1
|
Bertholet AM and Kirichok Y: UCP1: A
transporter for H+ and fatty acid anions. Biochimie.
134:28–34. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bonet ML, Mercader J and Palou A: A
nutritional perspective on UCP1-dependent thermogenesis. Biochimie.
134:99–117. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Crichton PG, Lee Y and Kunji ERS: The
molecular features of uncoupling protein 1 support a conventional
mitochondrial carrier-like mechanism. Biochimie. 134:35–50. 2017.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Marlatt KL and Ravussin E: Brown adipose
tissue: an update on recent findings. Curr Obes Rep. 6:389–396.
2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Fedorenko A, Lishko PV and Kirichok Y:
Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat
mitochondria. Cell. 151:400–413. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Chouchani ET, Kazak L, Jedrychowski MP, Lu
GZ, Erickson BK, Szpyt J, Pierce KA, Laznik-Bogoslavski D,
Vetrivelan R, Clish CB, et al: Mitochondrial ROS regulate
thermogenic energy expenditure and sulfenylation of UCP1. Nature.
532:112–116. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Rousset S, Alves-Guerra MC, Mozo J, Miroux
B, Cassard-Doulcier AM, Bouillaud F and Ricquier D: The biology of
mitochondrial uncoupling proteins. Diabetes. 53:S130–S135. 2004.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Kopecky J, Rossmeisl M, Flachs P, Bardova
K and Brauner P: Mitochondrial uncoupling and lipid metabolism in
adipocytes. Biochem Soc T. 29:791–797. 2001. View Article : Google Scholar
|
9
|
Klingenspor M, Fromme T, Hughes DA Jr,
Manzke L, Polymeropoulos E, Riemann T, Trzcionka M, Hirschberg V
and Jastroch M: An ancient look at UCP1. Biochim Biophys
Acta-Bioenergetics. 1777:S24. 2008. View Article : Google Scholar
|
10
|
Sreedhar A and Zhao YF: Uncoupling protein
2 and metabolic diseases. Mitochondrion. 34:135–140. 2017.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Zinser E and Daum G: Isolation and
biochemical characterization of organelles from the Yeast,
Saccharomyces cerevisiae. Yeast. 11:493–536. 1995. View Article : Google Scholar : PubMed/NCBI
|
12
|
Horvath SE and Daum G: Lipids of
mitochondria. Prog Lipid Res. 52:590–614. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lawson JE, Gawaz M, Klingenberg M and
Douglas MG: Structure-function studies of adenine nucleotide
transport in mitochondria. I. Construction and genetic analysis of
yeast mutants encoding the ADP/ATP carrier protein of mitochondria.
J Biol Chem. 265:14195–14201. 1990.PubMed/NCBI
|
14
|
Claypool SM: Cardiolipin, a critical
determinant of mitochondrial carrier protein assembly and function.
Biochim Biophys Acta. 1788:2059–2068. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
The UniProt C: UniProt: the universal
protein knowledgebase. Nucleic Acids Res. 45:D158–D169. 2017.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Gautier R, Douguet D, Antonny B and Drin
G: HELIQUEST: a web server to screen sequences with specific
α-helical properties. Bioinformatics. 24:2101–2102. 2008.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Chou KC, Lin WZ and Xiao X: Wenxiang: a
web-server for drawing wenxiang diagrams. Nat Sci. 3:862–865.
2011.
|
18
|
Biasini M, Bienert S, Waterhouse A, Arnold
K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M,
Bordoli L, et al: SWISS-MODEL: modelling protein tertiary and
quaternary structure using evolutionary information. Nucleic Acids
Res. 42:W252–W258. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Webb B and Sali A: Protein structure
modeling with MODELLER. Methods Mol Biol. 1654:39–54. 2017.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Laskowski RA, Rullmannn JA, MacArthur MW,
Kaptein R and Thornton JM: AQUA and PROCHECK-NMR: programs for
checking the quality of protein structures solved by NMR. J Biomol
NMR. 8:477–486. 1996. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yuan S, Chan HCS, Filipek S and Vogel H:
PyMOL and Inkscape bridge the data and the data visualization.
Structure. 24:2041–2042. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Laskowski RA and Swindells MB:
LigPlot+multiple ligand-protein interaction diagrams for
drug discovery. J Chem Inf Model. 51:2778–2786. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lee Y, Willers C, Kunji ERS and Crichton
PG: Uncoupling protein 1 binds one nucleotide per monomer and is
stabilized by tightly bound cardiolipin. Proc Natl Acad Sci USA.
112:pp. 6973–6978. 2015; View Article : Google Scholar : PubMed/NCBI
|
24
|
Keller RC: The prediction of novel
multiple lipid-binding regions in protein translocation motor
proteins: A possible general feature. Cell Mol Biol Lett. 16:40–54.
2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Cypess AM, Lehman S, Williams G, Tal I,
Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, et al:
Identification and importance of brown adipose tissue in adult
humans. N Engl J Med. 360:1509–1517. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lau AZ, Chen AP, Gu Y, Ladouceur-Wodzak M,
Nayak KS and Cunningham CH: Noninvasive identification and
assessment of functional brown adipose tissue in rodents using
hyperpolarized 13C imaging. Int J Obes (Lond). 38:126–131. 2014.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Ong FJ, Ahmed BA, Oreskovich SM, Blondin
DP, Haq T, Konyer NB, Noseworthy MD, Haman F, Carpentier AC,
Morrison KM, et al: Recent advances in the detection of brown
adipose tissue in adult humans: a review. Clin Sci (Lond).
132:1039–1054. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Nury H, Dahout-Gonzalez C, Trezeguet V,
Lauquin G, Brandolin G and Pebay-Peyroula E: Structural basis for
lipid-mediated interactions between mitochondrial ADP/ATP carrier
monomers. FEBS Lett. 579:6031–6036. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ruprecht JJ, Hellawell AM, Harding M,
Crichton PG, McCoy AJ and Kunji ER: Structures of yeast
mitochondrial ADP/ATP carriers support a domain-based
alternating-access transport mechanism. Proc Natl Acad Sci USA.
111:pp. E426–E434. 2014; View Article : Google Scholar : PubMed/NCBI
|
30
|
Berardi MJ, Shih WM, Harrison SC and Chou
JJ: Mitochondrial uncoupling protein 2 structure determined by NMR
molecular fragment searching. Nature. 476:109–113. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Contreras FX, Ernst AM, Wieland F and
Brugger B: Specificity of intramembrane protein-lipid interactions.
Cold Spring Harb Perspect Biol. 3:a0047052011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Gromiha MM, Oobatake M, Kono H, Uedaira H
and Sarai A: Relationship between amino acid properties and protein
stability: buried mutations. J Protein Chem. 18:565–578. 1999.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Gromiha MM, Oobatake M, Kono H, Uedaira H
and Sarai A: Role of structural and sequence information in the
prediction of protein stability changes: comparison between buried
and partially buried mutations. Protein Eng. 12:549–555. 1999.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Gromiha MM, Oobatake M and Sarai A:
Important amino acid properties for enhanced thermostability from
mesophilic to thermophilic proteins. Biophys Chem. 82:51–67. 1999.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Guo R, Zong S, Wu M, Gu J and Yang M:
Architecture of human mitochondrial respiratory megacomplex
I2III2IV2. Cell. 170:1247–1257. 2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Planas-Iglesias J, Dwarakanath H,
Mohammadyani D, Yanamala N, Kagan VE and Klein-Seetharaman J:
Cardiolipin interactions with proteins. Biophys J. 109:1282–1294.
2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Sinibaldi F, Howes BD, Droghetti E,
Polticelli F, Piro MC, Di Pierro D, Fiorucci L, Coletta M,
Smulevich G and Santucci R: Role of lysines in cytochrome
c-cardiolipin interaction. Biochemistry. 52:4578–4588. 2013.
View Article : Google Scholar : PubMed/NCBI
|