Practical context of enzymatic treatment for wound healing: A secreted protease approach (Review)
- Authors:
- María Isabela Avila‑Rodríguez
- David Meléndez‑Martínez
- Cuauhtemoc Licona‑Cassani
- José Manuel Aguilar‑Yañez
- Jorge Benavides
- Mirna Lorena Sánchez
-
Affiliations: Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León 64849, Mexico, Laboratorio de Materiales Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes-Imbice-Conicet-Cicpba, Bernal, Buenos Aires B1876BXD, Argentina - Published online on: April 27, 2020 https://doi.org/10.3892/br.2020.1300
- Pages: 3-14
-
Copyright: © Avila‑Rodríguez et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Dhivya S, Padma VV and Santhini E: Wound dressings-a review. Biomedicine (Taipei). 5(22)2015.PubMed/NCBI View Article : Google Scholar | |
Nicoli Aldini N, Fini M and Giardino R: From Hippocrates to tissue engineering: Surgical strategies in wound treatment. World J Surg. 32:2114–2121. 2008.PubMed/NCBI View Article : Google Scholar | |
Sen CK: Human wounds and its burden: An updated compendium of estimates. Adv Wound Care (New Rochelle). 8:39–48. 2019.PubMed/NCBI View Article : Google Scholar | |
Järbrink K, Ni G, Sönnergren H, Schmidtchen A, Pang C, Bajpai R and Car J: Prevalence and incidence of chronic wounds and related complications: A protocol for a systematic review. Syst Rev. 5(152)2016.PubMed/NCBI View Article : Google Scholar | |
Brem H, Stojadinovic O, Diegelmann RF, Entero H, Lee B, Pastar I, Golinko M, Rosenberg H and Tomic-Canic M: Molecular markers in patients with chronic wounds to guide surgical debridement. Mol Med. 13:30–39. 2007.PubMed/NCBI View Article : Google Scholar | |
Anderson K and Hamm RL: Factors that impair wound healing. J Am Coll Clin Wound Spec. 4:84–91. 2014.PubMed/NCBI View Article : Google Scholar | |
Nussbaum SR, Carter MJ, Fife CE, DaVanzo J, Haught R, Nusgart M and Cartwright D: An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds. Value Health. 21:27–32. 2018.PubMed/NCBI View Article : Google Scholar | |
Avila Rodríguez MI, Rodríguez Barroso LG and Sánchez ML: Collagen: A review on its sources and potential cosmetic applications. J Cosmet Dermatol. 17:20–26. 2018.PubMed/NCBI View Article : Google Scholar | |
Malik M: Advanced wound care market by product type (Infection Management, Exudate Management, Active Wound Care, Therapy Devices), application (Chronic Wounds and Acute Wounds), end user (Hospitals and Community Centers)-global opportunity analysis and industry forecast, 2014-2022. 2016. | |
Khan W and Morgan-Jones R: Debridement: Defining something we all do. J Trauma Orthop. 4(48)2016. | |
Kwan SH and Ismail MN: Identification of the potential bio-active proteins associated with wound healing properties in snakehead fish (Channa striata) mucus. Curr Proteomics. 15:299–312. 2018. View Article : Google Scholar | |
Fatima L and Fatah C: Pathophysiological and pharmacological effects of snake venom components: Molecular targets. J Clin Toxicol. 4(190)2014. | |
Fierro-Arias L, Campos-Cornejo NG, Contreras-Ruiz J, Espinosa-Maceda S, López-Gehrke I, Márquez-Cárdenas R, Ramírez-Padilla M, Veras-Castillo E and Rodríguez-Alcocer AN: Productos enzimáticos (hialuronidasa, colagenasa y lipasa) y su uso en dermatología. Dermatol Rev Mex. 61:206–219. 2017. | |
Klasen HJ: A review on the nonoperative removal of necrotic tissue from burn wounds. Burns. 26:207–222. 2000.PubMed/NCBI View Article : Google Scholar | |
Gill SE and Parks WC: Metalloproteinases and their inhibitors: Regulators of wound healing. Int J Biochem Cell Biol. 40:1334–1347. 2008.PubMed/NCBI View Article : Google Scholar | |
Ayuk SM, Abrahamse H and Houreld NN: The role of matrix metalloproteinases in diabetic wound healing in relation to photobiomodulation. J Diabetes Res. 2016(2897656)2016.PubMed/NCBI View Article : Google Scholar | |
Mclennan SV, Min D and Yue DK: Matrix metalloproteinases and their roles in poor wound healing in diabetes. Wound Pract Res. 16:116–120. 2008. | |
De Marco Almeida F, de Castro Pimenta AM, Oliveira MC and De Lima ME: Venoms, toxins and derivatives from the Brazilian fauna: Valuable sources for drug discovery. Sheng Li Xue Bao. 67:261–270. 2015.PubMed/NCBI | |
Riley KN and Herman IM: Collagenase promotes the cellular responses to injury and wound healing in vivo. J Burns Wounds. 4(e8)2005.PubMed/NCBI | |
Muhammad I, Shaikh SA and Rashid HU: Role of papaya dressings in the management of diabetic foot ulcers. J Rawalpindi Med College. 18:87–89. 2014. | |
Esteban MÁ: An overview of the immunological defenses in fish skin. ISRN Immunol. 2012(853470)2012. View Article : Google Scholar | |
Horobin AJ, Shakesheff KM and Pritchard DI: Maggots and wound healing: an investigation of the effects of secretions from Lucilia sericata larvae upon the migration of human dermal fibroblasts over a fibronectin-coated surface. Wound Repair Regen. 13:422–433. 2005.PubMed/NCBI View Article : Google Scholar | |
Rajesh R, Raghavendra Gowda CD, Nataraju A, Dhananjaya BL, Kemparaju K and Vishwanath BS: Procoagulant activity of Calotropis gigantea latex associated with fibrin(ogen)olytic activity. Toxicon. 46:84–92. 2005.PubMed/NCBI View Article : Google Scholar | |
White R: The costs of wound debridement and exudate management. Br J Health Care Manag. 21:172–175. 2015. View Article : Google Scholar | |
Han G and Ceilley R: Chronic wound healing: A review of current management and treatments. Adv Ther. 34:599–610. 2017.PubMed/NCBI View Article : Google Scholar | |
Sinclair RD and Ryan TJ: Proteolytic enzymes in wound healing: The role of enzymatic debridement. Australas J Dermatol. 35:35–41. 1994.PubMed/NCBI View Article : Google Scholar | |
Glyantsev SP, Savvina TV and Zayets TL: Comparative study of proteolytic enzymes used for debridement of purulent wounds. Bull Exp Biol Med. 121:646–650. 1996. View Article : Google Scholar | |
Gray D, Acton C, Chadwick P, Fumarola S, Leaper D, Morris C, Stang D, Vowden K, Vowden P and Young T: Consensus guidance for the use of debridement techniques in the UK. Wounds UK. 7:77–84. 2011. | |
Atkin L: Understanding methods of wound debridement. Br J Nurs. (23)S10-S12, S14-S15:2014.PubMed/NCBI View Article : Google Scholar | |
Dabiri G, Damstetter E and Phillips T: Choosing a wound dressing based on common wound characteristics. Adv Wound Care (New Rochelle). 5:32–41. 2016.PubMed/NCBI View Article : Google Scholar | |
Manna B and Morrison CA: Wond debridement. StatPearls. 2019. | |
Cutting K and White R: Maceration of the skin and wound bed. 1: Its nature and causes. J Wound Care. 11:275–278. 2002. View Article : Google Scholar | |
Mahoney J and Ward J: Surgical debridement. In: Surgery in wounds. Téot L, Banwell PE and Ziegler UE (eds.) Springer Berlin Heidelberg, Berlin, Heidelberg. 67–71. 2004. | |
Bekara F, Vitse J, Fluieraru S, Masson R, Runz A, Georgescu V, Bressy G, Labbé JL, Chaput B and Herlin C: New techniques for wound management: A systematic review of their role in the management of chronic wounds. Arch Plast Surg. 45:102–110. 2018.PubMed/NCBI View Article : Google Scholar | |
Liu W, Ma K, Kwon SH, Garg R, Patta YR, Fujiwara T and Gurtner GC: The abnormal architecture of healed diabetic ulcers is the result of FAK degradation by calpain 1. J Invest Dermatol. 137:1155–1165. 2017. View Article : Google Scholar | |
Ayello EA and Cuddigan JE: Debridement: Controlling the necrotic/cellular burden. Adv Skin Wound Care. 17:66–75. quiz:76–78. 2004.PubMed/NCBI View Article : Google Scholar | |
Whitaker IS, Twine C, Whitaker MJ, Welck M, Brown CS and Shandall A: Larval therapy from antiquity to the present day: Mechanisms of action, clinical applications and future potential. Postgrad Med J. 83:409–413. 2007.PubMed/NCBI View Article : Google Scholar | |
Gray M: Is larval (maggot) debridement effective for removal of necrotic tissue from chronic wounds? J Wound Ostomy Continence Nurs. 35:378–384. 2008.PubMed/NCBI View Article : Google Scholar | |
Jordan A, Khiyani N, Bowers SR, Lukaszczyk JJ and Stawicki SP: Maggot debridement therapy: A practical review. Int J Acad Med. 4:21–34. 2018. View Article : Google Scholar | |
Brown A, Horobin A, Blount DG, Hill PJ, English J, Rich A, Williams PM and Pritchard DI: Blow fly Lucilia sericata nuclease digests DNA associated with wound slough/eschar and with Pseudomonas aeruginosa biofilm. Med Vet Entomol. 26:432–439. 2012.PubMed/NCBI View Article : Google Scholar | |
Harris LG, Nigam Y, Sawyer J, Mack D and Pritchard DI: Lucilia sericata chymotrypsin disrupts protein adhesin-mediated staphylococcal biofilm formation. Appl Environ Microbiol. 79:1393–1395. 2013.PubMed/NCBI View Article : Google Scholar | |
Parnés A and Lagan KM: Larval therapy in wound management: A review. Int J Clin Pract. 61:488–493. 2007.PubMed/NCBI View Article : Google Scholar | |
Cazander G, Pritchard DI, Nigam Y, Jung W and Nibbering PH: Multiple actions of Lucilia sericata larvae in hard-to-heal wounds: Larval secretions contain molecules that accelerate wound healing, reduce chronic inflammation and inhibit bacterial infection. Bioessays. 35:1083–1092. 2013.PubMed/NCBI View Article : Google Scholar | |
van der Plas MJ, Jukema GN, Wai SW, Dogterom-Ballering HC, Lagendijk EL, van Gulpen C, van Dissel JT, Bloemberg GV and Nibbering PH: Maggot excretions/secretions are differentially effective against biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. J Antimicrob Chemother. 61:117–122. 2008.PubMed/NCBI View Article : Google Scholar | |
Pritchard DI and Brown AP: Degradation of MSCRAMM target macromolecules in VLU slough by Lucilia sericata chymotrypsin 1 (ISP) persists in the presence of tissue gelatinase activity. Int Wound J. 12:414–421. 2015.PubMed/NCBI View Article : Google Scholar | |
Arabloo J, Grey S, Mobinizadeh M, Olyaeemanesh A, Hamouzadeh P and Khamisabadi K: Safety, effectiveness and economic aspects of maggot debridement therapy for wound healing. Med J Islam Repub Iran. 30(319)2016.PubMed/NCBI | |
Evans H: A treatment of last resort. Nurs Times. 93:62–65. 1997.PubMed/NCBI | |
Ramundo J and Gray M: Enzymatic wound debridement. J Wound Ostomy Continence Nurs. 35:273–280. 2008.PubMed/NCBI View Article : Google Scholar | |
Madhok BM, Vowden K and Vowden P: New techniques for wound debridement. Int Wound J. 10:247–251. 2013.PubMed/NCBI View Article : Google Scholar | |
Ziegler B, Hundeshagen G, Cordts T, Kneser U and Hirche C: State of the art in enzymatic debridement. Plast Aesthet Res. 5(33)2018. View Article : Google Scholar | |
Waheed H, Moin SF and Choudhary MI: Snake venom: From deadly toxins to life-saving therapeutics. Curr Med Chem. 24:1874–1891. 2017.PubMed/NCBI View Article : Google Scholar | |
Chan YS, Cheung RCF, Xia L, Wong JH, Ng TB and Chan WY: Snake venom toxins: Toxicity and medicinal applications. Appl Microbiol Biotechnol. 100:6165–6181. 2016.PubMed/NCBI View Article : Google Scholar | |
Smith RG: Enzymatic debriding agents: An evaluation of the medical literature. Ostomy Wound Manage. 54:16–34. 2008.PubMed/NCBI | |
Costa-Neto EM: Implications and applications of folk zootherapy in the state of Bahia, Northeastern Brazil. Sust Dev. 12:161–174. 2004. View Article : Google Scholar | |
Manan Mat Jais A: Pharmacognosy and pharmacology of Haruan (Channa striatus), a medicinal fish with wound healing properties. Bol Latinoam Caribe Plant Med Aromaticas. 6:52–60. 2007. | |
Akunne TC, Okafor SN, Okechukwu DC, Nwankwor SS, Emene JO and Okoro BN: Catfish (Clarias gariepinus) slime coat possesses antimicrobial and wound healing activities. UK J Pharm Biosci. 4:81–87. 2016. View Article : Google Scholar | |
Al-Hassan J, Thomson M and Griddle RS: Accelerated wound healing by a preparation from skin of the Arabian gulf catfish. Lancet. 321:1043–1044. 1983.PubMed/NCBI View Article : Google Scholar | |
Ferreira BA, Deconte SR, de Moura FBR, Tomiosso TC, Clissa PB, Andrade SP and Araújo FA: Inflammation, angiogenesis and fibrogenesis are differentially modulated by distinct domains of the snake venom metalloproteinase jararhagin. Int J Biol Macromol. 119:1179–1187. 2018.PubMed/NCBI View Article : Google Scholar | |
Ferreira RS Jr, de Barros LC, Abbade LPF, Barraviera SRCS, Silvares MRC, de Pontes LG, Dos Santos LD and Barraviera B: Heterologous fibrin sealant derived from snake venom: From bench to bedside-an overview. J Venom Anim Toxins Incl Trop Dis. 23(21)2017.PubMed/NCBI View Article : Google Scholar | |
Wang PH, Huang BS, Horng HC, Yeh CC and Chen YJ: Wound healing. J Chin Med Assoc. 81:94–101. 2018.PubMed/NCBI View Article : Google Scholar | |
Sorg H, Tilkorn DJ, Hager S, Hauser J and Mirastschijski U: Skin wound healing: An update on the current knowledge and concepts. Eur Surg Res. 58:81–94. 2017.PubMed/NCBI View Article : Google Scholar | |
Clark RAF: Wound repair: Overview and general considerations. In: Clark RAF (ed): The molecular, cellular biology of wound repair, Plenum Press, New York. 3–55. 1996. | |
Martin P and Nunan R: Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol. 173:370–378. 2015.PubMed/NCBI View Article : Google Scholar | |
Cui N, Hu M and Khalil RA: Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 147:1–73. 2017.PubMed/NCBI View Article : Google Scholar | |
Greaves NS, Ashcroft KJ, Baguneid M and Bayat A: Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. J Dermatol Sci. 72:206–217. 2013.PubMed/NCBI View Article : Google Scholar | |
Caley MP, Martins VL and O'Toole EA: Metalloproteinases and wound healing. Adv Wound Care (New Rochelle). 4:225–234. 2015.PubMed/NCBI View Article : Google Scholar | |
Krampert M, Bloch W, Sasaki T, Bugnon P, Rülicke T, Wolf E, Aumailley M, Parks WC and Werner S: Activities of the matrix metalloproteinase stromelysin-2 (MMP-10) in matrix degradation and keratinocyte organization in wounded skin. Mol Biol Cell. 15:5242–5254. 2004.PubMed/NCBI View Article : Google Scholar | |
Matziari M, Dive V and Yiotakis A: Matrix metalloproteinase 11 (MMP-11; stromelysin-3) and synthetic inhibitors. Med Res Rev. 27:528–552. 2007.PubMed/NCBI View Article : Google Scholar | |
Gomis-Rüth FX: Structural aspects of the metzincin clan of metalloendopeptidases. Mol Biotechnol. 24:157–202. 2003.PubMed/NCBI View Article : Google Scholar | |
Subramanian S, MacKinnon SL and Ross NW: A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comp Biochem Physiol B Biochem Mol Biol. 148:256–263. 2007.PubMed/NCBI View Article : Google Scholar | |
Franta Z, Vogel H, Lehmann R, Rupp O, Goesmann A and Vilcinskas A: Next generation sequencing identifies five major classes of potentially therapeutic enzymes secreted by Lucilia sericata medical maggots. Biomed Res Int. 2016(8285428)2016. View Article : Google Scholar | |
Valachova I, Majtan T, Takac P and Majtan J: Identification and characterisation of different proteases in Lucilia sericata medicinal maggots involved in maggot debridement therapy. J Appl Biomed. 12:171–177. 2014. View Article : Google Scholar | |
Tasoulis T and Isbister GK: A review and database of snake venom proteomes. Toxins (Basel). 9(pii: E290)2017.PubMed/NCBI View Article : Google Scholar | |
Chambers L, Woodrow S, Brown AP, Harris PD, Phillips D, Hall M, Church JC and Pritchard DI: Degradation of extracellular matrix components by defined proteinases from the greenbottle larva Lucilia sericata used for the clinical debridement of non-healing wounds. Br J Dermatol. 148:14–23. 2003.PubMed/NCBI View Article : Google Scholar | |
Polakovicova S, Polák Š, Kuniaková M, Čambal M, Čaplovičová M, Kozánek M, Danišovič L and Kopáni M: The effect of salivary gland extract of Lucilia sericata maggots on human dermal fibroblast proliferation within collagen/hyaluronan membrane in vitro: Transmission electron microscopy study. Adv Skin Wound Care. 28:221–226. 2015.PubMed/NCBI View Article : Google Scholar | |
Li PN, Li H, Zhong LX, Sun Y, Yu LJ, Wu ML, Zhang LL, Kong QY, Wang SY and Lv DC: Molecular events underlying maggot extract promoted rat in vivo and human in vitro skin wound healing. Wound Repair Regen. 23:65–73. 2015.PubMed/NCBI View Article : Google Scholar | |
van der Plas MJA, van der Does AM, Baldry M, Dogterom-Ballering HC, van Gulpen C, van Dissel JT, Nibbering PH and Jukema GN: Maggot excretions/secretions inhibit multiple neutrophil pro-inflammatory responses. Microbes Infect. 9:507–514. 2007.PubMed/NCBI View Article : Google Scholar | |
van der Plas MJ, van Dissel JT and Nibbering PH: Maggot secretions skew monocyte-macrophage differentiation away from a pro-inflammatory to a pro-angiogenic type. PLoS One. 4(e8071)2009.PubMed/NCBI View Article : Google Scholar | |
Honda K, Okamoto K, Mochida Y, Ishioka K, Oka M, Maesato K, Ikee R, Moriya H, Hidaka S, Ohtake T, et al: A novel mechanism in maggot debridement therapy: Protease in excretion/secretion promotes hepatocyte growth factor production. Am J Physiol Cell Physiol. 301(C1423-C1430)2011.PubMed/NCBI View Article : Google Scholar | |
Andersen AS, Sandvang D, Schnorr KM, Kruse T, Neve S, Joergensen B, Karlsmark T and Krogfelt KA: A novel approach to the antimicrobial activity of maggot debridement therapy. J Antimicrob Chemother. 65:1646–1654. 2010.PubMed/NCBI View Article : Google Scholar | |
Margolin L and Gialanella P: Assessment of the antimicrobial properties of maggots. Int Wound J. 7:202–204. 2010.PubMed/NCBI View Article : Google Scholar | |
Pöppel AK, Kahl M, Baumann A, Wiesner J, Gökçen A, Beckert A, Preissner KT, Vilcinskas A and Franta Z: A Jonah-like chymotrypsin from the therapeutic maggot Lucilia sericata plays a role in wound debridement and coagulation. Insect Biochem Mol Biol. 70:138–147. 2016.PubMed/NCBI View Article : Google Scholar | |
Mukherjee S, Gomes A and Dasgupta S: Zoo therapeutic uses of snake body parts in folk & traditional medicine. J Zool Res. 1:1–9. 2017. | |
Shephard KL: Functions for fish mucus. Rev Fish Biol Fisheries. 4:401–429. 1994. View Article : Google Scholar | |
Dash S, Das SK, Samal J and Thatoi HN: Epidermal mucus, a major determinant in fish health: A review. Iran J Vet Res. 19:72–81. 2018.PubMed/NCBI | |
Sveen L, Timmerhaus GF, Torgersen J, Ytteborg E, Jørgensen SM, Handeland SO, Stefansson SO, Nilsen TO, Calabrese S, Ebbesson LOE, et al: Impact of fish density and specific water flow on skin properties in Atlantic salmon (Salmo salar L.) post-smolts. Aquaculture. 464:629–637. 2016. View Article : Google Scholar | |
Al-Hassan JM, Thomson M, Criddle KR, Summers B and Criddle RS: Catfish epidermal secretions in response to threat or injury. Marine Biol. 88:117–123. 1985. View Article : Google Scholar | |
Krasnov A, Skugor S, Todorcevic M, Glover KA and Nilsen F: Gene expression in Atlantic salmon skin in response to infection with the parasitic copepod Lepeophtheirus salmonis, cortisol implant, and their combination. BMC Genomics. 13(130)2012.PubMed/NCBI View Article : Google Scholar | |
Schütte A, Lottaz D, Sterchi EE, Stöcker W and Becker-Pauly C: Two alpha subunits and one beta subunit of meprin zinc-endopeptidases are differentially expressed in the zebrafish Danio rerio. Biol Chem. 388:523–531. 2007.PubMed/NCBI View Article : Google Scholar | |
Nguyen TT, Mobashery S and Chang M: Roles of Matrix Metalloproteinases in Cutaneous Wound Healing. Wound Healing-New insights into Ancient Challenges. 2016.PubMed/NCBI View Article : Google Scholar | |
Sterchi EE, Stöcker W and Bond JS: Meprins, membrane-bound and secreted astacin metalloproteinases. Mol Aspects Med. 29:309–328. 2008.PubMed/NCBI View Article : Google Scholar | |
Bertenshaw GP, Turk BE, Hubbard SJ, Matters GL, Bylander JE, Crisman JM, Cantley LC and Bond JS: Marked differences between metalloproteases meprin A and B in substrate and peptide bond specificity. J Biol Chem. 276:13248–13255. 2001.PubMed/NCBI View Article : Google Scholar | |
Kruse MN, Becker C, Lottaz D, Köhler D, Yiallouros I, Krell HW, Sterchi EE and Stöcker W: Human meprin alpha and beta homo-oligomers: Cleavage of basement membrane proteins and sensitivity to metalloprotease inhibitors. Biochem J. 378:383–389. 2004.PubMed/NCBI View Article : Google Scholar | |
Sun H, Lou X, Shan Q, Zhang J, Zhu X, Zhang J, Wang Y, Xie Y, Xu N and Liu S: Proteolytic characteristics of cathepsin D related to the recognition and cleavage of its target proteins. PLoS One. 8(e65733)2013.PubMed/NCBI View Article : Google Scholar | |
Wolters BK: Cathepsin L and V in human keratinocytes. J Univ. 2006.PubMed/NCBI View Article : Google Scholar | |
Vidak E, Javoršek U, Vizovišek M and Turk B: Cysteine cathepsins and their extracellular roles: Shaping the microenvironment. Cells. 8(pii: E264)2019.PubMed/NCBI View Article : Google Scholar | |
Reinheckel T, Hagemann S, Dollwet-Mack S, Martinez E, Lohmüller T, Zlatkovic G, Tobin DJ, Maas-Szabowski N and Peters C: The lysosomal cysteine protease cathepsin L regulates keratinocyte proliferation by control of growth factor recycling. J Cell Sci. 118:3387–3395. 2005.PubMed/NCBI View Article : Google Scholar | |
Mason RW: Interaction of lysosomal cysteine proteinases with α2-macroglobulin: Conclusive evidence for the endopeptidase activities of cathepsins B and H. Arch Biochem Bioph. 273:367–374. 1989.PubMed/NCBI View Article : Google Scholar | |
Maciewicz RA, Etherington DJ, Kos J and Turk V: Collagenolytic cathepsins of rabbit spleen: A kinetic analysis of collagen degradation and inhibition by chicken cystatin. Coll Relat Res. 7:295–304. 1987. View Article : Google Scholar | |
Benes P, Vetvicka V and Fusek M: Cathepsin D-many functions of one aspartic protease. Crit Rev Oncol Hematol. 68:12–28. 2008.PubMed/NCBI View Article : Google Scholar | |
Cavallo-Medved D, Moin K and Sloane B: Cathepsin B: Basis sequence: Mouse. AFCS Nat Mol Pages. 2011(pii: A000508)2011.PubMed/NCBI | |
Krejner A, Litwiniuk M and Grzela T: Matrix metalloproteinases in the wound microenvironment: Therapeutic perspectives. Chronic Wound Care Manag Res. 3:29–39. 2016. View Article : Google Scholar | |
Kim GY, Kim HY, Kim HT, Moon JM, Kim CH, Kang S and Rhim H: HtrA1 is a novel antagonist controlling fibroblast growth factor (FGF) signaling via cleavage of FGF8. Mol Cell Biol. 32:4482–4492. 2012. View Article : Google Scholar | |
Meyer-Hoffert U and Schröder JM: Epidermal proteases in the pathogenesis of rosacea. J Investig Dermatol Symp Proc. 15:16–23. 2011.PubMed/NCBI View Article : Google Scholar | |
Kim SK, Park PJ, Kim JB and Shahidi F: Purification and characterization of a collagenolytic protease from the filefish, Novoden modestrus. J Biochem Mol Biol. 35:165–171. 2002.PubMed/NCBI View Article : Google Scholar | |
Coughlin SR: Thrombin signalling and protease-activated receptors. Nature. 407:258–264. 2000.PubMed/NCBI View Article : Google Scholar | |
Perona JJ and Craik CS: Structural basis of substrate specificity in the serine proteases. Protein Sci. 4:337–360. 1995.PubMed/NCBI View Article : Google Scholar | |
Rawlings AV and Voegeli R: Stratum corneum proteases and dry skin conditions. Cell Tissue Res. 351:217–235. 2013.PubMed/NCBI View Article : Google Scholar | |
Gutiérrez JM, Escalante T, Rucavado A, Herrera C and Fox JW: A Comprehensive view of the structural and functional alterations of extracellular matrix by snake venom metalloproteinases (SVMPs): Novel perspectives on the pathophysiology of envenoming. Toxins (Basel). 8(pii: E304)2016.PubMed/NCBI View Article : Google Scholar | |
Kini RM and Koh CY: Metalloproteases affecting blood coagulation, fibrinolysis and platelet aggregation from snake venoms: Definition and nomenclature of interaction sites. Toxins (Basel). 8(pii: E284)2016.PubMed/NCBI View Article : Google Scholar | |
Silva MB, Schattner M, Ramos CR, Junqueira-de-Azevedo IL, Guarnieri MC, Lazzari MA, Sampaio CA, Pozner RG, Ventura JS, Ho PL and Chudzinski-Tavassi AM: A prothrombin activator from Bothrops erythromelas (jararaca-da-seca) snake venom: Characterization and molecular cloning. Biochem J. 369:129–139. 2003.PubMed/NCBI View Article : Google Scholar | |
Sanchez EF, Richardson M, Gremski LH, Veiga SS, Yarleque A, Niland S, Lima AM, Estevao-Costa MI and Eble JA: Data for a direct fibrinolytic metalloproteinase, barnettlysin-I from Bothrops barnetti (barnett(,)s pitviper) snake venom with anti-thrombotic effect. Data Brief. 7:1609–1613. 2016.PubMed/NCBI View Article : Google Scholar | |
Kamiguti AS: Platelets as targets of snake venom metalloproteinases. Toxicon. 45:1041–1049. 2005.PubMed/NCBI View Article : Google Scholar | |
Howes JM, Kamiguti AS, Theakston RD, Wilkinson MC and Laing GD: Effects of three novel metalloproteinases from the venom of the West African saw-scaled viper, Echis ocellatus on blood coagulation and platelets. Biochim Biophys Acta. 1724:194–202. 2005.PubMed/NCBI View Article : Google Scholar | |
Fernandes CM, Zamuner SR, Zuliani JP, Rucavado A, Gutiérrez JM and Teixeira Cde F: Inflammatory effects of BaP1 a metalloproteinase isolated from Bothrops asper snake venom: Leukocyte recruitment and release of cytokines. Toxicon. 47:549–559. 2006.PubMed/NCBI View Article : Google Scholar | |
Silva A, Gunawardena P, Weilgama D, Maduwage K and Gawarammana I: Comparative in-vivo toxicity of venoms from South Asian hump-nosed pit vipers (Viperidae: Crotalinae: Hypnale). BMC Res Notes. 5(471)2012.PubMed/NCBI View Article : Google Scholar | |
Mariano-Oliveira A, Coelho ALJ, Terruggi CH, Selistre-de-Araújo HS, Barja-Fidalgo C and De Freitas MS: Alternagin-C, a nonRGD-disintegrin, induces neutrophil migration via integrin signaling. Eur J Biochem. 270:4799–4808. 2003.PubMed/NCBI View Article : Google Scholar | |
Silva CA, Zuliani JP, Assakura MT, Mentele R, Camargo ACM, Teixeira CFP and Serrano SMT: Activation of αMβ2-mediated phagocytosis by HF3, a P-III class metalloproteinase isolated from the venom of Bothrops jararaca. Biochem Biophys Res Commun. 322:950–956. 2004. View Article : Google Scholar | |
Tseng YL, Lee CJ and Huang TF: Effects of a snake venom metalloproteinase, triflamp, on platelet aggregation, platelet-neutrophil and neutrophil-neutrophil interactions: Involvement of platelet GPIbalpha and neutrophil PSGL-1. Thromb Haemost. 91:315–324. 2004.PubMed/NCBI View Article : Google Scholar | |
Bernardes CP, Menaldo DL, Camacho E, Rosa JC, Escalante T, Rucavado A, Lomonte B, Gutiérrez JM and Sampaio SV: Proteomic analysis of Bothrops pirajai snake venom and characterization of BpirMP, a new P-I metalloproteinase. J Proteomics. 80:250–267. 2013.PubMed/NCBI View Article : Google Scholar | |
Zigrino P, Kamiguti AS, Eble J, Drescher C, Nischt R, Fox JW and Mauch C: The reprolysin jararhagin, a snake venom metalloproteinase, functions as a fibrillar collagen agonist involved in fibroblast cell adhesion and signaling. J Biol Chem. 277:40528–40535. 2002.PubMed/NCBI View Article : Google Scholar | |
Costa ÉP and Santos MF: Jararhagin, a snake venom metalloproteinase-disintegrin, stimulates epithelial cell migration in an in vitro restitution model. Toxicon. 44:861–870. 2004.PubMed/NCBI View Article : Google Scholar | |
Cominetti MR, Terruggi CH, Ramos OH, Fox JW, Mariano-Oliveira A, De Freitas MS, Figueiredo CC, Morandi V and Selistre-de-Araujo HS: Alternagin-C, a disintegrin-like protein, induces vascular endothelial cell growth factor (VEGF) expression and endothelial cell proliferation in vitro. J Biol Chem. 279:18247–18255. 2004.PubMed/NCBI View Article : Google Scholar | |
Schattner M, Fritzen M, Ventura Jde S, de Albuquerque Modesto JC, Pozner RG, Moura-da-Silva AM and Chudzinski-Tavassi AM: The snake venom metalloproteases berythractivase and jararhagin activate endothelial cells. Biol Chem. 386:369–374. 2005.PubMed/NCBI View Article : Google Scholar | |
Siigur E, Tõnismägi K, Trummal K, Samel M, Vija H, Subbi J and Siigur J: Factor X activator from Vipera lebetina snake venom, molecular characterization and substrate specificity. Biochim Biophys Acta. 1568:90–98. 2001.PubMed/NCBI View Article : Google Scholar | |
Markland FS, Kettner C, Schiffman S, Shaw E, Bajwa SS, Reddy KN, Kirakossian H, Patkos GB, Theodor I and Pirkle H: Kallikrein-like activity of crotalase, a snake venom enzyme that clots fibrinogen. Proc Natl Acad Sci USA. 79:1688–1692. 1982.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Wisner A, Xiong Y and Bon C: A novel plasminogen activator from snake venom. Purification, characterization, and molecular cloning. J Biol Chem. 270:10246–10255. 1995.PubMed/NCBI View Article : Google Scholar | |
Serrano SM, Matos MF, Mandelbaum FR and Sampaio CA: Basic proteinases from Bothrops moojeni (caissaca) venom-I. Isolation and activity of two serine proteinases, MSP 1 and MSP 2, on synthetic substrates and on platelet aggregation. Toxicon. 31:471–481. 1993.PubMed/NCBI View Article : Google Scholar | |
Frykberg RG and Banks J: Challenges in the treatment of chronic wounds. Adv Wound Care (New Rochelle). 4:560–582. 2015.PubMed/NCBI View Article : Google Scholar | |
Telgenhoff D and Shroot B: Cellular senescence mechanisms in chronic wound healing. Cell Death Differ. 12:695–698. 2005.PubMed/NCBI View Article : Google Scholar | |
Lumbers M: Pressure ulcers: An overview of risk. Br J Nurs. 26(S49-S50)2017.PubMed/NCBI View Article : Google Scholar | |
Secretariat MA: Management of chronic pressure ulcers: An evidence-based analysis. Ont Health Technol Assess Ser. 9:1–203. 2009.PubMed/NCBI | |
Comerota A and Lurie F: Pathogenesis of venous ulcer. Semin Vasc Surg. 28:6–14. 2015.PubMed/NCBI View Article : Google Scholar | |
Mannello F and Raffetto JD: Matrix metalloproteinase activity and glycosaminoglycans in chronic venous disease: The linkage among cell biology, pathology and translational research. Am J Transl Res. 3:149–158. 2011.PubMed/NCBI | |
van der Plas MJ, Baldry M, van Dissel JT, Jukema GN and Nibbering PH: Maggot secretions suppress pro-inflammatory responses of human monocytes through elevation of cyclic AMP. Diabetologia. 52:1962–1970. 2009.PubMed/NCBI View Article : Google Scholar | |
Wei OY, Xavier R and Marimuthu K: Screening of antibacterial activity of mucus extract of snakehead fish, Channa striatus (Bloch). Eur Rev Med Pharmacol Sci. 14:675–681. 2010.PubMed/NCBI | |
Jhamb S, Vangaveti VN and Malabu UH: Genetic and molecular basis of diabetic foot ulcers: Clinical review. J Tissue Viability. 25:229–236. 2016.PubMed/NCBI View Article : Google Scholar | |
Su N, Tong N, Du L, Wu B and Xu T: Heparin and related substances for treating diabetic foot ulcers. Cochrane Database Syst Rev. 2017(CD011087)2017. View Article : Google Scholar | |
Bruhn-Olszewska B, Korzon-Burakowska A, Gabig-Ciminska M, Olszewski P, Wegrzyn A and Jakóbkiewicz-Banecka J: Molecular factors involved in the development of diabetic foot syndrome. Acta Biochim Pol. 59:507–513. 2012.PubMed/NCBI | |
Blakytny R and Jude EB: Altered molecular mechanisms of diabetic foot ulcers. Int J Low Extrem Wounds. 8:95–104. 2009.PubMed/NCBI View Article : Google Scholar | |
Patel S, Srivastava S, Singh MR and Singh D: Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother. 112(108615)2019.PubMed/NCBI View Article : Google Scholar | |
Sherman RA: Maggot therapy for treating diabetic foot ulcers unresponsive to conventional therapy. Diabetes Care. 26:446–451. 2003.PubMed/NCBI View Article : Google Scholar | |
Pasha M, Husin RA and Hassan S: The influence of oral and topical Channa striatus on laparotomy wound healing in malnourished wistar rats. Int J Pharm Pharm Sci Invent. 4:37–41. 2015. View Article : Google Scholar | |
Anish S: Skin substitutes in dermatology. Indian J Dermatol Venereol Leprol. 81:175–178. 2015.PubMed/NCBI View Article : Google Scholar | |
Kordestani SS: Chapter 5-wound care management. In: Atlas of wound healing. Kordestani SS (ed). Elsevier. 31–47. 2019. | |
Sun BK, Siprashvili Z and Khavari PA: Advances in skin grafting and treatment of cutaneous wounds. Science. 346:941–945. 2014.PubMed/NCBI View Article : Google Scholar | |
Knapik A, Hegland N, Calcagni M, Althaus M, Vollmar B, Giovanoli P and Lindenblatt N: Metalloproteinases facilitate connection of wound bed vessels to pre-existing skin graft vasculature. Microvasc Res. 84:16–23. 2012.PubMed/NCBI View Article : Google Scholar | |
Park YJ, Lee JW, Chong Y and Park TH: Botulinum toxin A increases allograft tolerance in an experimental transplantation model: A preliminary study. Biosci Rep. 38(pii: BSR20171721)2018.PubMed/NCBI View Article : Google Scholar | |
Kucukkaya D, Irkoren S, Ozkan S and Sivrioglu N: The effects of botulinum toxin A on the wound and skin graft contraction. J Craniofac Surg. 25:1908–1911. 2014.PubMed/NCBI View Article : Google Scholar | |
Boyko TV, Longaker MT and Yang GP: Review of the current management of pressure ulcers. Adv Wound Care (New Rochelle). 7:57–67. 2018.PubMed/NCBI View Article : Google Scholar | |
Ma H, O'Donnell TF Jr, Rosen NA and Iafrati MD: The real cost of treating venous ulcers in a contemporary vascular practice. J Vasc Surg Venous Lymphat Disord. 2:355–361. 2014.PubMed/NCBI View Article : Google Scholar | |
Ford CN, Reinhard ER, Yeh D, Syrek D, De Las Morenas A, Bergman SB, Williams S and Hamori CA: Interim Analysis of a Prospective, Randomized Trial of Vacuum-Assisted Closure Versus the Healthpoint System in the Management of Pressure Ulcers. Ann Plast Surg. 49(1):55–61. 2002.PubMed/NCBI View Article : Google Scholar | |
Yaakobi T, Cohen-Hadar N, Yaron H, Hirszowicz E, Simantov Y, Bass A and Freeman A: Wound debridement by continuous streaming of proteolytic enzyme solutions: Effects on experimental chronic wound model in porcin. Wounds. 19:192–200. 2007.PubMed/NCBI | |
Smith & Nephew, Inc.: Enzymatic debridement with collagenase SANTYL® Ointment,. 2014. | |
Giudice G, Filoni A, Maggio G, Bonamonte D and Vestita M: Cost analysis of a novel enzymatic debriding agent for management of burn wounds. Biomed Res Int. 2017(9567498)2017. View Article : Google Scholar | |
Gorecki M and Toren A: Debriding composition from bromelain and methods of production thereof, Patent Appl Publ. 2005. | |
Niehaus F, Eck J, Schulze R and Krohn M: Proteasa para el acondicionamiento de heridas y el cuidado de la piel. Brain Biotechnol Res Inf Netw. 2012. | |
Niehaus F, Eck J, Schulze R and Krohn M: Protease for wound conditioning and skin care. Brain Biotechnol Res Inf Netw. 2012. | |
Rosenberg L: Aparato y procedimientos para su uso en escarotomía enzimática en síndrome de compartimento inducido por quemaduras. MediWound. 2012. | |
Freeman A, Hirszowicz E and Be'eri-lipperman M: Apparatus and method for the enzymatic debridement of skin lesions, Ramot At Tel-Aviv Univ. 2012. | |
Yaakobi T, Roth D, Chen Y and Freeman A: Streaming of proteolytic enzyme solutions for wound debridement: A feasibility study. Wounds. 16:201–205. 2004. | |
Rodeheaver G, Edgerton MT, Elliott MB, Kurtz LD and Edlich RF: Proteolytic enzymes as adjuncts to antibiotic prophylaxis of surgical wounds. Am J Surg. 127:564–572. 1974. View Article : Google Scholar | |
Gao M, Nguyen TT, Suckow MA, Wolter WR, Gooyit M, Mobashery S and Chang M: Acceleration of diabetic wound healing using a novel protease-anti-protease combination therapy. Proc Natl Acad Sci USA. 112:15226–15231. 2015.PubMed/NCBI View Article : Google Scholar | |
Gutiérrez-Fernández A, Fueyo A, Folgueras AR, Garabaya C, Pennington CJ, Pilgrim S, Edwards DR, Holliday DL, Jones JL, Span PN, et al: Matrix metalloproteinase-8 functions as a metastasis suppressor through modulation of tumor cell adhesion and invasion. Cancer Res. 68:2755–2763. 2008.PubMed/NCBI View Article : Google Scholar | |
Hartenstein B, Dittrich BT, Stickens D, Heyer B, Vu TH, Teurich S, Schorpp-Kistner M, Werb Z and Angel P: Epidermal development and wound healing in matrix metalloproteinase 13-deficient mice. J Invest Dermatol. 126:486–496. 2006.PubMed/NCBI View Article : Google Scholar | |
Kudo Y, Iizuka S, Yoshida M, Tsunematsu T, Kondo T, Subarnbhesaj A, Deraz EM, Siriwardena SB, Tahara H, Ishimaru N, et al: Matrix metalloproteinase-13 (MMP-13) directly and indirectly promotes tumor angiogenesis. J Biol Chem. 287:38716–38728. 2012.PubMed/NCBI View Article : Google Scholar | |
Rohani MG and Parks WC: Matrix remodeling by MMPs during wound repair. Matrix Biol. 44–46. 113–121. 2015.PubMed/NCBI View Article : Google Scholar | |
Thirkettle S, Decock J, Arnold H, Pennington CJ, Jaworski DM and Edwards DR: Matrix Matrix metalloproteinase 8 (collagenase 2) induces the expression of interleukins 6 and 8 in breast cancer cells. J Biol Chem. 288:16282–16294. 2013.PubMed/NCBI View Article : Google Scholar | |
Utz ER, Elster EA, Tadaki DK, Gage F, Perdue PW, Forsberg JA, Stojadinovic A, Hawksworth JS and Brown TS: Metalloproteinase expression is associated with traumatic wound failure. J Surg Res. 159:633–639. 2010.PubMed/NCBI View Article : Google Scholar | |
Yamamoto K, Okano H, Miyagawa W, Visse R, Shitomi Y, Santamaria S, Dudhia J, Troeberg L, Strickland DK, Hirohata S and Nagase H: MMP-13 is constitutively produced in human chondrocytes and co-endocytosed with ADAMTS-5 and TIMP-3 by the endocytic receptor LRP1. Matrix Biol. 56:57–73. 2016.PubMed/NCBI View Article : Google Scholar | |
Motrescu ER, Blaise S, Etique N, Messaddeq N, Chenard MP, Stoll I, Tomasetto C and Rio MC: Matrix metalloproteinase-11/stromelysin-3 exhibits collagenolytic function against collagen VI under normal and malignant conditions. Oncogene. 27:6347–6355. 2008.PubMed/NCBI View Article : Google Scholar | |
Pittayapruek P, Meephansan J, Prapapan O, Komine M and Ohtsuki M: Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int J Mol Sci. 17(pii: e868)2016.PubMed/NCBI View Article : Google Scholar | |
Saarialho-Kere UK, Pentland AP, Birkedal-Hansen H, Parks WC and Welgus HG: Distinct populations of basal keratinocytes express stromelysin-1 and stromelysin-2 in chronic wounds. J Clin Invest. 94:79–88. 1994.PubMed/NCBI View Article : Google Scholar | |
Sato T, Nomura K and Hashimoto I: Expression of collagenase and stromelysin in skin fibroblasts from recessive dystrophic epidermolysis bullosa. Arch Dermatol Res. 287:428–433. 1995.PubMed/NCBI View Article : Google Scholar | |
Kren L, Goncharuk V, Krenová Z, Stratil D, Hermanová M, Skricková J, Sheehan CE and Ross JS: Expression of matrix metalloproteinases 3, 10 and 11 (stromelysins 1, 2 and 3) and matrix metalloproteinase 7 (matrilysin) by cancer cells in non-small cell lung neoplasms. Clinicopathologic studies. Cesk Patol. 42:16–19. 2006.PubMed/NCBI | |
Page-McCaw A, Ewald AJ and Werb Z: Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 8:221–233. 2007.PubMed/NCBI View Article : Google Scholar | |
Purcell WT and Hidalgo M: Matrix metalloproteinase inhibitors in cancer therapy. In: Proteases in tissue remodelling of lung and heart. Lendeckel U and Hooper NM (eds). Springer US, Boston, MA. pp75–118. 2003. | |
Herouy Y: The role of matrix metalloproteinases (MMPs) and their inhibitors in venous leg ulcer healing. Phlebolymphology. 44:231–243. 2004. | |
Lagente V, Manoury B, Nenan S, Le Quement C, Martin-Chouly C and Boichot E: Role of matrix metalloproteinases in the development of airway inflammation and remodeling. Braz J Med Biol Res. 38:1521–1530. 2005.PubMed/NCBI View Article : Google Scholar | |
van Marion MMH: Matrix metalloproteinases and collagen remodeling. A Literature Review. 2006. | |
Tewari A, Grys K, Kollet J, Sarkany R and Young AR: Upregulation of MMP12 and its activity by UVA1 in human skin: potential implications for photoaging. J Invest Dermatol. 134:2598–2609. 2014.PubMed/NCBI View Article : Google Scholar |