1
|
Torres S, Balboa E, Zanlungo S, Enrich C, Garcia-Ruiz C and Fernandez-Checa JC: Lysosomal and mitochondrial liaisons in Niemann-Pick disease. Front Physiol. 8:9822017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wasserstein MP and Schuchman EH: Acid sphingomyelinase deficiencyGeneReviews®. Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al: University of Washington; Seattle, WA: 1993
|
3
|
Schuchman EH and Wasserstein MP: Types A and B Niemann-Pick disease. Best Pract Res Clin Endocrinol Metab. 29:237–247. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Patterson MC, Hendriksz CJ, Walterfang M, Sedel F, Vanier MT and Wijburg F: NP-C Guidelines Working Group: Recommendations for the diagnosis and management of Niemann-Pick disease type C: An update. Mol Genet Metab. 106:330–344. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Vanier MT: Niemann-Pick disease type C. Orphanet J Rare Dis. 5:162010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Patterson MC: A riddle wrapped in a mystery: Understanding Niemann-Pick disease, type C. Neurologist. 9:301–310. 2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Vanier MT and Millat G: Niemann-Pick disease type C. Clin Genet. 64:269–281. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Platt FM, Boland B and van der Spoel AC: The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J Cell Biol. 199:723–734. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sleat DE, Wiseman JA, El-Banna M, Price SM, Verot L, Shen MM, Tint GS, Vanier MT, Walkley SU and Lobel P: Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. Proc Natl Acad Sci USA. 101:5886–5891. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mengel E, Klünemann HH, Lourenço CM, Hendriksz CJ, Sedel F, Walterfang M and Kolb SA: Niemann-Pick disease type C symptomatology: An expert-based clinical description. Orphanet J Rare Dis. 8:1662013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Patterson MC: Niemann-Pick disease overview: Types A, B and C. https://nnpdf.org/overview/February 9–2017
|
12
|
Wraith JE, Baumgartner MR, Bembi B, Covanis A, Levade T, Mengel E, Pineda M, Sedel F, Topçu M and Vanier MT: NP-C Guidelines Working Group: Recommendations on the diagnosis and management of Niemann-Pick disease type C. Mol Genet Metab. 98:152–165. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Guertl B, Noehammer C and Hoefler G: Metabolic cardiomyopathies. Int J Exp Pathol. 81:349–372. 2000. View Article : Google Scholar : PubMed/NCBI
|
14
|
National Organization for Rare Disorders (NORD): Niemann Pick Disease Type CNORD's Rare Disease Database. NORD; Danbury CT: 2017, https://rarediseases.org/rare-diseases/niemann-pick-disease-type-c/
|
15
|
Yang CC, Su YN, Chiou PC, Fietz MJ, Yu CL, Hwu WL and Lee MJ: Six novel NPC1 mutations in Chinese patients with Niemann-Pick disease type C. J Neurol Neurosurg Psychiatry. 76:592–595. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Pentchev PG, Comly ME, Kruth HS, Patel S, Proestel M and Weintroub H: The cholesterol storage disorder of the mutant BALB/c mouse. A primary genetic lesion closely linked to defective esterification of exogenously derived cholesterol and its relationship to human type C Niemann-Pick disease. J Biol Chem. 261:2772–2777. 1986.PubMed/NCBI
|
17
|
Park WD, O'Brien JF, Lundquist PA, Kraft DL, Vockley CW, Karnes PS, Patterson MC and Snow K: Identification of 58 novel mutations in Niemann-Pick disease type C: Correlation with biochemical phenotype and importance of PTC1-like domains in NPC1. Hum Mutat. 22:313–325. 2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
Vanier MT and Latour P: Laboratory diagnosis of Niemann-Pick disease type C: The filipin staining test. Methods Cell Biol. 126:357–375. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Mendes MS, Portela FX, Reis RC, Castro JD, Garcia JH and Holanda MA: Liver transplantation in a patient with Niemann-Pick disease and pulmonary involvement. J Bras Pneumol. 38:269–271. 2012.(In English, Portuguese). View Article : Google Scholar : PubMed/NCBI
|
20
|
Hsu YS, Hwu WL, Huang SF, Lu MY, Chen RL, Lin DT, et al: Niemann-Pick disease type C (a cellular cholesterol lipidosis) treated by bone marrow transplantation. Bone Marrow Transplant. 24:103–107. 1999. View Article : Google Scholar : PubMed/NCBI
|
21
|
Dhamija R: Lysosomal storage disorderMayo Clinic Neurology Board Review: Clinical Neurology for Initial Certification and MoC. Flemming KD and Jones LK: Oxford University Press; pp. 709–716. 2015, View Article : Google Scholar
|
22
|
Yu D, Swaroop M, Wang M, Baxa U, Yang R, Yan Y, Coksaygan T, DeTolla L, Marugan JJ, Austin CP, et al: Niemann-Pick disease type c: induced pluripotent stem cell-derived neuronal cells for modeling neural disease and evaluating drug efficacy. J Biomol Screen. 19:1164–1173. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Soga M, Ishitsuka Y, Hamasaki M, Yoneda K, Furuya H, Matsuo M, Ihn H, Fusaki N, Nakamura K, Nakagata N, et al: HPGCD outperforms HPBCD as a potential treatment for Niemann-Pick disease type C during disease modeling with iPS cells. Stem Cells. 33:1075–1088. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, Mulherkar N, Kuehne AI, Kranzusch PJ, Griffin AM, Ruthel G, et al: Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature. 477:340–343. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yu W, Gong JS, Ko M, Garver WS, Yanagisawa K and Michikawa M: Altered cholesterol metabolism in Niemann-Pick type C1 mouse brains affects mitochondrial function. J Biol Chem. 280:11731–11739. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Fernández A, Llacuna L, Fernández-Checa JC and Colell A: Mitochondrial cholesterol loading exacerbates amyloid beta peptide-induced inflammation and neurotoxicity. J Neurosci. 29:6394–6405. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Vázquez MC, del Pozo T, Robledo FA, Carrasco G, Pavez L, Olivares F, González M and Zanlungo S: Alteration of gene expression profile in Niemann-Pick type C mice correlates with tissue damage and oxidative stress. PLoS One. 6:e287772011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Vázquez MC, Balboa E, Alvarez AR and Zanlungo S: Oxidative stress: A pathogenic mechanism for Niemann-Pick type C disease. Oxid Med Cell Longev. 2012:2057132012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Marí M, Caballero F, Colell A, Morales A, Caballeria J, Fernandez A, Enrich C, Fernandez-Checa JC and García-Ruiz C: Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab. 4:185–198. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Smith D, Wallom KL, Williams IM, Jeyakumar M and Platt FM: Beneficial effects of anti-inflammatory therapy in a mouse model of Niemann-Pick disease type C1. Neurobiol Dis. 36:242–251. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Schon EA, DiMauro S and Hirano M: Human mitochondrial DNA: Roles of inherited and somatic mutations. Nat Rev Genet. 13:878–890. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Cortés-Hernández P, Vázquez-Memije ME and García JJ: ATP6 homoplasmic mutations inhibit and destabilize the human F1F0-ATP synthase without preventing enzyme assembly and oligomerization. J Biol Chem. 282:1051–1058. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Charman M, Kennedy BE, Osborne N and Karten B: MLN64 mediates egress of cholesterol from endosomes to mitochondria in the absence of functional Niemann-Pick type C1 protein. J Lipid Res. 51:1023–1034. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Karimzadeh P, Tonekaboni SH, Ashrafi MR, Shafeghati Y, Rezayi A, Salehpour S, Ghofrani M, Taghdiri MM, Rahmanifar A, Zaman T, et al: Effects of miglustat on stabilization of neurological disorder in niemann-pick disease type C: Iranian pediatric case series. J Child Neurol. 28:1599–1606. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Piryaei F, Houshmand M, Aryani O, Dadgar S and Soheili ZS: Investigation of the mitochondrial ATPase 6/8 and tRNA(Lys) genes mutations in autism. Cell J. 14:98–101. 2012.PubMed/NCBI
|
36
|
Capriotti E, Fariselli P and Casadio R: I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 33:(Web Server issue). W306–310. 2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS and Sunyaev SR: A method and server for predicting damaging missense mutations. Nat Methods. 7:248–249. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Reddy PH: Role of mitochondria in neurodegenerative diseases: Mitochondria as a therapeutic target in Alzheimer's disease. CNS Spectr. 14 Suppl 7:8–13; discussion 16–18. 2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
Tsutsui H, Kinugawa S and Matsushima S: Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovasc Res. 81:449–456. 2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Houstek J, Pícková A, Vojtísková A, Mrácek T, Pecina P and Jesina P: Mitochondrial diseases and genetic defects of ATP synthase. Biochim Biophys Acta. 1757:1400–1405. 2006. View Article : Google Scholar : PubMed/NCBI
|
41
|
López-Gallardo E, Emperador S, Solano A, Llobet L, Martín-Navarro A, López-Pérez MJ, Briones P, Pineda M, Artuch R, Barraquer E, et al: Expanding the clinical phenotypes of MT-ATP6 mutations. Hum Mol Genet. 23:6191–6200. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Jonckheere AI, Hogeveen M, Nijtmans LG, van den Brand MA, Janssen AJ, Diepstra JH, van den Brandt FC, van den Heuvel LP, Hol FA, Hofste TG, et al: A novel mitochondrial ATP8 gene mutation in a patient with apical hypertrophic cardiomyopathy and neuropathy. J Med Genet. 45:129–133. 2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Jinam TA, Hong LC, Phipps ME, Stoneking M, Ameen M, Edo J and Saitou N: HUGO Pan-Asian SNP Consortium: Evolutionary history of continental southeast Asians: ‘early train’ hypothesis based on genetic analysis of mitochondrial and autosomal DNA data. Mol Biol Evol. 29:3513–3527. 2012. View Article : Google Scholar : PubMed/NCBI
|
44
|
Mostafaie N, Rossmanith W, Hombauer H, Dechat T, Raffelsberger T, Bauer K, Worofka B, Kittl E, Hofmann J, et al: Mitochondrial genotype and risk for Alzheimer's disease: cross-sectional data from the Vienna-Transdanube-Aging ‘VITA’ study. J Neural Transm (Vienna). 111:1155–1165. 2004.PubMed/NCBI
|
45
|
Houshmand M, Montazeri M, Kuchekian N, Noohi F, Nozar G and Zamani A: Is 8860 variation a rare polymorphism or associated as a secondary effect in HCM disease? Arch Med Sci. 7:242–246. 2011. View Article : Google Scholar : PubMed/NCBI
|
46
|
Fauser S, Luberichs J, Besch D and Leo-Kottler B: Sequence analysis of the complete mitochondrial genome in patients with Leber's hereditary optic neuropathy lacking the three most common pathogenic DNA mutations. Biochem Biophys Res Commun. 295:342–347. 2002. View Article : Google Scholar : PubMed/NCBI
|
47
|
Puomila A, Hämäläinen P, Kivioja S, Savontaus ML, Koivumäki S, Huoponen K and Nikoskelainen E: Epidemiology and penetrance of Leber hereditary optic neuropathy in Finland. Eur J Hum Genet. 15:1079–1089. 2007. View Article : Google Scholar : PubMed/NCBI
|
48
|
Ghaffarpour M, Mahdian R, Fereidooni F, Kamalidehghan B, Moazami N and Houshmand M: The mitochondrial ATPase6 gene is more susceptible to mutation than the ATPase8 gene in breast cancer patients. Cancer Cell Int. 14:212014. View Article : Google Scholar : PubMed/NCBI
|
49
|
van Oven M and Kayser M: Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat. 30:E386–E394. 2009. View Article : Google Scholar : PubMed/NCBI
|
50
|
Mehrabi S, Akwe JA, Adams G Jr, Grizzle W, Yao X and Aikhionbare FO: Analysis of mtDNA sequence variants in colorectal adenomatous polyps. Diagn Pathol. 5:662010. View Article : Google Scholar : PubMed/NCBI
|
51
|
Aikhionbare FO, Mehrabi S, Kumaresan K, Zavareh M, Olatinwo M, Odunsi K and Partridge E: Mitochondrial DNA sequence variants in epithelial ovarian tumor subtypes and stages. J Carcinog. 6:12007. View Article : Google Scholar : PubMed/NCBI
|
52
|
Czarnecka AM, Klemba A, Krawczyk T, Zdrozny M, Arnold RS, Bartnik E and Petros JA: Mitochondrial NADH-dehydrogenase polymorphisms as sporadic breast cancer risk factor. Oncol Rep. 23:531–535. 2010.PubMed/NCBI
|
53
|
Cerný V, Mulligan CJ, Fernandes V, Silva NM, Alshamali F, Non A, Harich N, Cherni L, El Gaaied AB, Al-Meeri A and Pereira L: Internal diversification of mitochondrial haplogroup R0a reveals post-last glacial maximum demographic expansions in South Arabia. Mol Biol Evol. 28:71–78. 2011. View Article : Google Scholar : PubMed/NCBI
|
54
|
Simon DK, Tarnopolsky MA, Greenamyre JT and Johns DR: A frameshift mitochondrial complex I gene mutation in a patient with dystonia and cataracts: Is the mutation pathogenic? J Med Genet. 38:58–61. 2001. View Article : Google Scholar : PubMed/NCBI
|
55
|
Lai CH, Huang SF, Chen IH, Liao CT, Wang HM and Hsieh LL: The mitochondrial DNA Northeast Asia CZD haplogroup is associated with good disease-free survival among male oral squamous cell carcinoma patients. PLoS One. 7:e496842012. View Article : Google Scholar : PubMed/NCBI
|
56
|
Sawabe M, Tanaka M, Chida K, Arai T, Nishigaki Y, Fuku N, Mieno MN, Kuchiba A and Tanaka N: Mitochondrial haplogroups A and M7a confer a genetic risk for coronary atherosclerosis in the Japanese elderly: An autopsy study of 1,536 patients. J Atheroscler Thromb. 18:166–175. 2011. View Article : Google Scholar : PubMed/NCBI
|
57
|
Yu D, Jia X, Zhang AM, Guo X, Zhang YP, Zhang Q and Yao YG: Molecular characterization of six Chinese families with m.3460G>A and Leber hereditary optic neuropathy. Neurogenetics. 11:349–356. 2010. View Article : Google Scholar : PubMed/NCBI
|
58
|
Kazuno AA, Munakata K, Mori K, Tanaka M, Nanko S, Kunugi H, Umekage T, Tochigi M, Kohda K, Sasaki T, et al: Mitochondrial DNA sequence analysis of patients with ‘atypical psychosis’. Psychiatry Clin Neurosci. 59:497–503. 2005. View Article : Google Scholar : PubMed/NCBI
|
59
|
Vogel LK, Sæbø M, Høyer H, Kopp TI, Vogel U, Godiksen S, Frenzel FB, Hamfjord J, Bowitz-Lothe IM, Johnson E, et al: Intestinal PTGS2 mRNA levels, PTGS2 gene polymorphisms, and colorectal carcinogenesis. PLoS One. 9:e1052542014. View Article : Google Scholar : PubMed/NCBI
|
60
|
Tuppen HA, Blakely EL, Turnbull DM and Taylor RW: Mitochondrial DNA mutations and human disease. Biochim Biophys Acta. 1797:113–128. 2010. View Article : Google Scholar : PubMed/NCBI
|
61
|
Kleinle S, Schneider V, Moosmann P, Brandner S, Krähenbühl S and Liechti-Gallati S: A novel mitochondrial tRNA(Phe) mutation inhibiting anticodon stem formation associated with a muscle disease. Biochem Biophys Res Commun. 247:112–115. 1998. View Article : Google Scholar : PubMed/NCBI
|
62
|
Opdal SH, Vege A, Arnestad M, Musse MA and Rognum TO: Mitochondrial tRNA genes and flanking regions in sudden infant death syndrome. Acta Paediatr. 96:211–214. 2007. View Article : Google Scholar : PubMed/NCBI
|
63
|
Tabebi M, Mkaouar-Rebai E, Mnif M, Kallabi F, Ben Mahmoud A, Ben Saad W, Charfi N, Keskes-Ammar L, Kamoun H, Abid M and Fakhfakh F: A novel mutation MT-COIII m.9267G>C and MT-COI m.5913G>A mutation in mitochondrial genes in a Tunisian family with maternally inherited diabetes and deafness (MIDD) associated with severe nephropathy. Biochem Biophys Res Commun. 459:353–360. 2015. View Article : Google Scholar : PubMed/NCBI
|
64
|
Li S, Besenbacher S, Li Y, Kristiansen K, Grarup N, Albrechtsen A, Sparsø T, Korneliussen T, Hansen T, Wang J, et al: Variation and association to diabetes in 2000 full mtDNA sequences mined from an exome study in a Danish population. Eur J Hum Genet. 22:1040–1045. 2014. View Article : Google Scholar : PubMed/NCBI
|
65
|
Singh I, Faruq M, Srivastava A and Mukerji M: Analysis of mitochondrial DNA variations in Friedreich's ataxia patients in Indian families: Identification of disease associated markers. Mov Disord. 27 Suppl 1:6022012.
|
66
|
Ahari SE, Houshmand M, Panahi MS, Kasraie S, Moin M and Bahar MA: Investigation on mitochondrial tRNA(Leu/Lys), NDI and ATPase 6/8 in Iranian multiple sclerosis patients. Cell Mol Neurobiol. 27:695–700. 2007. View Article : Google Scholar : PubMed/NCBI
|
67
|
Kasraie S, Houshmand M, Banoei MM, Ahari SE, Panahi MS, Shariati P, Bahar M and Moin M: Investigation of tRNA(Leu/Lys) and ATPase 6 genes mutations in Huntington's disease. Cell Mol Neurobiol. 28:933–938. 2008. View Article : Google Scholar : PubMed/NCBI
|
68
|
Guo XG, Liu CT, Dai H and Guo QN: Mutations in the mitochondrial ATPase6 gene are frequent in human osteosarcoma. Exp Mol Pathol. 94:285–288. 2013. View Article : Google Scholar : PubMed/NCBI
|
69
|
Máximo V, Soares P, Lima J, Cameselle-Teijeiro J and Sobrinho-Simões M: Mitochondrial DNA somatic mutations (point mutations and large deletions) and mitochondrial DNA variants in human thyroid pathology: A study with emphasis on Hürthle cell tumors. Am J Pathol. 160:1857–1865. 2002. View Article : Google Scholar : PubMed/NCBI
|
70
|
Jones JB, Song JJ, Hempen PM, Parmigiani G, Hruban RH and Kern SE: Detection of mitochondrial DNA mutations in pancreatic cancer offers a ‘mass’-ive advantage over detection of nuclear DNA mutations. Cancer Res. 61:1299–1304. 2001.PubMed/NCBI
|
71
|
DeHaan C, Habibi-Nazhad B, Yan E, Salloum N, Parliament M and Allalunis-Turner J: Mutation in mitochondrial complex I ND6 subunit is associated with defective response to hypoxia in human glioma cells. Mol Cancer. 3:192004. View Article : Google Scholar : PubMed/NCBI
|
72
|
Chen J, Yuan H, Lu J, Liu X, Wang G, Zhu Y, Cheng J, Wang X, Han B, Yang L, et al: Mutations at position 7445 in the precursor of mitochondrial tRNA(Ser(UCN)) gene in three maternal Chinese pedigrees with sensorineural hearing loss. Mitochondrion. 8:285–292. 2008. View Article : Google Scholar : PubMed/NCBI
|