Protein kinase CK2 and ion channels (Review)
- Authors:
- Mathias Montenarh
- Claudia Götz
-
Affiliations: Medical Biochemistry and Molecular Biology, Saarland University, D‑66424 Homburg, Saarland, Germany - Published online on: September 30, 2020 https://doi.org/10.3892/br.2020.1362
- Article Number: 55
-
Copyright: © Montenarh et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Manning G: Genomic overview of protein kinases. WormBook. 1–19. 2005.PubMed/NCBI View Article : Google Scholar | |
Litchfield DW: Protein kinase CK2: Structure, regulation and role in cellular decisions of life and death. Biochem J. 369:1–15. 2003.PubMed/NCBI View Article : Google Scholar | |
Salvi M, Sarno S, Cesaro L, Nakamura H and Pinna LA: Extraordinary pleiotropy of protein kinase CK2 revealed by weblogo phosphoproteome analysis. Biochim Biophys Acta. 1793:847–859. 2009.PubMed/NCBI View Article : Google Scholar | |
de Villavicencio-Diaz T, Rabalski AJ and Litchfield DW: Protein kinase CK2: Intricate relationships within regulatory cellular networks. Pharmaceuticals (Basel). 10(27)2017.PubMed/NCBI View Article : Google Scholar | |
Burnett G and Kennedy EP: The enzymatic phosphorylation of proteins. J Biol Chem. 211:969–980. 1954.PubMed/NCBI | |
Boldyreff B, Meggio F, Pinna LA and Issinger OG: Protein kinase CK2 structure-function relationship: Effects of the β subunit on reconstitution and activity. Cell Mol Biol Res. 40:391–399. 1994.PubMed/NCBI | |
Wirkner U, Voss H, Lichter P, Ansorge W and Pyerin W: The human gene (CSNK2A1) coding for the casein kinase II subunit alpha is located on chromosome 20 and contains tandemly arranged Alu repeats. Genomics. 19:257–265. 1994.PubMed/NCBI View Article : Google Scholar | |
Ackermann K, Neidhart T, Gerber J, Waxmann A and Pyerin W: The catalytic subunit alpha' gene of human protein kinase CK2 (CSNK2A2): Genomic organization, promoter identification and determination of Ets1 as a key regulator. Mol Cell Biochem. 274:91–101. 2005.PubMed/NCBI View Article : Google Scholar | |
Albertella MR, Jones H, Thomson W, Olavesen MG and Campbell RD: Localization of eight additional genes in the human major histocompatibility complex, including the gene encoding the casein kinase II beta subunit (CSNK2B). Genomics. 36:240–251. 1996.PubMed/NCBI View Article : Google Scholar | |
Raaf J, Brunstein E, Issinger OG and Niefind K: The interaction of CK2alpha and CK2beta, the subunits of protein kinase CK2, requires CK2beta in a preformed conformation and is enthalpically driven. Protein Sci. 17:2180–2186. 2008.PubMed/NCBI View Article : Google Scholar | |
Meggio F, Boldyreff BS, Marin O, Pinna LA and Issinger OG: CK2: Role of the beta-subunit on the stability and specificity of the recombinant reconstituted holoenzyme. Eur J Biochem. 204:293–297. 1992.PubMed/NCBI View Article : Google Scholar | |
Boldyreff BS, Meggio F, Pinna LA and Issinger O-G: Casein kinase-2 structure-function relationship: Creation of a set of mutants of the β subunit that variably surrogate the wildtype β subunit function. Biochem Biophys Res Commun. 188:228–234. 1992.PubMed/NCBI View Article : Google Scholar | |
Rodriguez FA, Contreras C, Bolanos-Garcia V and Allende JE: Protein kinase CK2 as an ectokinase: The role of the regulatory CK2beta subunit. Proc Natl Acad Sci USA. 105:5693–5698. 2008.PubMed/NCBI View Article : Google Scholar | |
Lolli G, Pinna LA and Battistutta R: Structural determinants of protein kinase CK2 regulation by autoinhibitory polymerization. ACS Chem Biol. 7:1158–1163. 2012.PubMed/NCBI View Article : Google Scholar | |
Lolli G, Naressi D, Sarno S and Battistutta R: Characterization of the oligomeric states of the CK2 alpha2beta2 holoenzyme in solution. Biochem J. 474:2405–2416. 2017.PubMed/NCBI View Article : Google Scholar | |
Raaf J, Guerra B, Neundorf I, Bopp B, Issinger OG, Jose J, Pietsch M and Niefind K: First structure of protein kinase CK2 catalytic subunit with an effective CK2β-competitive ligand. ACS Chem Biol. 8:901–907. 2013.PubMed/NCBI View Article : Google Scholar | |
Raaf J, Bischoff N, Klopffleisch K, Brunstein E, Olsen BB, Vilk G, Litchfield DW, Issinger OG and Niefind K: Interaction between CK2α and CK2β, the subunits of protein kinase CK2: Thermodynamic contributions of key residues on the CK2α surface. Biochemistry. 50:512–522. 2011.PubMed/NCBI View Article : Google Scholar | |
Heriche JK, Lebrin F, Rabilloud T, LeRoy D, Chambaz EM and Goldberg Y: Regulation of protein phosphatase 2A by direct interaction with casein kinase 2alpha. Science. 276:952–955. 1997.PubMed/NCBI View Article : Google Scholar | |
Lüscher B and Litchfield DW: Biosynthesis of casein kinase II in lymphoid cell lines. Eur J Biochem. 220:521–526. 1994.PubMed/NCBI View Article : Google Scholar | |
Guerra B, Siemer S, Boldyreff B and Issinger OG: Protein kinase CK2: Evidence for a protein kinase CK2β subunit fraction, devoid of the catalytic CK2α subunit, in mouse brain and testicles. FEBS Lett. 462:353–357. 1999.PubMed/NCBI View Article : Google Scholar | |
Trembley JH, Wang G, Unger G, Slaton J and Ahmed K: CK2: A key player in cancer biology. Cell Mol Life Sci. 66:1858–1867. 2009.PubMed/NCBI View Article : Google Scholar | |
Benveniste EN, Gray GK and McFarland BC: Protein kinase CK2 and dysregulated oncogenic inflammatory signaling pathways Protein kinase CK2 cellular function in normal and disease states Springer e-book, 2015. | |
Okur V, Cho MT, Henderson L, Retterer K, Schneider M, Sattler S, Niyazov D, Azage M, Smith S, Picker J, et al: De novo mutations in CSNK2A1 are associated with neurodevelopmental abnormalities and dysmorphic features. Hum Genet. 135:699–705. 2016.PubMed/NCBI View Article : Google Scholar | |
Owen CI, Bowden R, Parker MJ, Patterson J, Patterson J, Price S, Sarkar A, Castle B, Deshpande C, Splitt M, et al: Extending the phenotype associated with the CSNK2A1-related Okur-Chung syndrome-A clinical study of 11 individuals. Am J Med Genet A. 176:1108–1114. 2018.PubMed/NCBI View Article : Google Scholar | |
Trinh J, Huning I, Budler N, Hingst V, Lohmann K and Gillessen-Kaesbach G: A novel de novo mutation in CSNK2A1: Reinforcing the link to neurodevelopmental abnormalities and dysmorphic features. J Hum Genet. 62:1005–1006. 2017.PubMed/NCBI View Article : Google Scholar | |
Lou DY, Dominguez I, Toselli P, Landesman-Bollag E, O'Brien C and Seldin DC: The alpha catalytic subunit of protein kinase CK2 is required for mouse embryonic development. Mol Cell Biol. 28:131–139. 2008.PubMed/NCBI View Article : Google Scholar | |
Buchou T, Vernet M, Blond O, Jensen HH, Pointu H, Olsen BB, Cochet C, Issinger OG and Boldyreff B: Disruption of the regulatory b subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality. Mol Cell Biol. 23:908–915. 2003.PubMed/NCBI View Article : Google Scholar | |
Xu X, Toselli PA, Russell LD and Seldin DC: Globozoospermia in mice lacking the casein kinase II a' catalytic subunit. Nat Genet. 23:118–121. 1999.PubMed/NCBI View Article : Google Scholar | |
Götz C and Montenarh M: Protein kinase CK2 in development and differentiation. Biomed Rep. 6:127–133. 2016.PubMed/NCBI View Article : Google Scholar | |
Niefind K, Pütter M, Guerra B, Issinger OG and Schomburg D: CTP plus water mimic ATP in the active site of protein kinase CK2. Nat Struct Biol. 6:1100–1103. 1999.PubMed/NCBI View Article : Google Scholar | |
Lin WJ, Tuazon PT and Traugh JA: Characterization of the catalytic subunit of casein kinase II expressed in Escherichia coli and regulation of activity. J Biol Chem. 266:5664–5669. 1991.PubMed/NCBI | |
Guerra B: Protein kinase CK2 subunits are positive regulators of AKT kinase. Int J Oncol. 28:685–693. 2006.PubMed/NCBI | |
Shehata M, Schnabl S, Demirtas D, Hilgarth M, Hubmann R, Ponath E, Badrnya S, Lehner C, Hoelbl A, Duechler M, et al: Reconstitution of PTEN activity by CK2 inhibitors and interference with the PI3-K/Akt cascade counteract the antiapoptotic effect of human stromal cells in chronic lymphocytic leukemia. Blood. 116:2513–2521. 2010.PubMed/NCBI View Article : Google Scholar | |
Wang S and Jones KA: CK2 controls the recruitment of Wnt regulators to target genes in vivo. Curr Biol. 16:2239–2244. 2006.PubMed/NCBI View Article : Google Scholar | |
Gao Y and Wang HY: Casein kinase 2 Is activated and essential for Wnt/beta-catenin signaling. J Biol Chem. 281:18394–18400. 2006.PubMed/NCBI View Article : Google Scholar | |
Ponce DP, Yefi R, Cabello P, Maturana JL, Niechi I, Silva E, Galindo M, Antonelli M, Marcelain K, Armisen R and Tapia JC: CK2 functionally interacts with AKT/PKB to promote the β-catenin-dependent expression of survivin and enhance cell survival. Mol Cell Biochem. 356:127–132. 2011.PubMed/NCBI View Article : Google Scholar | |
Ponce DP, Maturana JL, Cabello P, Yefi R, Niechi I, Silva E, Armisen R, Galindo M, Antonelli M and Tapia JC: Phosphorylation of AKT/PKB by CK2 is necessary for the AKT-dependent up-regulation of β-catenin transcriptional activity. J Cell Physiol. 226:1953–1959. 2011.PubMed/NCBI View Article : Google Scholar | |
Götz C and Montenarh M: Protein kinase CK2 in the ER stress response. Ad Biological Chemistry. 3A:1–5. 2013. | |
Montenarh M: Protein kinase CK2 in DNA damage and repair. Transl Cancer Res. 5:49–63. 2016. | |
Cozza G, Pinna LA and Moro S: Protein kinase CK2 inhibitors: A patent review. Expert Opin Ther Pat. 22:1081–1097. 2012.PubMed/NCBI View Article : Google Scholar | |
Cozza G: The development of CK2 inhibitors: From traditional pharmacology to in silico rational drug design. Pharmaceuticals (Basel). 10(26)2017.PubMed/NCBI View Article : Google Scholar | |
Prudent R and Cochet C: New protein kinase CK2 inhibitors: Jumping out of the catalytic box. Chem Biol. 16:112–120. 2009.PubMed/NCBI View Article : Google Scholar | |
Bollacke A, Nienberg C, Borgne ML and Jose J: Toward selective CK2alpha and CK2alpha' inhibitors: Development of a novel whole-cell kinase assay by Autodisplay of catalytic CK2alpha'. J Pharm Biomed Anal. 121:253–260. 2016.PubMed/NCBI View Article : Google Scholar | |
Battistutta R, Sarno S, De Moliner E, Papinutto E, Zanotti G and Pinna LA: The replacement of ATP by the competitive inhibitor emodin induces conformational modifications in the catalytic site of protein kinase CK2. J Biol Chem. 275:29618–29622. 2000.PubMed/NCBI View Article : Google Scholar | |
Battistutta R, De Moliner E, Sarno S, Zanotti G and Pinna LA: Structural features underlying selective inhibition of protein kinase CK2 by ATP site-directed tetrabromo-2-benzotriazole. Protein Sci. 10:2200–2206. 2001.PubMed/NCBI View Article : Google Scholar | |
Pagano MA, Bain J, Kazimierczuk Z, Sarno S, Ruzzene M, Di Maira G, Elliott M, Orzeszko A, Cozza G, Meggio F and Pinna LA: The selectivity of inhibitors of protein kinase CK2. An update. Biochem J. 415:353–365. 2008.PubMed/NCBI View Article : Google Scholar | |
Sarno S, De Moliner E, Ruzzene M, Pagano MA, Battistutta R, Bain J, Fabbro D, Schoepfer J, Elliott M, Furet P, et al: Biochemical and three-dimensional-structural study of the specific inhibition of protein kinase CK2 by [5-oxo-5,6-dihydroindolo-(1,2-a)quinazolin-7-yl]acetic acid (IQA). Biochem J. 374:639–646. 2003.PubMed/NCBI View Article : Google Scholar | |
Sarno S, Reddy H, Meggio F, Ruzzene M, Davies SP, Donella-Deana A, Shugar D and Pinna LA: Selectivity of 4,5,6,7-tetrabromobenzotriazole, an ATP site-directed inhibitor of protein kinase CK2 (‘casein kinase-2’). FEBS Lett. 496:44–48. 2001.PubMed/NCBI View Article : Google Scholar | |
Pierre F, Chua PC, O'Brien SE, Siddiqui-Jain A, Bourbon P, Haddach M, Michaux J, Nagasawa J, Schwaebe MK, Stefan E, et al: Discovery and SAR of 5-(3-chlorophenylamino)benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the treatment of cancer. J Med Chem. 54:635–654. 2011.PubMed/NCBI View Article : Google Scholar | |
Siddiqui-Jain A, Drygin D, Streiner N, Chua P, Pierre F, O'Brien SE, Bliesath J, Omori M, Huser N, Ho C, et al: CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy. Cancer Res. 70:10288–10298. 2010.PubMed/NCBI View Article : Google Scholar | |
Lee JY, Yun JS, Kim WK, Chun HS, Jin H, Cho S and Chang JH: Structural basis for the selective inhibition of Cdc2-like kinases by CX-4945. Biomed Res Int. 2019(6125068)2019.PubMed/NCBI View Article : Google Scholar | |
Chua MM, Ortega CE, Sheikh A, Lee M, Abdul-Rassoul H, Hartshorn KL and Dominguez I: CK2 in cancer: Cellular and biochemical mechanisms and potential therapeutic target. Pharmaceuticals (Basel). 10(18)2017.PubMed/NCBI View Article : Google Scholar | |
Faust M, Jung M, Günther J, Zimmermann R and Montenarh M: Localization of individual subunits of protein kinase CK2 to the endoplasmic reticulum and to the Golgi apparatus. Mol Cell Biochem. 227:73–80. 2001.PubMed/NCBI | |
Faust M, Schuster N and Montenarh M: Specific binding of protein kinase CK2 catalytic subunits to tubulin. FEBS Letters. 462:51–56. 1999.PubMed/NCBI View Article : Google Scholar | |
Faust M, Günther J, Morgenstern E, Montenarh M and Götz C: Specific localization of the catalytic subunits of protein kinase CK2 at the centrosomes. Cell Mol Life Sci. 59:2155–2164. 2002.PubMed/NCBI View Article : Google Scholar | |
Faust M and Montenarh M: Subcellular localization of protein kinase CK2: A key to its function? Cell Tissue Res. 301:329–340. 2000.PubMed/NCBI View Article : Google Scholar | |
Montenarh M and Götz C: Ecto-protein kinase CK2, the neglected form of CK2 (review). Biomed Rep. 8:307–313. 2018.PubMed/NCBI View Article : Google Scholar | |
Suhas KS, Parida S, Gokul C, Srivastava V, Prakash E, Chauhan S, Singh TU, Panigrahi M, Telang AG and Mishra SK: Casein kinase 2 inhibition impairs spontaneous and oxytocin-induced contractions in late pregnant mouse uterus. Exp Physiol. 103:621–628. 2018.PubMed/NCBI View Article : Google Scholar | |
Gil C, Falques A, Sarro E, Cubi R, Blasi J, Aguilera J and Itarte E: Protein kinase CK2 associates to lipid rafts and its pharmacological inhibition enhances neurotransmitter release. FEBS Lett. 585:414–420. 2010.PubMed/NCBI View Article : Google Scholar | |
Hernandez CM and Richards JR: Physiology, sodium channels. StatPearls Publishing 2020. | |
Savio-Galimberti E, Gollob MH and Darbar D: Voltage-gated sodium channels: Biophysics, pharmacology, and related channelopathies. Front Pharmacol. 3(124)2012.PubMed/NCBI View Article : Google Scholar | |
Brachet A, Leterrier C, Irondelle M, Fache MP, Racine V, Sibarita JB, Choquet D and Dargent B: Ankyrin G restricts ion channel diffusion at the axonal initial segment before the establishment of the diffusion barrier. J Cell Biol. 191:383–395. 2010.PubMed/NCBI View Article : Google Scholar | |
Grubb MS and Burrone J: Building and maintaining the axon initial segment. Curr Opin Neurobiol. 20:481–488. 2010.PubMed/NCBI View Article : Google Scholar | |
Xu M and Cooper EC: An Ankyrin-G N-terminal gate and protein kinase CK2 dually regulate binding of voltage-gated sodium and KCNQ2/3 potassium channels. J Biol Chem. 290:16619–16632. 2015.PubMed/NCBI View Article : Google Scholar | |
Bréchet A, Fache MP, Brachet A, Ferracci G, Baude A, Irondelle M, Pereira S, Leterrier C and Dargent B: Protein kinase CK2 contributes to the organization of sodium channels in axonal membranes by regulating their interactions with ankyrin G. J Cell Biol. 183:1101–1114. 2008.PubMed/NCBI View Article : Google Scholar | |
Giraldez T, Rojas P, Jou J, Flores C and Alvarez de la Rosa D: The epithelial sodium channel delta-subunit: New notes for an old song. Am J Physiol Renal Physiol. 303:F328–F338. 2012.PubMed/NCBI View Article : Google Scholar | |
Baines D: Kinases as targets for ENaC regulation. Curr Mol Pharmacol. 6:50–64. 2013.PubMed/NCBI View Article : Google Scholar | |
Shi HK, Asher C, Yung YV, Kligman L, Reuveny E, Seger R and Garty H: Casein kinase 2 specifically binds to and phosphorylates the carboxy termini of ENaC subunits. Eur J Biochem. 269:4551–4558. 2002.PubMed/NCBI View Article : Google Scholar | |
Bachhuber T, Almaca J, Aldehni F, Mehta A, Amaral MD, Schreiber R and Kunzelmann K: Regulation of the epithelial Na+ channel by protein kinase CK2. J Biol Chem. 283:13225–13232. 2008.PubMed/NCBI View Article : Google Scholar | |
Hanukoglu I and Hanukoglu A: Epithelial sodium channel (ENaC) family: Phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene. 579:95–132. 2016.PubMed/NCBI View Article : Google Scholar | |
Berman JM, Mironova E and Stockand JD: Physiological regulation of the epithelial Na+ channel by casein kinase II. Am J Physiol Renal Physiol. 314:F367–F372. 2017.PubMed/NCBI View Article : Google Scholar | |
Wulff H, Castle NA and Pardo LA: Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov. 8:982–1001. 2009.PubMed/NCBI View Article : Google Scholar | |
Misonou H: Precise localizations of voltage-gated sodium and potassium channels in neurons. Dev Neurobiol. 78:271–282. 2018.PubMed/NCBI View Article : Google Scholar | |
Lezmy J, Lipinsky M, Khrapunsky Y, Patrich E, Shalom L, Peretz A, Fleidervish IA and Attali B: M-current inhibition rapidly induces a unique CK2-dependent plasticity of the axon initial segment. Proc Natl Acad Sci USA. 114:E10234–E10243. 2017.PubMed/NCBI View Article : Google Scholar | |
Kang S, Xu M, Cooper EC and Hoshi N: Channel anchored protein kinase CK2 and protein phosphatase 1 reciprocally regulate KCNQ2-containing M-channels via phosphorylation of calmodulin. J Biol Chem. 289:11536–11544. 2014.PubMed/NCBI View Article : Google Scholar | |
Jentsch TJ: Neuronal KCNQ potassium channels: Physiology and role in disease. Nat Rev Neurosci. 1:21–30. 2000.PubMed/NCBI View Article : Google Scholar | |
Greene DL and Hoshi N: Modulation of Kv7 channels and excitability in the brain. Cell Mol Life Sci. 74:495–508. 2017.PubMed/NCBI View Article : Google Scholar | |
Kshatri AS, Gonzalez-Hernandez A and Giraldez T: Physiological roles and therapeutic potential of Ca2+ activated potassium channels in the nervous system. Front Mol Neurosci. 11(258)2018.PubMed/NCBI View Article : Google Scholar | |
Meggio F, Boldyreff BS, Marin O, Marchiori F, Perich JW, Issinger OG and Pinna LA: The effect of polylysine on CK-2 activity is influenced by both the structure of the protein/peptide substrates and subunit composition of the enzyme. Eur J Biochem. 205:939–945. 1992.PubMed/NCBI View Article : Google Scholar | |
Meggio F, Brunati AM and Pinna LA: Polycation-dependent, Ca2+-antagonized phosphorylation of calmodulin by casein kinase-2 and a spleen tyrosine protein kinase. FEBS Lett. 215:241–246. 1987.PubMed/NCBI View Article : Google Scholar | |
Sacks DB, Davis HW, Crimmins DL and McDonald JM: Insulin-stimulated phosphorylation of calmodulin. Biochem J. 286:211–216. 1992.PubMed/NCBI View Article : Google Scholar | |
Maingret F, Coste B, Hao J, Giamarchi A, Allen D, Crest M, Litchfield DW, Adelman JP and Delmas P: Neurotransmitter modulation of small-conductance Ca2+-activated K+ channels by regulation of Ca2+ gating. Neuron. 59:439–449. 2008.PubMed/NCBI View Article : Google Scholar | |
Bildl W, Strassmaier T, Thurm H, Andersen J, Eble S, Oliver D, Knipper M, Mann M, Schulte U, Adelman JP and Fakler B: Protein kinase CK2 is coassembled with small conductance Ca2+-activated K+ channels and regulates channel gating. Neuron. 43:847–858. 2004.PubMed/NCBI View Article : Google Scholar | |
Allen D, Fakler B, Maylie J and Adelman JP: Organization and regulation of small conductance Ca2+-activated K+ channel multiprotein complexes. J Neurosci. 27:2369–2376. 2007.PubMed/NCBI View Article : Google Scholar | |
Pallas DC, Shahrik LK, Martin BL, Jaspers S, Miller TB, Brautigan DL and Roberts TM: Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell. 60:167–176. 1990.PubMed/NCBI View Article : Google Scholar | |
Zhang M, Meng XY, Cui M, Pascal JM, Logothetis DE and Zhang JF: Selective phosphorylation modulates the PIP2 sensitivity of the CaM-SK channel complex. Nat Chem Biol. 10:753–759. 2014.PubMed/NCBI View Article : Google Scholar | |
Stocker M, Krause M and Pedarzani P: An apamin-sensitive Ca2+-activated K+ current in hippocampal pyramidal neurons. Proc Natl Acad Sci USA. 96:4662–4667. 1999.PubMed/NCBI View Article : Google Scholar | |
Jiang ZS, Srisakuldee w, Soulet F, Bouche G and Kardami E: Non-angiogenic FGF-2 protects the ischemic heart from injury, in the presence or absence of reperfusion. Cardiovasc Res. 62:154–166. 2004.PubMed/NCBI View Article : Google Scholar | |
Li X, Hu H, Wang Y, Xue M, Li X, Cheng W, Xuan Y, Yin J, Yang N and Yan S: Valsartan Upregulates Kir2.1 in Rats Suffering from Myocardial Infarction via Casein Kinase 2. Cardiovasc Drugs Ther. 29:209–218. 2015.PubMed/NCBI View Article : Google Scholar | |
Stocker M and Pedarzani P: Differential distribution of three Ca(2+)-activated K(+) channel subunits, SK1, SK2, and SK3, in the adult rat central nervous system. Mol Cell Neurosci. 15:476–493. 2000.PubMed/NCBI View Article : Google Scholar | |
Xia XM, Fakler B, Rivard A, Wayman G, Johnson-Pais T, Keen JE, Ishii T, Hirschberg B, Bond CT, Lutsenko S, et al: Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature. 395:503–507. 1998.PubMed/NCBI View Article : Google Scholar | |
Brehme H, Kirschstein T, Schulz R and Kohling R: In vivo treatment with the casein kinase 2 inhibitor 4,5,6,7-tetrabromotriazole augments the slow afterhyperpolarizing potential and prevents acute epileptiform activity. Epilepsia. 55:175–183. 2013.PubMed/NCBI View Article : Google Scholar | |
Bajorat R, Porath K, Kuhn J, Gossla E, Goerss D, Sellmann T, Köhling R and Kirschstein T: Oral administration of the casein kinase 2 inhibitor TBB leads to persistent KCa2.2 channel up-regulation in the epileptic CA1 area and cortex, but lacks anti-seizure efficacy in the pilocarpine epilepsy model. Epilepsy Res. 147:42–50. 2018.PubMed/NCBI View Article : Google Scholar | |
Schulze F, Muller S, Guli X, Schumann L, Brehme H, Riffert T, Rohde M, Goerss D, Rackow S, Einsle A, Kirschstein T and Kohling R: CK2 inhibition prior to status epilepticus persistently enhances KCa 2 function in CA1 which slows down disease progression. Front Cell Neurosci. 14(33)2020.PubMed/NCBI View Article : Google Scholar | |
Clapham DE: Calcium signaling. Cell. 131:1047–1058. 2007.PubMed/NCBI View Article : Google Scholar | |
Afzal M, Kren BT, Naveed AK, Trembley JH and Ahmed K: Protein kinase CK2 impact on intracellular calcium homeostasis in prostate cancer. Mol Cell Biochem. 470:131–143. 2020.PubMed/NCBI View Article : Google Scholar | |
Pankratov Y and Lalo U: Calcium permeability of ligand-gated Ca2+ channels. Eur J Pharmacol. 739:60–73. 2014.PubMed/NCBI View Article : Google Scholar | |
Prakriya M and Lewis RS: Store-operated calcium channels. Physiol Rev. 95:1383–1436. 2015.PubMed/NCBI View Article : Google Scholar | |
Zamponi GW, Striessnig J, Koschak A and Dolphin AC: The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev. 67:821–870. 2015.PubMed/NCBI View Article : Google Scholar | |
Zamponi GW: A crash course in calcium channels. ACS Chem Neurosci. 8:2583–2585. 2017.PubMed/NCBI View Article : Google Scholar | |
Catterall WA: Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol. 16:521–555. 2000.PubMed/NCBI View Article : Google Scholar | |
Christel C and Lee A: Ca2+-dependent modulation of voltage-gated Ca2+ channels. Biochim Biophys Acta. 1820:1243–1252. 2012.PubMed/NCBI View Article : Google Scholar | |
Xu L, Sun L, Xie L, Mou S, Zhang D, Zhu J and Xu P: Advance in L-type calcium channel structures, functions and molecular modeling. Curr Med Chem: Jul 14, 2020, Doi: 10.2174/0929867327666200714154059 Online ahead of print. | |
Weiss S, Oz S, Benmocha A and Dascal N: Regulation of cardiac L-type Ca2+ channel CaV1.2 via the β-adrenergic-cAMP-protein kinase A pathway: Old dogmas, advances, and new uncertainties. Circ Res. 113:617–631. 2013.PubMed/NCBI View Article : Google Scholar | |
Hulme JT, Lin TW, Westenbroek RE, Scheuer T and Catterall WA: Beta-adrenergic regulation requires direct anchoring of PKA to cardiac CaV1.2 channels via a leucine zipper interaction with A kinase-anchoring protein 15. Proc Natl Acad Sci USA. 100:13093–13098. 2003.PubMed/NCBI View Article : Google Scholar | |
De Jongh KS, Murphy BJ, Colvin AA, Hell JW, Takahashi M and Catterall WA: Specific phosphorylation of a site in the full-length form of the alpha 1 subunit of the cardiac L-type calcium channel by adenosine 3',5'-cyclic monophosphate-dependent protein kinase. Biochemistry. 35:10392–10402. 1996.PubMed/NCBI View Article : Google Scholar | |
Peterson BZ, DeMaria CD, Adelman JP and Yue DT: Calmodulin is the Ca2+ sensor for Ca2+ -dependent inactivation of L-type calcium channels. Neuron. 22:549–558. 1999.PubMed/NCBI View Article : Google Scholar | |
Fuller MD, Emrick MA, Sadilek M, Scheuer T and Catterall WA: Molecular mechanism of calcium channel regulation in the fight-or-flight response. Sci Signal. 3(ra70)2010.PubMed/NCBI View Article : Google Scholar | |
Fu Y, Westenbroek RE, Scheuer T and Catterall WA: Basal and β-adrenergic regulation of the cardiac calcium channel CaV1.2 requires phosphorylation of serine 1700. Proc Natl Acad Sci USA. 111:16598–16603. 2014.PubMed/NCBI View Article : Google Scholar | |
Fu Y, Westenbroek RE, Scheuer T and Catterall WA: Phosphorylation sites required for regulation of cardiac calcium channels in the fight-or-flight response. Proc Natl Acad Sci USA. 110:19621–19626. 2013.PubMed/NCBI View Article : Google Scholar | |
Kashihara T, Nakada T, Kojima K, Takeshita T and Yamada M: Angiotensin II activates CaV 1.2 Ca2+ channels through β-arrestin2 and casein kinase 2 in mouse immature cardiomyocytes. J Physiol. 595:4207–4225. 2017.PubMed/NCBI View Article : Google Scholar | |
Hauck L, Harms C, Rohne J, Gertz K, Dietz R, Endres M and von HR: Protein kinase CK2 links extracellular growth factor signaling with the control of p27(Kip1) stability in the heart. Nat Med. 14:315–324. 2008.PubMed/NCBI View Article : Google Scholar | |
Gomez-Ospina N, Tsuruta F, Barreto-Chang O, Hu L and Dolmetsch R: The C terminus of the L-type voltage-gated calcium channel Ca(V)1.2 encodes a transcription factor. Cell. 127:591–606. 2006.PubMed/NCBI View Article : Google Scholar | |
Feng R, Xu J, Minobe E, Kameyama A, Yang L, Yu L, Hao L and Kameyama M: Adenosine triphosphate regulates the activity of guinea pig Cav1.2 channel by direct binding to the channel in a dose-dependent manner. Am J Physiol Cell Physiol. 306:C856–C863. 2014.PubMed/NCBI View Article : Google Scholar | |
Braun M, Ramracheya R, Bengtsson M, Zhang Q, Karanauskaite J, Partridge C, Johnson PR and Rorsman P: Voltage-gated ion channels in human pancreatic beta-cells: Electrophysiological characterization and role in insulin secretion. Diabetes. 57:1618–1628. 2008.PubMed/NCBI View Article : Google Scholar | |
Yang SN and Berggren PO: The role of voltage-gated calcium channels in pancreatic beta-cell physiology and pathophysiology. Endocr Rev. 27:621–676. 2006.PubMed/NCBI View Article : Google Scholar | |
Scheuer R, Philipp SE, Becker A, Nalbach L, Ampofo E, Montenarh M and Götz C: Protein kinase CK2 controls CaV2.1-dependent calcium currents and insulin release in pancreatic β-cells. Int J Mol Sci. 21(4668)2020.PubMed/NCBI View Article : Google Scholar | |
Lolli G, Cozza G, Mazzorana M, Tibaldi E, Cesaro L, Donella-Deana A, Meggio F, Venerando A, Franchin C, Sarno S, et al: Inhibition of protein kinase CK2 by flavonoids and tyrphostins. A structural insight. Biochemistry. 51:6097–6107. 2012.PubMed/NCBI View Article : Google Scholar | |
Catterall WA: Voltage-gated calcium channels. Cold Spring Harb Perspect Biol. 3(a003947)2011.PubMed/NCBI View Article : Google Scholar | |
Kahle JJ, Gulbahce N, Shaw CA, Lim J, Hill DE, Barabási AL and Zoghbi HY: Comparison of an expanded ataxia interactome with patient medical records reveals a relationship between macular degeneration and ataxia. Hum Mol Genet. 20:510–527. 2011.PubMed/NCBI View Article : Google Scholar | |
Rettig J, Sheng ZH, Kim DK, Hodson CD, Snutch TP and Catterall WA: Isoform-specific interaction of the alpha1A subunits of brain Ca2+ channels with the presynaptic proteins syntaxin and SNAP-25. Proc Natl Acad Sci USA. 93:7363–7368. 1996.PubMed/NCBI View Article : Google Scholar | |
Hilfiker S, Pieribone VA, Nordstedt C, Greengard P and Czernik AJ: Regulation of synaptotagmin I phosphorylation by multiple protein kinases. J Neurochem. 73:921–932. 1999.PubMed/NCBI View Article : Google Scholar | |
Castillo MA, Ghose S, Tamminga CA and Ulery-Reynolds PG: Deficits in syntaxin 1 phosphorylation in schizophrenia prefrontal cortex. Biol Psychiatry. 67:208–216. 2010.PubMed/NCBI View Article : Google Scholar | |
Hwang TC, Yeh JT, Zhang J, Yu YC, Yeh HI and Destefano S: Structural mechanisms of CFTR function and dysfunction. J Gen Physiol. 150:539–570. 2018.PubMed/NCBI View Article : Google Scholar | |
Fajac I and De BK: New horizons for cystic fibrosis treatment. Pharmacol Ther. 170:205–211. 2017.PubMed/NCBI View Article : Google Scholar | |
Csanady L, Vergani P and Gadsby DC: Structure, gating, and regulation of the CFTR anion channel. Physiol Rev. 99:707–738. 2019.PubMed/NCBI View Article : Google Scholar | |
Cesaro L, Marin O, Venerando A, Donella-Deana A and Pinna LA: Phosphorylation of cystic fibrosis transmembrane conductance regulator (CFTR) serine-511 by the combined action of tyrosine kinases and CK2: The implication of tyrosine-512 and phenylalanine-508. Amino Acids. 45:1423–1429. 2013.PubMed/NCBI View Article : Google Scholar | |
Luz S, Kongsuphol P, Mendes AI, Romeiras F, Sousa M, Schreiber R, Matos P, Jordan P, Mehta A, Amaral MD, et al: Contribution of casein kinase 2 and spleen tyrosine kinase to CFTR trafficking and protein kinase A-induced activity. Mol Cell Biol. 31:4392–4404. 2011.PubMed/NCBI View Article : Google Scholar | |
Mehta A: Cystic fibrosis as a bowel cancer syndrome and the potential role of CK2. Mol Cell Biochem. 316:169–175. 2008.PubMed/NCBI View Article : Google Scholar | |
Pagano MA, Arrigoni G, Marin O, Sarno S, Meggio F, Treharne KJ, Mehta A and Pinna LA: Modulation of protein kinase CK2 activity by fragments of CFTR encompassing F508 may reflect functional links with cystic fibrosis pathogenesis. Biochemistry. 47:7925–7936. 2008.PubMed/NCBI View Article : Google Scholar | |
Treharne KJ, Xu Z, Chen JH, Best OG, Cassidy DM, Gruenert DC, Hegyi P, Gray MA, Sheppard DN, Kunzelmann K and Mehta A: Inhibition of protein kinase CK2 closes the CFTR Cl channel, but has no effect on the cystic fibrosis mutant deltaF508-CFTR. Cell Physiol Biochem. 24:347–360. 2009.PubMed/NCBI View Article : Google Scholar | |
Venerando A, Pagano MA, Tosoni K, Meggio F, Cassidy D, Stobbart M, Pinna LA and Mehta A: Understanding protein kinase CK2 mis-regulation upon F508del CFTR expression. Naunyn Schmiedebergs Arch Pharmacol. 384:473–488. 2011.PubMed/NCBI View Article : Google Scholar | |
Pagano MA, Marin O, Cozza G, Sarno S, Meggio F, Treharne KJ, Mehta A and Pinna LA: Cystic fibrosis transmembrane regulator fragments with the Phe508 deletion exert a dual allosteric control over the master kinase CK2. Biochem J. 426:19–29. 2010.PubMed/NCBI View Article : Google Scholar | |
Pinto MC, Schreiber R, Lerias J, Ousingsawat J, Duarte A, Amaral M and Kunzelmann K: Regulation of TMEM16A by CK2 and its role in cellular proliferation. Cells. 9(1138)2020.PubMed/NCBI View Article : Google Scholar | |
Roosbeek S, Peelman F, Verhee A, Labeur C, Caster H, Lensink MF, Cirulli C, Grooten J, Cochet C, Vandekerckhove JL, et al: Phosphorylation by protein kinase CK2 modulates the activity of the ATP binding cassette A1 transporter. J Biol Chem. 279:37779–37788. 2004.PubMed/NCBI View Article : Google Scholar | |
Bai X, Moraes TF and Reithmeier RAF: Structural biology of solute carrier (SLC) membrane transport proteins. Mol Membr Biol. 34:1–32. 2017.PubMed/NCBI View Article : Google Scholar | |
Ibrahim SH, Turner MJ, Saint-Criq V, Garnett J, Haq IJ, Brodlie M, Ward C, Borgo C, Salvi M, Venerando A and Gray MA: CK2 is a key regulator of SLC4A2-mediated Cl-/HCO3-exchange in human airway epithelia. Pflugers Arch. 469:1073–1091. 2017.PubMed/NCBI View Article : Google Scholar | |
Stolk M, Cooper E, Vilk G, Litchfield DW and Hammond JR: Subtype-specific regulation of equilibrative nucleoside transporters by protein kinase CK2. Biochem J. 386:281–289. 2005.PubMed/NCBI View Article : Google Scholar |