1
|
Graham MR, Baker JS, Evans P, Kicman A,
Cowan D, Hullin D, Thomas N and Davies B: Physical effects of
short-term recombinant human growth hormone administration in
abstinent steroid dependency. Horm Res. 69:343–354. 2008.PubMed/NCBI View Article : Google Scholar
|
2
|
Jenkins PJ: Growth hormone and exercise.
Clin Endocrinol (Oxf). 50:683–689. 1999.PubMed/NCBI View Article : Google Scholar
|
3
|
Castellano G, Affuso F, Conza PD and Fazio
S: The GH/IGF-1 Axis and Heart Failure. Curr Cardiol Rev.
5:203–215. 2009.PubMed/NCBI View Article : Google Scholar
|
4
|
Colao A, Marzullo P, Di Somma C and
Lombardi G: Growth hormone and the heart. Clin Endocrinol (Oxf).
54:137–154. 2001.PubMed/NCBI View Article : Google Scholar
|
5
|
World Anti-Doping Agency: The 2010
Prohibited List. International Standard. https://www.wada-ama.org/sites/default/files/resources/files/WADA_Prohibited_List_2010_EN.pdf.
Accessed September 19. 2009.
|
6
|
Voss SC, Giraud S, Alsayrafi M, Bourdon
PC, Schumacher YO, Saugy M and Robinson N: The effect of a period
of intensive exercise on the isoform test to detect growth hormone
doping in sports. Growth Horm IGF Res. 23:105–108. 2013.PubMed/NCBI View Article : Google Scholar
|
7
|
Ma Z, Qi J, Meng S, Wen B and Zhang J:
Swimming exercise training-induced left ventricular hypertrophy
involves microRNAs and synergistic regulation of the PI3K/AKT/mTOR
signaling pathway. Eur J Appl Physiol. 113:2473–2486.
2013.PubMed/NCBI View Article : Google Scholar
|
8
|
Heineke J and Molkentin JD: Regulation of
cardiac hypertrophy by intracellular signalling pathways. Nat Rev
Mol Cell Biol. 7:589–600. 2006.PubMed/NCBI View
Article : Google Scholar
|
9
|
Guertin DA and Sabatini DM: Defining the
role of mTOR in cancer. Cancer Cell. 12:9–22. 2007.PubMed/NCBI View Article : Google Scholar
|
10
|
Sugden PH and Clerk A: ‘Stress-responsive’
mitogen-activated protein kinases (c-Jun N-terminal kinases and p38
mitogen-activated protein kinases) in the myocardium. Circ Res.
83:345–352. 1998.PubMed/NCBI
|
11
|
Purcell NH, Wilkins BJ, York A,
Saba-El-Leil MK, Meloche S, Robbins J and Molkentin JD: Genetic
inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and
heart failure but has no effect on hypertrophy in vivo. Proc Natl
Acad Sci USA. 104:14074–14079. 2007.PubMed/NCBI View Article : Google Scholar
|
12
|
Hutvágner G and Zamore PD: A microRNA in a
multiple-turnover RNAi enzyme complex. Science. 297:2056–2060.
2002.PubMed/NCBI View Article : Google Scholar
|
13
|
Bartel DP: MicroRNAs: genomics,
biogenesis, mechanism, and function. Cell. 116:281–297.
2004.PubMed/NCBI View Article : Google Scholar
|
14
|
Bao H, Hu S, Zhang C, Shi S, Qin W, Zeng
C, Zen K and Liu Z: Inhibition of miRNA-21 prevents fibrogenic
activation in podocytes and tubular cells in IgA nephropathy.
Biochem Biophys Res Commun. 444:455–460. 2014.PubMed/NCBI View Article : Google Scholar
|
15
|
Da Costa Martins PA and De Windt LJ:
Targeting microRNA targets. Circ Res. 111:506–508. 2012.PubMed/NCBI View Article : Google Scholar
|
16
|
Cheng YS, Tang YQ, Dai DZ and Dai Y: AQP4
knockout mice manifest abnormal expressions of calcium handling
proteins possibly due to exacerbating pro-inflammatory factors in
the heart. Biochem Pharmacol. 83:97–105. 2012.PubMed/NCBI View Article : Google Scholar
|
17
|
Da Costa Martins PA and De Windt LJ:
MicroRNAs in control of cardiac hypertrophy. Cardiovasc Res.
93:563–572. 2012.PubMed/NCBI View Article : Google Scholar
|
18
|
Wang L, Li X, Zhou Y, Shi H, Xu C, He H,
Wang S, Xiong X, Zhang Y, Du Z and et al: Downregulation of miR-133
via MAPK/ERK signaling pathway involved in nicotine-induced
cardiomyocyte apoptosis. Naunyn Schmiedebergs Arch Pharmacol.
387:197–206. 2014.PubMed/NCBI View Article : Google Scholar
|
19
|
Dong DL, Chen C, Huo R, Wang N, Li Z, Tu
YJ, Hu JT, Chu X, Huang W and Yang BF: Reciprocal repression
between microRNA-133 and calcineurin regulates cardiac hypertrophy:
A novel mechanism for progressive cardiac hypertrophy.
Hypertension. 55:946–952. 2010.PubMed/NCBI View Article : Google Scholar
|
20
|
Dong S, Ma W, Hao B, Hu F, Yan L, Yan X,
Wang Y, Chen Z and Wang Z: microRNA-21 promotes cardiac fibrosis
and development of heart failure with preserved left ventricular
ejection fraction by up-regulating Bcl-2. Int J Clin Exp Pathol.
7:565–574. 2014.PubMed/NCBI
|
21
|
DA Silva ND Jr, Fernandes T, Soci UP,
Monteiro AW and Phillips MI and DE Oliveira EM: Swimming training
in rats increases cardiac MicroRNA-126 expression and angiogenesis.
Med Sci Sports Exerc. 44:1453–1462. 2012.PubMed/NCBI View Article : Google Scholar
|
22
|
Oliveira EM, Sasaki MS, Cerêncio M,
Baraúna VG and Krieger JE: Local renin-angiotensin system regulates
left ventricular hypertrophy induced by swimming training
independent of circulating renin: A pharmacological study. J Renin
Angiotensin Aldosterone Syst. 10:15–23. 2009.PubMed/NCBI View Article : Google Scholar
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
24
|
Hirata Y, Murai N, Yanaihara N, Saito M,
Saito M, Urashima M, Murakami Y, Matsufuji S and Okamoto A:
MicroRNA-21 is a candidate driver gene for 17q23-25 amplification
in ovarian clear cell carcinoma. BMC Cancer. 14(799)2014.PubMed/NCBI View Article : Google Scholar
|
25
|
Iijima Y, Seike M, Noro R, Ibi T, Takeuchi
S, Mikami I, Koizumi K, Usuda J and Gemma A: Prognostic
significance of PIK3CA and SOX2 in Asian patients with lung
squamous cell carcinoma. Int J Oncol. 46:505–512. 2015.PubMed/NCBI View Article : Google Scholar
|
26
|
Zhou X, Tan M, Stone Hawthorne V, Klos KS,
Lan KH, Yang Y, Yang W, Smith TL, Shi D and Yu D: Activation of the
Akt/mammalian target of rapamycin/4E-BP1 pathway by ErbB2
overexpression predicts tumor progression in breast cancers. Clin
Cancer Res. 10:6779–6788. 2004.PubMed/NCBI View Article : Google Scholar
|
27
|
Domenighetti AA, Danes VR, Curl CL,
Favaloro JM, Proietto J and Delbridge LM: Targeted GLUT-4
deficiency in the heart induces cardiomyocyte hypertrophy and
impaired contractility linked with Ca(2+) and proton flux
dysregulation. J Mol Cell Cardiol. 48:663–672. 2010.PubMed/NCBI View Article : Google Scholar
|
28
|
Chung E and Diffee GM: Effect of aging on
power output properties in rat skinned cardiac myocytes. J Gerontol
A Biol Sci Med Sci. 66:1267–1273. 2011.PubMed/NCBI View Article : Google Scholar
|
29
|
Vikstrom KL, Bohlmeyer T, Factor SM and
Leinwand LA: Hypertrophy, pathology, and molecular markers of
cardiac pathogenesis. Circ Res. 82:773–778. 1998.PubMed/NCBI
|
30
|
Saugy M, Robinson N, Saudan C, Baume N,
Avois L and Mangin P: Human growth hormone doping in sport. Br J
Sports Med. 40((Suppl 1)): i35–i39. 2006.PubMed/NCBI View Article : Google Scholar
|
31
|
Cheng Y, Ji R, Yue J, Yang J, Liu X, Chen
H, Dean DB and Zhang C: MicroRNAs are aberrantly expressed in
hypertrophic heart: Do they play a role in cardiac hypertrophy? Am
J Pathol. 170:1831–1840. 2007.PubMed/NCBI View Article : Google Scholar
|
32
|
Soci UP, Fernandes T, Hashimoto NY, Mota
GF, Amadeu MA, Rosa KT, Irigoyen MC, Phillips MI and Oliveira EM:
MicroRNAs 29 are involved in the improvement of ventricular
compliance promoted by aerobic exercise training in rats. Physiol
Genomics. 43:665–673. 2011.PubMed/NCBI View Article : Google Scholar
|
33
|
McMullen JR and Jennings GL: Differences
between pathological and physiological cardiac hypertrophy: Novel
therapeutic strategies to treat heart failure. Clin Exp Pharmacol
Physiol. 34:255–262. 2007.PubMed/NCBI View Article : Google Scholar
|
34
|
McMullen JR, Shioi T, Zhang L, Tarnavski
O, Sherwood MC, Kang PM and Izumo S: Phosphoinositide
3-kinase(p110alpha) plays a critical role for the induction of
physiological, but not pathological, cardiac hypertrophy. Proc Natl
Acad Sci USA. 100:12355–12360. 2003.PubMed/NCBI View Article : Google Scholar
|
35
|
Maehama T and Dixon JE: PTEN: A tumour
suppressor that functions as a phospholipid phosphatase. Trends
Cell Biol. 9:125–128. 1999.PubMed/NCBI View Article : Google Scholar
|
36
|
Crackower MA, Oudit GY, Kozieradzki I,
Sarao R, Sun H, Sasaki T, Hirsch E, Suzuki A, Shioi T, Irie-Sasaki
J and et al: Regulation of myocardial contractility and cell size
by distinct PI3K-PTEN signaling pathways. Cell. 110:737–749.
2002.PubMed/NCBI View Article : Google Scholar
|
37
|
Bai L, Liang R, Yang Y, Hou X, Wang Z, Zhu
S, Wang C, Tang Z and Li K: MicroRNA-21 Regulates PI3K/Akt/mTOR
Signaling by Targeting TGFβI during Skeletal Muscle Development in
Pigs. PLoS One. 10(e0119396)2015.PubMed/NCBI View Article : Google Scholar
|
38
|
DeBosch B, Treskov I, Lupu TS, Weinheimer
C, Kovacs A, Courtois M and Muslin AJ: Akt1 is required for
physiological cardiac growth. Circulation. 113:2097–2104.
2006.PubMed/NCBI View Article : Google Scholar
|
39
|
Cho H, Thorvaldsen JL, Chu Q, Feng F and
Birnbaum MJ: Akt1/PKBalpha is required for normal growth but
dispensable for maintenance of glucose homeostasis in mice. J Biol
Chem. 276:38349–38352. 2001.PubMed/NCBI View Article : Google Scholar
|
40
|
Shioi T, McMullen JR, Tarnavski O,
Converso K, Sherwood MC, Manning WJ and Izumo S: Rapamycin
attenuates load-induced cardiac hypertrophy in mice. Circulation.
107:1664–1670. 2003.PubMed/NCBI View Article : Google Scholar
|
41
|
Leontieva OV, Paszkiewicz GM and
Blagosklonny MV: Mechanistic or mammalian target of rapamycin
(mTOR) may determine robustness in young male mice at the cost of
accelerated aging. Aging (Albany NY). 4:899–916. 2012.PubMed/NCBI View Article : Google Scholar
|
42
|
Chen JF, Mandel EM, Thomson JM, Wu Q,
Callis TE, Hammond SM, Conlon FL and Wang DZ: The role of
microRNA-1 and microRNA-133 in skeletal muscle proliferation and
differentiation. Nat Genet. 38:228–233. 2006.PubMed/NCBI View
Article : Google Scholar
|
43
|
Horie T, Ono K, Nishi H, Iwanaga Y, Nagao
K, Kinoshita M, Kuwabara Y, Takanabe R, Hasegawa K, Kita T and et
al: MicroRNA-133 regulates the expression of GLUT4 by targeting
KLF15 and is involved in metabolic control in cardiac myocytes.
Biochem Biophys Res Commun. 389:315–320. 2009.PubMed/NCBI View Article : Google Scholar
|
44
|
van Rooij E, Sutherland LB, Liu N,
Williams AH, McAnally J, Gerard RD, Richardson JA and Olson EN: A
signature pattern of stress-responsive microRNAs that can evoke
cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA.
103:18255–18260. 2006.PubMed/NCBI View Article : Google Scholar
|
45
|
Abdellatif M: The role of microRNA-133 in
cardiac hypertrophy uncovered. Circ Res. 106:16–18. 2010.PubMed/NCBI View Article : Google Scholar
|