Aberrant mRNA splicing generates oncogenic RNA isoforms and contributes to the development and progression of cholangiocarcinoma (Review)
- Authors:
- Juthamas Yosudjai
- Sopit Wongkham
- Siwanon Jirawatnotai
- Worasak Kaewkong
-
Affiliations: Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand, Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand, Siriraj Center for Research of Excellence (SiCORE) for System Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Medical School, Mahidol University, Bangkok 10700, Thailand - Published online on: January 25, 2019 https://doi.org/10.3892/br.2019.1188
- Pages: 147-155
-
Copyright: © Yosudjai et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Macias RI: Cholangiocarcinoma: And pharmacological Biology, Clinical management perspectives. ISRN Hepatol. 2014.https://doi.org/10.1155/2014/828074. PubMed/NCBI View Article : Google Scholar | |
Banales JM, Cardinale V, Carpino G, Marzioni M, Andersen JB, Invernizzi P, Lind GE, Folseraas T, Forbes SJ and Fouassier L: et al Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol 13. 261–280. 2016.PubMed/NCBI View Article : Google Scholar | |
Sripa B and Pairojkul C: Cholangiocarcinoma: Lessons from Thailand. Curr Opin Gastroenterol 24. 349–356. 2008.PubMed/NCBI View Article : Google Scholar | |
Thuwajit C, Thuwajit P, Kaewkes S, Sripa B, Uchida K, Miwa M and Wongkham S: Increased cell proliferation of mouse fibroblast NIH-3T3 in vitro induced by excretory/secretory product(s) from Opisthorchis viverrini. Parasitology 129. 455–464. 2004.PubMed/NCBI | |
Srivatanakul P, Ohshima H, Khlat M, Parkin M, Sukaryodhin S, Brouet I and Bartsch H: Opisthorchis viverrini infestation and endogenous nitrosamines as risk factors for cholangiocarcinoma in Thailand. Int J Cancer 48. 821–825. 1991.PubMed/NCBI View Article : Google Scholar | |
Patel T: New insights into the molecular pathogenesis of intrahepatic cholangiocarcinoma. J Gastroenterol 49. 165–172. 2014.PubMed/NCBI View Article : Google Scholar | |
Marks EI and Yee NS: Molecular genetics and targeted therapeutics in biliary tract carcinoma. World J Gastroenterol 22. 1335–1347. 2016.PubMed/NCBI View Article : Google Scholar | |
Rizvi S, Borad MJ, Patel T and Gores GJ: Cholangiocarcinoma: Molecular pathways and therapeutic opportunities. Semin Liver Dis 34. 456–464. 2014.PubMed/NCBI View Article : Google Scholar | |
Goldstein D, Lemech C and Valle J: New molecular and immunotherapeutic approaches in biliary cancer. ESMO Open 2 (Suppl 1). (e000152)2017.PubMed/NCBI View Article : Google Scholar | |
Roy B, Haupt LM and Griffiths LR: Review: Alternative splicing (AS) of genes as an approach for generating protein complexity. Curr Genomics 14. 182–194. 2013.PubMed/NCBI View Article : Google Scholar | |
Douglas AG and Wood MJ: RNA splicing: Disease and therapy. Brief Funct Genomics 10. 151–164. 2011.PubMed/NCBI View Article : Google Scholar | |
Ghigna C, Valacca C and Biamonti G: Alternative splicing and tumor progression. Curr Genomics 9. 556–570. 2008.PubMed/NCBI View Article : Google Scholar | |
Tazi J, Bakkour N and Stamm S: Alternative splicing and disease. Biochim Biophys Acta 1792. 14–26. 2009.PubMed/NCBI View Article : Google Scholar | |
Venables JP: Aberrant alternative splicing in cancer. Cancer Res 64. 7647–7654. 2004.PubMed/NCBI View Article : Google Scholar | |
Ladomery M: Aberrant alternative splicing is another hallmark of cancer. Int J Cell Biol 2013. 463786:2013.PubMed/NCBI View Article : Google Scholar | |
Pio R and Montuenga LM: Alternative splicing in lung cancer. J Thorac Oncol 4. 674–678. 2009.PubMed/NCBI View Article : Google Scholar | |
Martínez-Montiel N, Anaya-Ruiz M, Pérez-Santos M and Martínez-Contreras RD: Alternative splicing in breast cancer and the potential development of therapeutic tools. Genes (Basel) 8. pii(E217)2017.PubMed/NCBI View Article : Google Scholar | |
Xiping Z, Qingshan W, Shuai Z, Hongjian Y and Xiaowen D: A summary of relationships between alternative splicing and breast cancer. Oncotarget 8. 51986–51993. 2017.PubMed/NCBI View Article : Google Scholar | |
Liu L, Xie S, Zhang C and Zhu F: Aberrant regulation of alternative pre-mRNA splicing in hepatocellular carcinoma. Crit Rev Eukaryot Gene Expr 24. 133–149. 2014.PubMed/NCBI View Article : Google Scholar | |
Zhang L, Liu X, Zhang X and Chen R: Identification of important long non-coding RNAs and highly recurrent aberrant alternative splicing events in hepatocellular carcinoma through integrative analysis of multiple RNA-Seq datasets. Mol Genet Genomics 291. 1035–1051. 2016.PubMed/NCBI View Article : Google Scholar | |
Ghigna C, Giordano S, Shen H, Benvenuto F, Castiglioni F, Comoglio PM, Green MR, Riva S and Biamonti G: Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene. Mol Cell 20. 881–890. 2005.PubMed/NCBI View Article : Google Scholar | |
Stallings-Mann ML, Waldmann J, Zhang Y, Miller E, Gauthier ML, Visscher DW, Downey GP, Radisky ES, Fields AP and Radisky DC: Matrix metalloproteinase induction of Rac1b, a key effector of lung cancer progression. Sci Transl Med 4. 142ra95:2012.PubMed/NCBI View Article : Google Scholar | |
Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C, Moriceau G, Shi H, Atefi M, Titz B and Gabay MT: et al RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480. 387–390. 2011.PubMed/NCBI View Article : Google Scholar | |
He C, Zhou F, Zuo Z, Cheng H and Zhou R: A global view of cancer-specific transcript variants by subtractive transcriptome-wide analysis. PLoS One 4. e4732:2009.PubMed/NCBI View Article : Google Scholar | |
Chen Y, Liu D, Liu P, Chen Y, Yu H and Zhang Q: Identification of biomarkers of intrahepatic cholangiocarcinoma via integrated analysis of mRNA and miRNA microarray data. Mol Med Rep 15. 1051–1056. 2017.PubMed/NCBI View Article : Google Scholar | |
Yu Q and Stamenkovic I: Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14. 163–176. 2000.PubMed/NCBI View Article : Google Scholar | |
Nam K, Oh S, Lee KM, Yoo SA and Shin I: CD44 regulates cell proliferation, migration, and invasion via modulation of c-Src transcription in human breast cancer cells. Cell Signal 27. 1882–1894. 2015.PubMed/NCBI View Article : Google Scholar | |
Saito S, Okabe H, Watanabe M, Ishimoto T, Iwatsuki M, Baba Y, Tanaka Y, Kurashige J, Miyamoto Y and Baba H: CD44v6 expression is related to mesenchymal phenotype and poor prognosis in patients with colorectal cancer. Oncol Rep 29. 1570–1578. 2013.PubMed/NCBI View Article : Google Scholar | |
Wang J, Xiao L, Luo CH, Zhou H, Zeng L, Zhong J, Tang Y, Zhao XH, Zhao M and Zhang Y: CD44v6 promotes β-catenin and TGF-β expression, inducing aggression in ovarian cancer cells. Mol Med Rep 11. 3505–3510. 2015.PubMed/NCBI View Article : Google Scholar | |
Yamaguchi A, Zhang M, Goi T, Fujita T, Niimoto S, Katayama K and Hirose K: Expression of variant CD44 containing variant exon v8-10 in gallbladder cancer. Oncol Rep 7. 541–544. 2000.PubMed/NCBI View Article : Google Scholar | |
Sosulski A, Horn H, Zhang L, Coletti C, Vathipadiekal V, Castro CM, Birrer MJ, Nagano O, Saya H and Lage K: et al CD44 splice variant v8-10 as a marker of serous ovarian cancer prognosis. PLoS One 11. e0156595:2016.PubMed/NCBI View Article : Google Scholar | |
Yun KJ, Yoon KH and Han WC: Immunohistochemical study for CD44v6 in hepatocellular carcinoma and cholangiocarcinoma. Cancer Res Treat 34. 170–174. 2002.PubMed/NCBI View Article : Google Scholar | |
Thanee M, Loilome W, Techasen A, Sugihara E, Okazaki S, Abe S, Ueda S, Masuko T, Namwat N and Khuntikeo N: et al CD44 variant-dependent redox status regulation in liver fluke-associated cholangiocarcinoma: A target for cholangiocarcinoma treatment. Cancer Sci 107. 991–1000. 2016.PubMed/NCBI View Article : Google Scholar | |
Liu H, Dong W, Lin Z, Lu J, Wan H, Zhou Z and Liu Z: CCN4 regulates vascular smooth muscle cell migration and proliferation. Mol Cells 36. 112–118. 2013.PubMed/NCBI View Article : Google Scholar | |
Ono M, Inkson CA, Kilts TM and Young MF: WISP-1/CCN4 regulates osteogenesis by enhancing BMP-2 activity. J Bone Miner Res 26. 193–208. 2011.PubMed/NCBI View Article : Google Scholar | |
Tanaka S and Sugimachi K, Saeki H, Kinoshita J, Ohga T, Shimada M, Maehara Y and Sugimachi K: A novel variant of WISP1 lacking a Von Willebrand type C module overexpressed in scirrhous gastric carcinoma. Oncogene 20. 5525–5532. 2001.PubMed/NCBI View Article : Google Scholar | |
Tanaka S, Sugimachi K, Kameyama T, Maehara S, Shirabe K, Shimada M, Wands JR and Maehara Y: Human WISP1v, a member of the CCN family, is associated with invasive cholangiocarcinoma. Hepatology 37. 1122–1129. 2003.PubMed/NCBI View Article : Google Scholar | |
Wu Q, Jorgensen M, Song J, Zhou J, Liu C and Pi L: Members of the Cyr61/CTGF/NOV protein family: Emerging players in hepatic progenitor cell activation and intrahepatic cholangiocarcinoma. Gastroenterol Res Pract 2016. 2313850:2016.PubMed/NCBI View Article : Google Scholar | |
Helps NR, Luo X, Barker HM and Cohen PT: NIMA-related kinase 2 (Nek2), a cell-cycle-regulated protein kinase localized to centrosomes, is complexed to protein phosphatase 1. Biochem J 349. 509–518. 2000.PubMed/NCBI View Article : Google Scholar | |
Fardilha M, Wu W, Sá R, Fidalgo S, Sousa C, Mota C, da Cruz e Silva OA and da Cruz e Silva EF: Alternatively spliced protein variants as potential therapeutic targets for male infertility and contraception. Ann N Y Acad Sci 1030. 468–478. 2004.PubMed/NCBI View Article : Google Scholar | |
Zhong X, Guan X, Dong Q, Yang S, Liu W and Zhang L: Examining Nek2 as a better proliferation marker in non-small cell lung cancer prognosis. Tumour Biol 35. 7155–7162. 2014.PubMed/NCBI View Article : Google Scholar | |
Wang S, Li W, Liu N, Zhang F, Liu H, Liu F, Liu J, Zhang T and Niu Y: Nek2A contributes to tumorigenic growth and possibly functions as potential therapeutic target for human breast cancer. J Cell Biochem 113. 1904–1914. 2012.PubMed/NCBI View Article : Google Scholar | |
Lai XB, Nie YQ, Huang HL, Li YF, Cao CY, Yang H, Shen B and Feng ZQ: NIMA-related kinase 2 regulates hepatocellular carcinoma cell growth and proliferation. Oncol Lett 13. 1587–1594. 2017.PubMed/NCBI View Article : Google Scholar | |
Kokuryo T, Senga T, Yokoyama Y, Nagino M, Nimura Y and Hamaguchi M: Nek2 as an effective target for inhibition of tumorigenic growth and peritoneal dissemination of cholangiocarcinoma. Cancer Res 67. 9637–9642. 2007.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Shen H, Yin Q, Zhang T, Liu Z, Zhang W and Niu Y: Effect of NIMA-related kinase 2B on the sensitivity of breast cancer to paclitaxel in vitro and vivo. Tumour Biol 39. 1010428317699754:2017.PubMed/NCBI View Article : Google Scholar | |
Xue L, Aihara E, Podolsky DK, Wang TC and Montrose MH: In vivo action of trefoil factor 2 (TFF2) to speed gastric repair is independent of cyclooxygenase. Gut 59. 1184–1191. 2010.PubMed/NCBI View Article : Google Scholar | |
Kosriwong K, Menheniott TR, Giraud AS, Jearanaikoon P, Sripa B and Limpaiboon T: Trefoil factors: Tumor progression markers and mitogens via EGFR/MAPK activation in cholangiocarcinoma. World J Gastroenterol 17. 1631–1641. 2011.PubMed/NCBI View Article : Google Scholar | |
Kamlua S, Patrakitkomjorn S, Jearanaikoon P, Menheniott TR, Giraud AS and Limpaiboon T: A novel TFF2 splice variant (∆EX2TFF2) correlates with longer overall survival time in cholangiocarcinoma. Oncol Rep 27. 1207–1212. 2012.PubMed/NCBI View Article : Google Scholar | |
Kim M, Grimmig T, Grimm M, Lazariotou M, Meier E, Rosenwald A, Tsaur I, Blaheta R, Heemann U and Germer CT: et al Expression of Foxp3 in colorectal cancer but not in Treg cells correlates with disease progression in patients with colorectal cancer. PLoS One 8. e53630:2013.PubMed/NCBI View Article : Google Scholar | |
Harada K, Shimoda S, Kimura Y, Sato Y, Ikeda H, Igarashi S, Ren XS, Sato H and Nakanuma Y: Significance of immunoglobulin G4 (IgG4)-positive cells in extrahepatic cholangiocarcinoma: Molecular mechanism of IgG4 reaction in cancer tissue. Hepatology 56. 157–164. 2012.PubMed/NCBI View Article : Google Scholar | |
Ebert LM, Tan BS Browning J, Svobodova S, Russell SE, Kirkpatrick N, Gedye C, Moss D, Ng SP and MacGregor D: et al The regulatory T cell-associated transcription factor FoxP3 is expressed by tumor cells. Cancer Res 68. 3001–3009. 2008.PubMed/NCBI View Article : Google Scholar | |
Hu W, Feng Z and Levine AJ: The regulation of multiple p53 stress responses is mediated through MDM2. Genes Cancer 3. 199–208. 2012.PubMed/NCBI View Article : Google Scholar | |
Khoury MP and Bourdon JC: The isoforms of the p53 protein. Cold Spring Harb Perspect Biol 2. a000927:2010.PubMed/NCBI View Article : Google Scholar | |
Surget S, Khoury MP and Bourdon JC: Uncovering the role of p53 splice variants in human malignancy: A clinical perspective. Onco Targets Ther 7. 57–68. 2013.PubMed/NCBI View Article : Google Scholar | |
Arsic N, Gadea G, Lagerqvist EL, Busson M, Cahuzac N, Brock C, Hollande F, Gire V, Pannequin J and Roux P: The p53 isoform Δ133p53β promotes cancer stem cell potential. Stem Cell Reports 4. 531–540. 2015.PubMed/NCBI View Article : Google Scholar | |
Arsic N, Ho-Pun-Cheung A, Evelyne C, Assenat E, Jarlier M, Anguille C, Colard M, Pezet M, Roux P and Gadea G: The p53 isoform delta133p53ß regulates cancer cell apoptosis in a RhoB-dependent manner. PLoS One 12. e0172125:2017.PubMed/NCBI View Article : Google Scholar | |
Della Torre G, Pasquini G, Pilotti S, Alasio L, Civelli E, Cozzi G, Milella M, Salvetti M, Pierotti MA and Severini A: TP53 mutations and mdm2 protein overexpression in cholangiocarcinomas. Diagn Mol Pathol 9. 41–46. 2000.PubMed/NCBI | |
Tullo A, D'Erchia AM, Honda K, Kelly MD, Habib NA, Saccone C and Sbisà E: New p53 mutations in hilar cholangiocarcinoma. Eur J Clin Invest 30. 798–803. 2000.PubMed/NCBI View Article : Google Scholar | |
Liu XF, Zhang H, Zhu SG, Zhou XT, Su HL, Xu Z and Li SJ: Correlation of p53 gene mutation and expression of P53 protein in cholangiocarcinoma. World J Gastroenterol 12. 4706–4709. 2006.PubMed/NCBI View Article : Google Scholar | |
Nutthasirikul N, Limpaiboon T, Leelayuwat C, Patrakitkomjorn S and Jearanaikoon P: Ratio disruption of the ∆133p53 and TAp53 isoform equilibrium correlates with poor clinical outcome in intrahepatic cholangiocarcinoma. Int J Oncol 42. 1181–1188. 2013.PubMed/NCBI View Article : Google Scholar | |
Nutthasirikul N, Hahnvajanawong C, Techasen A, Limpaiboon T, Leelayuwat C, Chau-In S and Jearanaikoon P: Targeting the ∆133p53 isoform can restore chemosensitivity in 5-fluorouracil-resistant cholangiocarcinoma cells. Int J Oncol 47. 2153–2164. 2015.PubMed/NCBI View Article : Google Scholar | |
Liu K, Zang Y, Guo X, Wei F, Yin J, Pang L and Chen D: The Δ133p53 isoform reduces wtp53-induced stimulation of DNA Pol γ activity in the presence and absence of D4T. Aging Dis 8. 228–239. 2017.PubMed/NCBI View Article : Google Scholar | |
David CJ, Chen M, Assanah M, Canoll P and Manley JL: HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463. 364–368. 2010.PubMed/NCBI View Article : Google Scholar | |
Liu WR, Tian MX, Yang LX, Lin YL, Jin L, Ding ZB, Shen YH, Peng YF, Gao DM and Zhou J: et al PKM2 promotes metastasis by recruiting myeloid-derived suppressor cells and indicates poor prognosis for hepatocellular carcinoma. Oncotarget 6. 846–861. 2015.PubMed/NCBI View Article : Google Scholar | |
Li C, Zhao Z, Zhou Z and Liu R: PKM2 promotes cell survival and invasion under metabolic stress by enhancing Warburg effect in pancreatic ductal adenocarcinoma. Dig Dis Sci 61. 767–773. 2016.PubMed/NCBI View Article : Google Scholar | |
Lu W, Cao Y, Zhang Y, Li S, Gao J, Wang XA, Mu J, Hu YP, Jiang L and Dong P: et al Up-regulation of PKM2 promote malignancy and related to adverse prognostic risk factor in human gallbladder cancer. Sci Rep 6. 26351:2016.PubMed/NCBI View Article : Google Scholar | |
Yu G, Yu W, Jin G, Xu D, Chen Y, Xia T, Yu A, Fang W, Zhang X and Li Z: et al PKM2 regulates neural invasion of and predicts poor prognosis for human hilar cholangiocarcinoma. Mol Cancer 14. 193:2015.PubMed/NCBI View Article : Google Scholar | |
Kotani M, Tanaka I, Ogawa Y, Suganami T, Matsumoto T, Muro S, Yamamoto Y, Sugawara A, Yoshimasa Y and Sagawa N: et al Multiple signal transduction pathways through two prostaglandin E receptor EP3 subtype isoforms expressed in human uterus. J Clin Endocrinol Metab 85. 4315–4322. 2000.PubMed/NCBI View Article : Google Scholar | |
Ma J, Chen M, Xia SK, Shu W, Guo Y, Wang YH, Xu Y, Bai XM, Zhang L and Zhang H: et al Prostaglandin E2 promotes liver cancer cell growth by the upregulation of FUSE-binding protein 1 expression. Int J Oncol 42. 1093–1104. 2013.PubMed/NCBI View Article : Google Scholar | |
Kotelevets L, Foudi N, Louedec L, Couvelard A, Chastre E and Norel X: A new mRNA splice variant coding for the human EP3-I receptor isoform. Prostaglandins Leukot Essent Fatty Acids 77. 195–201. 2007.PubMed/NCBI View Article : Google Scholar | |
Du M, Shi F, Zhang H, Xia S, Zhang M, Ma J, Bai X, Zhang L, Wang Y and Cheng S: et al Prostaglandin E2 promotes human cholangiocarcinoma cell proliferation, migration and invasion through the upregulation of β-catenin expression via EP3-4 receptor. Oncol Rep 34. 715–726. 2015.PubMed/NCBI View Article : Google Scholar | |
Uthaisar K, Vaeteewoottacharn K, Seubwai W, Talabnin C, Sawanyawisuth K, Obchoei S, Kraiklang R, Okada S and Wongkham S: Establishment and characterization of a novel human cholangiocarcinoma cell line with high metastatic activity. Oncol Rep 36. 1435–1446. 2016.PubMed/NCBI View Article : Google Scholar | |
Neeb A, Hefele S, Bormann S, Parson W, Adams F, Wolf P, Miernik A, Schoenthaler M, Kroenig M and Wilhelm K: et al Splice variant transcripts of the anterior gradient 2 gene as a marker of prostate cancer. Oncotarget 5. 8681–8689. 2014.PubMed/NCBI View Article : Google Scholar | |
Yosudjai J, Inpad C, Chomwong S, Dana P, Sawanyawisuth K, Phimsen S, Wongkham S, Jirawatnotai S and Kaewkong W: An aberrantly spliced isoform of anterior gradient-2, AGR2vH promotes migration and invasion of cholangiocarcinoma cell. Biomed Pharmacother 107. 109–116. 2018.PubMed/NCBI View Article : Google Scholar | |
Yang Y and Walsh CE: Spliceosome-mediated RNA trans-splicing. Mol Ther 12. 1006–1012. 2005.PubMed/NCBI | |
Mansfield SG, Chao H and Walsh CE: RNA repair using spliceosome-mediated RNA trans-splicing. Trends Mol Med 10. 263–268. 2004.PubMed/NCBI View Article : Google Scholar | |
He X, Liao J, Liu F, Yan J, Yan J, Shang H, Dou Q, Chang Y, Lin J and Song Y: Functional repair of p53 mutation in colorectal cancer cells using trans-splicing. Oncotarget 6. 2034–2045. 2015.PubMed/NCBI View Article : Google Scholar | |
He X, Liu F, Yan J, Zhang Y, Yan J, Shang H, Dou Q, Zhao Q and Song Y: Trans-splicing repair of mutant p53 suppresses the growth of hepatocellular carcinoma cells in vitro and in vivo. Sci Rep 5. 8705:2015.PubMed/NCBI View Article : Google Scholar | |
Gout S, Brambilla E, Boudria A, Drissi R, Lantuejoul S, Gazzeri S and Eymin B: Abnormal expression of the pre-mRNA splicing regulators SRSF1, SRSF2, SRPK1 and SRPK2 in non small cell lung carcinoma. PLoS One 7. e46539:2012.PubMed/NCBI View Article : Google Scholar | |
Karni R, de Stanchina E, Lowe SW, Sinha R, Mu D and Krainer AR: The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol 14. 185–193. 2007.PubMed/NCBI View Article : Google Scholar | |
Loilome W, Yongvanit P, Wongkham C, Tepsiri N, Sripa B, Sithithaworn P, Hanai S and Miwa M: Altered gene expression in Opisthorchis viverrini-associated cholangiocarcinoma in hamster model. Mol Carcinog 45. 279–287. 2006.PubMed/NCBI View Article : Google Scholar | |
Cretu C, Schmitzová J, Ponce-Salvatierra A, Dybkov O, De Laurentiis EI, Sharma K, Will CL, Urlaub H, Lührmann R and Pena V: Molecular Architecture of SF3b and Structural Consequences of Its Cancer-Related Mutations. Mol Cell 64. 307–319. 2016.PubMed/NCBI View Article : Google Scholar | |
Darman RB, Seiler M, Agrawal AA, Lim KH, Peng S, Aird D, Bailey SL, Bhavsar EB, Chan B and Colla S: et al Cancer-Associated SF3B1 Hotspot Mutations Induce Cryptic 3' Splice Site Selection through Use of a Different Branch Point. Cell Reports 13. 1033–1045. 2015.PubMed/NCBI View Article : Google Scholar | |
Alsafadi S, Houy A, Battistella A, Popova T, Wassef M, Henry E, Tirode F, Constantinou A, Piperno-Neumann S and Roman-Roman S: et al Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. Nat Commun 7. 10615:2016.PubMed/NCBI View Article : Google Scholar | |
Furney SJ, Pedersen M, Gentien D, Dumont AG, Rapinat A, Desjardins L, Turajlic S, Piperno-Neumann S, de la Grange P and Roman-Roman S: et al SF3B1 mutations are associated with alternative splicing in uveal melanoma. Cancer Discov 3. 1122–1129. 2013.PubMed/NCBI View Article : Google Scholar | |
Maguire SL, Leonidou A, Wai P, Marchiò C, Ng CK, Sapino A, Salomon AV, Reis-Filho JS, Weigelt B and Natrajan RC: SF3B1 mutations constitute a novel therapeutic target in breast cancer. J Pathol 235. 571–580. 2015.PubMed/NCBI View Article : Google Scholar | |
Fu X, Tian M, Gu J, Cheng T, Ma D, Feng L and Xin X: SF3B1 mutation is a poor prognostic indicator in luminal B and progesterone receptor-negative breast cancer patients. Oncotarget 8. 115018–115027. 2017.PubMed/NCBI View Article : Google Scholar | |
Woolard J, Vousden W, Moss SJ, Krishnakumar A, Gammons MV, Nowak DG, Dixon N, Micklefield J, Spannhoff A and Bedford MT: et al Borrelidin modulates the alternative splicing of VEGF in favour of anti-angiogenic isoforms. Chem Sci (Camb) 2011. 273–278. 2011.PubMed/NCBI View Article : Google Scholar | |
Kaida D, Motoyoshi H, Tashiro E, Nojima T, Hagiwara M, Ishigami K, Watanabe H, Kitahara T, Yoshida T and Nakajima H: et al Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat Chem Biol 3. 576–583. 2007.PubMed/NCBI View Article : Google Scholar | |
Folco EG, Coil KE and Reed R: The anti-tumor drug E7107 reveals an essential role for SF3b in remodeling U2 snRNP to expose the branch point-binding region. Genes Dev 25. 440–444. 2011.PubMed/NCBI View Article : Google Scholar | |
Roybal GA and Jurica MS: Spliceostatin A inhibits spliceosome assembly subsequent to prespliceosome formation. Nucleic Acids Res 38. 6664–6672. 2010.PubMed/NCBI View Article : Google Scholar | |
Satoh T and Kaida D: Upregulation of p27 cyclin-dependent kinase inhibitor and a C-terminus truncated form of p27 contributes to G1 phase arrest. Sci Rep 6. 27829:2016.PubMed/NCBI View Article : Google Scholar | |
Furumai R, Uchida K, Komi Y, Yoneyama M, Ishigami K, Watanabe H, Kojima S and Yoshida M: Spliceostatin A blocks angiogenesis by inhibiting global gene expression including VEGF. Cancer Sci 101. 2483–2489. 2010.PubMed/NCBI View Article : Google Scholar | |
Radhakrishnan A, Nanjappa V, Raja R, Sathe G, Chavan S, Nirujogi RS, Patil AH, Solanki H, Renuse S and Sahasrabuddhe NA: et al Dysregulation of splicing proteins in head and neck squamous cell carcinoma. Cancer Biol Ther 17. 219–229. 2016.PubMed/NCBI View Article : Google Scholar | |
Araki S, Dairiki R, Nakayama Y, Murai A, Miyashita R, Iwatani M, Nomura T and Nakanishi O: Inhibitors of CLK protein kinases suppress cell growth and induce apoptosis by modulating pre-mRNA splicing. PLoS One 10. e0116929:2015.PubMed/NCBI View Article : Google Scholar | |
Massiello A, Salas A, Pinkerman RL, Roddy P, Roesser JR and Chalfant CE: Identification of two RNA cis-elements that function to regulate the 5' splice site selection of Bcl-x pre-mRNA in response to ceramide. J Biol Chem 279. 15799–15804. 2004.PubMed/NCBI View Article : Google Scholar | |
Dewaele M, Tabaglio T, Willekens K, Bezzi M, Teo SX, Low DH, Koh CM, Rambow F, Fiers M and Rogiers A: et al Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs tumor growth. J Clin Invest 126. 68–84. 2016.PubMed/NCBI View Article : Google Scholar | |
Nielsen TO, Sorensen S, Dagnæs-Hansen F, Kjems J and Sorensen BS: Directing HER4 mRNA expression towards the CYT2 isoform by antisense oligonucleotide decreases growth of breast cancer cells in vitro and in vivo. Br J Cancer 108. 2291–2298. 2013.PubMed/NCBI View Article : Google Scholar | |
Bauman JA, Li SD, Yang A, Huang L and Kole R: Anti-tumor activity of splice-switching oligonucleotides. Nucleic Acids Res 38. 8348–8356. 2010.PubMed/NCBI View Article : Google Scholar | |
Li Z, Li Q, Han L, Tian N, Liang Q, Li Y, Zhao X, Du C and Tian Y: Pro-apoptotic effects of splice-switching oligonucleotides targeting Bcl-x pre-mRNA in human glioma cell lines. Oncol Rep 35. 1013–1019. 2016.PubMed/NCBI View Article : Google Scholar | |
Eskens FA, Ramos FJ, Burger H, O'Brien JP, Piera A, de Jonge MJ, Mizui Y, Wiemer EA, Carreras MJ and Baselga J: et al Phase I pharmacokinetic and pharmacodynamic study of the first-in-class spliceosome inhibitor E7107 in patients with advanced solid tumors. Clin Cancer Res 19. 6296–6304. 2013.PubMed/NCBI View Article : Google Scholar | |
Hong DS, Kurzrock R, Naing A, Wheler JJ, Falchook GS, Schiffman JS, Faulkner N, Pilat MJ, O'Brien J and LoRusso P: A phase I, open-label, single-arm, dose-escalation study of E7107, a precursor messenger ribonucleic acid (pre-mRNA) splicesome inhibitor administered intravenously on days 1 and 8 every 21 days to patients with solid tumors. Invest New Drugs 32. 436–444. 2014.PubMed/NCBI View Article : Google Scholar |