1
|
Kumar V, Sinha AK, Makkar HPS and Becker
K: Dietary roles of phytate and phytase in human nutrition: A
review. Food Chem. 120:945–959. 2010. View Article : Google Scholar
|
2
|
Silva EO and Bracarense AP: Phytic acid:
From antinutritional to multiple protection factor of organic
systems. J Food Sci. 81:R1357–R1362. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kim JN, Han SN and Kim H-K: Phytic acid
and myo-inositol support adipocyte differentiation and improve
insulin sensitivity in 3T3-L1 cells. Nutr Res. 34:723–731. 2014.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Vucenik I and Shamsuddin AM: Cancer
inhibition by inositol hexaphosphate (IP6) and inositol: From
laboratory to clinic. J Nutr. 133 Suppl 1:3778S–3784S. 2003.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Katayama T: Effects of dietary
myo-inositol or phytic acid on hepatic concentrations of lipids and
hepatic activities of lipogenic enzymes in rats fed on corn starch
or sucrose. Nutr Res. 17:721–728. 1997. View Article : Google Scholar
|
6
|
Okazaki Y and Katayama T: Effects of
dietary carbohydrate and myo-inositol on metabolic changes in rats
fed 1,1,1-trichloro-2,2-bis (p-chlorophenyl) ethane (DDT). J Nutr
Biochem. 14:81–89. 2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Okazaki Y and Katayama T: Dietary inositol
hexakisphosphate, but not myo-inositol, clearly improves
hypercholesterolemia in rats fed casein-type amino acid mixtures
and 1,1,1-trichloro-2,2-bis (p-chlorophenyl) ethane. Nutr Res.
28:714–721. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Onomi S, Okazaki Y and Katayama T: Effect
of dietary level of phytic acid on hepatic and serum lipid status
in rats fed a high-sucrose diet. Biosci Biotechnol Biochem.
68:1379–1381. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sandberg AS and Andersson H: Effect of
dietary phytase on the digestion of phytate in the stomach and
small intestine of humans. J Nutr. 118:469–473. 1988. View Article : Google Scholar : PubMed/NCBI
|
10
|
Miyazawa E, Iwabuchi A and Yoshida T:
Phytate breakdown and apparent absorption of phosphorus, calcium
and magnesium in germfree and conventionalized rats. Nutr Res.
16:603–613. 1996. View Article : Google Scholar
|
11
|
Okazaki Y and Katayama T: Dietary phytic
acid modulates characteristics of the colonic luminal environment
and reduces serum levels of proinflammatory cytokines in rats fed a
high-fat diet. Nutr Res. 34:1085–1091. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Solga SF and Diehl AM: Non-alcoholic fatty
liver disease: Lumen-liver interactions and possible role for
probiotics. J Hepatol. 38:681–687. 2003. View Article : Google Scholar : PubMed/NCBI
|
13
|
Festi D, Schiumerini R, Eusebi LH, Marasco
G, Taddia M and Colecchia A: Gut microbiota and metabolic syndrome.
World J Gastroenterol. 20:16079–16094. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sekita A, Okazaki Y and Katayama T:
Dietary phytic acid prevents fatty liver by reducing expression of
hepatic lipogenic enzymes and modulates gut microflora in rats fed
a high-sucrose diet. Nutrition. 32:720–722. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hara H, Haga S, Aoyama Y and Kiriyama S:
Short-chain fatty acids suppress cholesterol synthesis in rat liver
and intestine. J Nutr. 129:942–948. 1999. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kim M and Shin HK: The water-soluble
extract of chicory influences serum and liver lipid concentrations,
cecal short-chain fatty acid concentrations and fecal lipid
excretion in rats. J Nutr. 128:1731–1736. 1998. View Article : Google Scholar : PubMed/NCBI
|
17
|
Reeves PG, Nielsen FH and Fahey GC Jr:
AIN-93 purified diets for laboratory rodents: Final report of the
American Institute of Nutrition ad hoc writing committee on the
reformulation of the AIN-76A rodent diet. J Nutr. 123:1939–1951.
1993. View Article : Google Scholar : PubMed/NCBI
|
18
|
Croze ML, Géloën A and Soulage CO:
Abnormalities in myo-inositol metabolism associated with type 2
diabetes in mice fed a high-fat diet: Benefits of a dietary
myo-inositol supplementation. Br J Nutr. 113:1862–1875. 2015.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Takahashi Y: Soy protein and fish oil
independently decrease serum lipid concentrations but interactively
reduce hepatic enzymatic activity and gene expression involved in
fatty acid synthesis in rats. J Nutr Sci Vitaminol (Tokyo).
57:56–64. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yang Y, Sitanggang NV, Kato N, Inoue J,
Murakami T, Watanabe T, Iguchi T and Okazaki Y: Beneficial effects
of protease preparations derived from Aspergillus on the
colonic luminal environment in rats consuming a high-fat diet.
Biomed Rep. 3:715–720. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Okazaki Y, Tomotake H, Tsujimoto K, Sasaki
M and Kato N: Consumption of a resistant protein, sericin, elevates
fecal immunoglobulin A, mucins, and cecal organic acids in rats fed
a high-fat diet. J Nutr. 141:1975–1981. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Sakamoto K, Vucenik I and Shamsuddin AM:
[3H]phytic acid (inositol hexaphosphate) is absorbed and
distributed to various tissues in rats. J Nutr. 123:713–720. 1993.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Indyk HE, Saldo SC, White PM, Dole MN,
Gill BD and Woollard DC: The free and total myo-inositol contents
of early lactation and seasonal bovine milk. Int Dairy J. 56:33–37.
2016. View Article : Google Scholar
|
24
|
Masuda T, Kawano A, Kitahara K, Nagashima
K, Aikawa Y and Arai S: Quantitative determination of sugars and
myo-inositol in citrus fruits grown in Japan using high-performance
anion-exchange chromatography. J Nutr Sci Vitaminol (Tokyo).
49:64–68. 2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Xu RY, Wan YP, Fang QY, Lu W and Cai W:
Supplementation with probiotics modifies gut flora and attenuates
liver fat accumulation in rat nonalcoholic fatty liver disease
model. J Clin Biochem Nutr. 50:72–77. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ritze Y, Bárdos G, Claus A, Ehrmann V,
Bergheim I, Schwiertz A and Bischoff SC: Lactobacillus
rhamnosus GG protects against non-alcoholic fatty liver disease
in mice. PLoS One. 9:e801692014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Pagano C, Soardo G, Esposito W, Fallo F,
Basan L, Donnini D, Federspil G, Sechi LA and Vettor R: Plasma
adiponectin is decreased in nonalcoholic fatty liver disease. Eur J
Endocrinol. 152:113–118. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Targher G, Bertolini L, Rodella S, Zoppini
G, Scala L, Zenari L and Falezza G: Associations between plasma
adiponectin concentrations and liver histology in patients with
nonalcoholic fatty liver disease. Clin Endocrinol (Oxf).
64:679–683. 2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Xu A, Wang Y, Keshaw H, Xu LY, Lam KSL and
Cooper GJS: The fat-derived hormone adiponectin alleviates
alcoholic and nonalcoholic fatty liver diseases in mice. J Clin
Invest. 112:91–100. 2003. View Article : Google Scholar : PubMed/NCBI
|