro phosphorylation of caveolin-rich membrane domains: Identification of an associated serine kinase activity as a casein kinase II-like enzyme. Oncogene. 9:2589–2595. 1994.PubMed/NCBI | |
Wei T and Tao M: Human erythrocyte casein kinase II: Characterization and phosphorylation of membrane cytoskeletal proteins. Arch Biochem Biophys. 307:206–216. 1993. View Article : Google Scholar : PubMed/NCBI | |
Sarrouilhe D, Filhol O, Leroy D, Bonello G, Baudry M, Chambaz EM and Cochet C: The tight association of protein kinase CK2 with plasma membranes is mediated by a specific domain of its regulatory β-subunit. Biochim Biophys Acta. 1403:199–210. 1998. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez FA, Contreras C, Bolanos-Garcia V and Allende JE: Protein kinase CK2 as an ectokinase: The role of the regulatory CK2beta subunit. Proc Natl Acad Sci USA. 105:pp. 5693–5698. 2008; View Article : Google Scholar : PubMed/NCBI | |
Mikuni-Takagaki Y and Glimcher MJ: Post-translational processing of chicken bone phosphoproteins. Identification of bone (phospho)protein kinase. Biochem J. 268:593–597. 1990. View Article : Google Scholar : PubMed/NCBI | |
Rodríguez F, Allende CC and Allende JE: Protein kinase casein kinase 2 holoenzyme produced ectopically in human cells can be exported to the external side of the cellular membrane. Proc Natl Acad Sci USA. 102:pp. 4718–4723. 2005; View Article : Google Scholar : PubMed/NCBI | |
Kusk M, Ahmed R, Thomsen B, Bendixen C, Issinger OG and Boldyreff B: Interactions of protein kinase CK2β subunit within the holoenzyme and with other proteins. Mol Cell Biochem. 191:51–58. 1999. View Article : Google Scholar : PubMed/NCBI | |
Guerra B and Issinger OG: CK2: A global regulator of cell survivalProtein kinase CK2. Pinna LA: John Wiley & Sons, Inc.; Ames, Chichester, Oxford: pp. 239–266. 2013, View Article : Google Scholar | |
Sarno S and Pinna LA: Protein kinase CK2 as a druggable target. Mol Biosyst. 4:889–894. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rahnel H, Viht K, Lavogina D, Mazina O, Haljasorg T, Enkvist E and Uri A: A Selective Biligand Inhibitor of CK2 Increases Caspase-3 Activity in Cancer Cells and Inhibits Platelet Aggregation. ChemMedChem. 12:1723–1736. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cozza G, Zanin S, Sarno S, Costa E, Girardi C, Ribaudo G, Salvi M, Zagotto G, Ruzzene M and Pinna LA: Design, validation and efficacy of bisubstrate inhibitors specifically affecting ecto-CK2 kinase activity. Biochem J. 471:415–430. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lavogina D, Enkvist E and Uri A: Bisubstrate inhibitors of protein kinases: From principle to practical applications. ChemMedChem. 5:23–34. 2010. View Article : Google Scholar : PubMed/NCBI | |
Walter J, Schindzielorz A, Hartung B and Haass C: Phosphorylation of the beta-amyloid precursor protein at the cell surface by ectocasein kinases 1 and 2. J Biol Chem. 275:23523–23529. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hathaway GM, Lubben TH and Traugh JA: Inhibition of casein kinase II by heparin. J Biol Chem. 255:8038–8041. 1980.PubMed/NCBI | |
Meggio F, Shugar D and Pinna LA: Ribofuranosyl-benzimidazole derivatives as inhibitors of casein kinase-2 and casein kinase-1. Eur J Biochem. 187:89–94. 1990. View Article : Google Scholar : PubMed/NCBI | |
Münzer P, Walker-Allgaier B, Geue S, Langhauser F, Geuss E, Stegner D, Aurbach K, Semeniak D, Chatterjee M, Gonzalez Menendez I, et al: CK2β regulates thrombopoiesis and Ca2+-triggered platelet activation in arterial thrombosis. Blood. 130:2774–2785. 2017.PubMed/NCBI | |
Sonka J, Kübler D and Kinzel V: Phosphorylation by cell surface protein kinase of bovine and human fibrinogen and fibrin. Biochim Biophys Acta. 997:268–277. 1989. View Article : Google Scholar : PubMed/NCBI | |
Paas Y, Bohana-Kashtan O and Fishelson Z: Phosphorylation of the complement component, C9, by an ecto-protein kinase of human leukemic cells. Immunopharmacology. 42:175–185. 1999. View Article : Google Scholar : PubMed/NCBI | |
Yim H, Lee YH, Lee CH and Lee SK: Emodin, an anthraquinone derivative isolated from the rhizomes of Rheum palmatum, selectively inhibits the activity of casein kinase II as a competitive inhibitor. Planta Med. 65:9–13. 1999. View Article : Google Scholar : PubMed/NCBI | |
Ruzzene M, Penzo D and Pinna LA: Protein kinase CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) induces apoptosis and caspase-dependent degradation of haematopoietic lineage cell-specific protein 1 (HS1) in Jurkat cells. Biochem J. 364:41–47. 2002. View Article : Google Scholar : PubMed/NCBI | |
Müller-Eberhard HJ: The membrane attack complex of complement. Annu Rev Immunol. 4:503–528. 1986. View Article : Google Scholar : PubMed/NCBI | |
Bohana-Kashtan O, Pinna LA and Fishelson Z: Extracellular phosphorylation of C9 by protein kinase CK2 regulates complement-mediated lysis. Eur J Immunol. 35:1939–1948. 2005. View Article : Google Scholar : PubMed/NCBI | |
Stepanova V, Jerke U, Sagach V, Lindschau C, Dietz R, Haller H and Dumler I: Urokinase-dependent human vascular smooth muscle cell adhesion requires selective vitronectin phosphorylation by ectoprotein kinase CK2. J Biol Chem. 277:10265–10272. 2002. View Article : Google Scholar : PubMed/NCBI | |
Seger D, Seger R and Shaltiel S: The CK2 phosphorylation of vitronectin. Promotion of cell adhesion via the α(v)β 3-phosphatidylinositol 3-kinase pathway. J Biol Chem. 276:16998–17006. 2001. View Article : Google Scholar : PubMed/NCBI | |
Seger D, Gechtman Z and Shaltiel S: Phosphorylation of vitronectin by casein kinase II. Identification of the sites and their promotion of cell adhesion and spreading. J Biol Chem. 273:24805–24813. 1998. View Article : Google Scholar : PubMed/NCBI | |
Trachana V, Christophorides E, Kouzi-Koliakos K and Koliakos G: Laminin-1 is phosphorylated by ecto-protein kinases of monocytes. Int J Biochem Cell Biol. 37:478–492. 2005. View Article : Google Scholar : PubMed/NCBI | |
Teshima R, Onose J, Saito Y, Ikebuchi H, Kitani S and Sawada J: Casein kinase II-like ectokinase activity on RBL-2H3 cells. Immunol Lett. 68:369–374. 1999. View Article : Google Scholar : PubMed/NCBI | |
Zimina EP, Fritsch A, Schermer B, Bakulina AY, Bashkurov M, Benzing T and Bruckner-Tuderman L: Extracellular phosphorylation of collagen XVII by ecto-casein kinase 2 inhibits ectodomain shedding. J Biol Chem. 282:22737–22746. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Luo C, Ferrier JM and Sodek J: Evidence of ectokinase-mediated phosphorylation of osteopontin and bone sialoprotein by osteoblasts during bone formation in vitro. Biochem J. 323:637–643. 1997. View Article : Google Scholar : PubMed/NCBI | |
Jellinek DA, Chang AC, Larsen MR, Wang X, Robinson PJ and Reddel RR: Stanniocalcin 1 and 2 are secreted as phosphoproteins from human fibrosarcoma cells. Biochem J. 350:453–461. 2000. View Article : Google Scholar : PubMed/NCBI | |
Dumler I, Stepanova V, Jerke U, Mayboroda OA, Vogel F, Bouvet P, Tkachuk V, Haller H and Gulba DC: Urokinase-induced mitogenesis is mediated by casein kinase 2 and nucleolin. Curr Biol. 9:1468–1476. 1999. View Article : Google Scholar : PubMed/NCBI | |
Ginisty H, Sicard H, Roger B and Bouvet P: Structure and functions of nucleolin. J Cell Sci. 112:761–772. 1999.PubMed/NCBI | |
Venerando A, Cesaro L and Pinna LA: From phosphoproteins to phosphoproteomes: A historical account. FEBS J. 284:1936–1951. 2017. View Article : Google Scholar : PubMed/NCBI | |
Aláez-Versón CR, Lantero E and Fernàndez-Busquets X: Heparin: New life for an old drug. Nanomedicine (Lond). 12:1727–1744. 2017. View Article : Google Scholar : PubMed/NCBI | |
Clement JQ and Wilkinson MF: Rapid induction of nuclear transcripts and inhibition of intron decay in response to the polymerase II inhibitor DRB. J MolBiol. 299:1179–1191. 2000. View Article : Google Scholar |