Functions of CD169 positive macrophages in human diseases (Review)
- Authors:
- Yu Liu
- Yuan Xia
- Chun-Hong Qiu
-
Affiliations: Department of Cell Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China, Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China, Department of Cell Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China - Published online on: December 17, 2020 https://doi.org/10.3892/br.2020.1402
- Article Number: 26
-
Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Varol C, Mildner A and Jung S: Macrophages: Development and tissue specialization. Annu Rev Immunol. 33:643–675. 2015.PubMed/NCBI View Article : Google Scholar | |
Martinez-Pomares L and Gordon S: CD169+ macrophages at the crossroads of antigen presentation. Trends Immunol. 33:66–70. 2012.PubMed/NCBI View Article : Google Scholar | |
Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, et al: Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 13:397–406. 2014.PubMed/NCBI View Article : Google Scholar | |
Chávez-Galán L, Olleros ML, Vesin D and Garcia I: Much more than M1 and M2 macrophages, there are also CD169(+) and TCR(+) macrophages. Front Immunol. 6(263)2015.PubMed/NCBI View Article : Google Scholar | |
Li W, Wang Y, Zhao H, Zhang H, Xu Y, Wang S, Guo X, Huang Y, Zhang S, Han Y, et al: Identification and transcriptome analysis of erythroblastic island macrophages. Blood. 134:480–491. 2019.PubMed/NCBI View Article : Google Scholar | |
Komohara Y, Ohnishi K and Takeya M: Possible functions of CD169-positive sinus macrophages in lymph nodes in anti-tumor immune responses. Cancer Sci. 108:290–295. 2017.PubMed/NCBI View Article : Google Scholar | |
Bao G, Han Z, Yan Z, Wang Q, Zhou Y, Yao D, Gu M, Chen B, Chen S, Deng A and Zhong R: Increased Siglec-1 expression in monocytes of patients with primary biliary cirrhosis. Immunol Invest. 39:645–660. 2010.PubMed/NCBI View Article : Google Scholar | |
Strömvall K, Sundkvist K, Ljungberg B, Halin Bergström S and Bergh A: Reduced number of CD169(+) macrophages in pre-metastatic regional lymph nodes is associated with subsequent metastatic disease in an animal model and with poor outcome in prostate cancer patients. Prostate. 77:1468–1477. 2017.PubMed/NCBI View Article : Google Scholar | |
Biesen R, Demir C, Barkhudarova F, Grün JR, Steinbrich-Zöllner M, Backhaus M, Häupl T, Rudwaleit M, Riemekasten G, Radbruch A, et al: Sialic acid-binding Ig-like lectin 1 expression in inflammatory and resident monocytes is a potential biomarker for monitoring disease activity and success of therapy in systemic lupus erythematosus. Arthritis Rheum. 58:1136–1145. 2008.PubMed/NCBI View Article : Google Scholar | |
Zhang J, Xu J, Zhang RX, Zhang Y, Ou QJ, Li JQ, Jiang ZZ, Wu XJ, Fang YJ and Zheng L: CD169 identifies an activated CD8(+) T cell subset in regional lymph nodes that predicts favorable prognosis in colorectal cancer patients. Oncoimmunology. 5(e1177690)2016.PubMed/NCBI View Article : Google Scholar | |
Nycholat CM, Rademacher C, Kawasaki N and Paulson JC: In silico-aided design of a glycan ligand of sialoadhesin for in vivo targeting of macrophages. J Am Chem Soc. 134:15696–15699. 2012.PubMed/NCBI View Article : Google Scholar | |
Oetke C, Vinson MC, Jones C and Crocker PR: Sialoadhesin-deficient mice exhibit subtle changes in B- and T-cell populations and reduced immunoglobulin M levels. Mol Cell Biol. 26:1549–1557. 2006.PubMed/NCBI View Article : Google Scholar | |
Edgar LJ, Kawasaki N, Nycholat CM and Paulson JC: Targeted delivery of antigen to activated CD169(+) macrophages induces bias for expansion of CD8(+) T cells. Cell Chem Biol. 26:131–136.e4. 2019.PubMed/NCBI View Article : Google Scholar | |
Ravishankar B, Shinde R, Liu H, Chaudhary K, Bradley J, Lemos HP, Chandler P, Tanaka M, Munn DH, Mellor AL and McGaha TL: Marginal zone CD169+ macrophages coordinate apoptotic cell-driven cellular recruitment and tolerance. Proc Natl Acad Sci USA. 111:4215–4220. 2014.PubMed/NCBI View Article : Google Scholar | |
Panduro M, Benoist C and Mathis D: Tissue tregs. Annu Rev Immunol. 34:609–633. 2016.PubMed/NCBI View Article : Google Scholar | |
Sakaguchi S, Yamaguchi T, Nomura T and Ono M: Regulatory T cells and immune tolerance. Cell. 133:775–787. 2008.PubMed/NCBI View Article : Google Scholar | |
Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z, Shimizu J, Takahashi T and Nomura T: Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev. 212:8–27. 2006.PubMed/NCBI View Article : Google Scholar | |
Wu C, Rauch U, Korpos E, Song J, Loser K, Crocker PR and Sorokin LM: Sialoadhesin-positive macrophages bind regulatory T cells, negatively controlling their expansion and autoimmune disease progression. J Immunol. 182:6508–6516. 2009.PubMed/NCBI View Article : Google Scholar | |
Ramos-Leví AM and Marazuela M: Pathogenesis of thyroid autoimmune disease: The role of cellular mechanisms. Endocrinol Nutr. 63:421–429. 2016.PubMed/NCBI View Article : Google Scholar | |
Hashimoto K, Nishihara E, Matsumoto M, Matsumoto S, Nakajima Y, Tsujimoto K, Yamakage H, Satoh-Asahara N, Noh JY, Ito K, et al: Sialic acid-binding immunoglobulin-like lectin1 as a novel predictive biomarker for relapse in Graves' disease: A multicenter study. Thyroid. 28:50–59. 2018.PubMed/NCBI View Article : Google Scholar | |
Ruffin N, Gea-Mallorquí E, Brouiller F, Jouve M, Silvin A, See P, Dutertre CA, Ginhoux F and Benaroch P: Constitutive Siglec-1 expression confers susceptibility to HIV-1 infection of human dendritic cell precursors. Proc Natl Acad Sci USA. 116:21685–21693. 2019.PubMed/NCBI View Article : Google Scholar | |
Fraschilla I and Pillai S: Viewing Siglecs through the lens of tumor immunology. Immunol Rev. 276:178–191. 2017.PubMed/NCBI View Article : Google Scholar | |
Shiota T, Miyasato Y, Ohnishi K, Yamamoto-Ibusuki M, Yamamoto Y, Iwase H, Takeya M and Komohara Y: The clinical significance of CD169-positive lymph node macrophage in patients with breast cancer. PLoS One. 11(e0166680)2016.PubMed/NCBI View Article : Google Scholar | |
Saunderson SC, Dunn AC, Crocker PR and McLellan AD: CD169 mediates the capture of exosomes in spleen and lymph node. Blood. 123:208–216. 2014.PubMed/NCBI View Article : Google Scholar | |
Camara A, Cordeiro OG, Alloush F, Sponsel J, Chypre M, Onder L, Asano K, Tanaka M, Yagita H, Ludewig B, et al: Lymph node mesenchymal and endothelial stromal cells cooperate via the RANK-RANKL cytokine axis to shape the sinusoidal macrophage niche. Immunity. 50:1467–1481. 2019.PubMed/NCBI View Article : Google Scholar | |
Hiemstra IH, Beijer MR, Veninga H, Vrijland K, Borg EG, Olivier BJ, Mebius RE, Kraal G and den Haan JM: The identification and developmental requirements of colonic CD169+ macrophages. Immunology. 142:269–278. 2014.PubMed/NCBI View Article : Google Scholar | |
Lescoat A, Ballerie A, Augagneur Y, Morzadec C, Vernhet L, Fardel O, Jégo P, Jouneau S and Lecureur V: Distinct properties of human M-CSF and GM-CSF monocyte-derived macrophages to simulate pathological lung conditions in vitro: Application to systemic and inflammatory disorders with pulmonary involvement. Int J Mol Sci. 19(894)2018.PubMed/NCBI View Article : Google Scholar | |
Vance J, Santos A, Sadofsky L, Morice A and Cervantes J: Effect of high glucose on human alveolar macrophage phenotype and phagocytosis of mycobacteria. Lung. 197:89–94. 2019.PubMed/NCBI View Article : Google Scholar | |
Friedrich SK, Lang PA, Friebus-Kardash J, Duhan V, Bezgovsek J and Lang KS: Mechanisms of lymphatic system-specific viral replication and its potential role in autoimmune disease. Clin Exp Immunol. 195:64–73. 2019.PubMed/NCBI View Article : Google Scholar | |
Xu HC, Huang J, Khairnar V, Duhan V, Pandyra AA, Grusdat M, Shinde P, McIlwain DR, Maney SK, Gommerman J, et al: Deficiency of the B cell-activating factor receptor results in limited CD169+ macrophage function during viral infection. J Virol. 89:4748–4759. 2015.PubMed/NCBI View Article : Google Scholar | |
Kikuchi K, Iida M, Ikeda N, Moriyama S, Hamada M, Takahashi S, Kitamura H, Watanabe T, Hasegawa Y, Hase K, et al: Macrophages switch their phenotype by regulating Maf expression during different phases of inflammation. J Immunol. 201:635–651. 2018.PubMed/NCBI View Article : Google Scholar | |
Yao H, Zhang Y, Xie B, Shang Y, Yuan S and Zhang J: Sleep-restriction inhibits neurogenesis through decreasing the infiltration of CD169(+) macrophages to ischemic brain after stroke. Neuroscience. 431:222–236. 2020.PubMed/NCBI View Article : Google Scholar | |
Spaulding E, Fooksman D, Moore JM, Saidi A, Feintuch CM, Reizis B, Chorro L, Daily J and Lauvau G: STING-licensed macrophages prime type I IFN production by plasmacytoid dendritic cells in the bone marrow during severe plasmodium yoelii malaria. PLoS Pathog. 12(e1005975)2016.PubMed/NCBI View Article : Google Scholar | |
Chavez M, Silvestrini MT, Ingham ES, Fite BZ, Mahakian LM, Tam SM, Ilovitsh A, Monjazeb AM, Murphy WJ, Hubbard NE, et al: Distinct immune signatures in directly treated and distant tumors result from TLR adjuvants and focal ablation. Theranostics. 8:3611–3628. 2018.PubMed/NCBI View Article : Google Scholar | |
Ferreira RC, Guo H, Coulson RM, Smyth DJ, Pekalski ML, Burren OS, Cutler AJ, Doecke JD, Flint S, McKinney EF, et al: A type I interferon transcriptional signature precedes autoimmunity in children genetically at risk for type 1 diabetes. Diabetes. 63:2538–2550. 2014.PubMed/NCBI View Article : Google Scholar | |
Rose T, Szelinski F, Lisney A, Reiter K, Fleischer SJ, Burmester GR, Radbruch A, Hiepe F, Grützkau A, Biesen R and Dörner T: Siglec1 is a biomarker of disease activity and indicates extraglandular manifestation in primary Sjögren's syndrome. RMD Open. 2(e000292)2016.PubMed/NCBI View Article : Google Scholar | |
Seu KG, Papoin J, Fessler R, Hom J, Huang G, Mohandas N, Blanc L and Kalfa TA: Unraveling macrophage heterogeneity in erythroblastic islands. Front Immunol. 8(1140)2017.PubMed/NCBI View Article : Google Scholar | |
Falchi M, Varricchio L, Martelli F, Masiello F, Federici G, Zingariello M, Girelli G, Whitsett C, Petricoin EF III, Moestrup SK, et al: Dexamethasone targeted directly to macrophages induces macrophage niches that promote erythroid expansion. Haematologica. 100:178–187. 2015.PubMed/NCBI View Article : Google Scholar | |
Jacobsen RN, Forristal CE, Raggatt LJ, Nowlan B, Barbier V, Kaur S, van Rooijen N, Winkler IG, Pettit AR and Levesque JP: Mobilization with granulocyte colony-stimulating factor blocks medullar erythropoiesis by depleting F4/80(+)VCAM1(+)CD169(+)ER-HR3(+)Ly6G(+) erythroid island macrophages in the mouse. Exp Hematol. 42:547–561.e4. 2014.PubMed/NCBI View Article : Google Scholar | |
Chow A, Huggins M, Ahmed J, Hashimoto D, Lucas D, Kunisaki Y, Pinho S, Leboeuf M, Noizat C, van Rooijen N, et al: CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med. 19:429–436. 2013.PubMed/NCBI View Article : Google Scholar | |
Kaur S, Raggatt LJ, Millard SM, Wu AC, Batoon L, Jacobsen RN, Winkler IG, MacDonald KP, Perkins AC, Hume DA, et al: Self-repopulating recipient bone marrow resident macrophages promote long-term hematopoietic stem cell engraftment. Blood. 132:735–749. 2018.PubMed/NCBI View Article : Google Scholar | |
Gbotosho OT, Kapetanaki MG, Ross M, Ghosh S, Weidert F, Bullock GC, Watkins S, Ofori-Acquah SF and Kato GJ: Nrf2 deficiency in mice attenuates erythropoietic stress-related macrophage hypercellularity. Exp Hematol. 84:19–28.e4. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhang RR and Zhu XF: Relationship between macrophages and erythropoiesis. Zhongguo Dang Dai Er Ke Za Zhi. 18:94–99. 2016.PubMed/NCBI View Article : Google Scholar : (In Chinese). | |
Batoon L, Millard SM, Wullschleger ME, Preda C, Wu AC, Kaur S, Tseng HW, Hume DA, Levesque JP, Raggatt LJ and Pettit AR: CD169(+) macrophages are critical for osteoblast maintenance and promote intramembranous and endochondral ossification during bone repair. Biomaterials. 196:51–66. 2019.PubMed/NCBI View Article : Google Scholar | |
Asano K, Kikuchi K and Tanaka M: CD169 macrophages regulate immune responses toward particulate materials in the circulating fluid. J Biochem. 164:77–85. 2018.PubMed/NCBI View Article : Google Scholar | |
De Schryver M, Leemans A, Pintelon I, Cappoen D, Maes L, Caljon G, Cos P and Delputte PL: Comparative analysis of the internalization of the macrophage receptor sialoadhesin in human and mouse primary macrophages and cell lines. Immunobiology. 222:797–806. 2017.PubMed/NCBI View Article : Google Scholar | |
Louie DAP and Liao S: Lymph Node Subcapsular sinus macrophages as the frontline of lymphatic immune defense. Front Immunol. 10(347)2019.PubMed/NCBI View Article : Google Scholar | |
Heath WR, Kato Y, Steiner TM and Caminschi I: Antigen presentation by dendritic cells for B cell activation. Curr Opin Immunol. 58:44–52. 2019.PubMed/NCBI View Article : Google Scholar | |
Veninga H, Borg EG, Vreeman K, Taylor PR, Kalay H, van Kooyk Y, Kraal G, Martinez-Pomares L and den Haan JM: Antigen targeting reveals splenic CD169+ macrophages as promoters of germinal center B-cell responses. Eur J Immunol. 45:747–757. 2015.PubMed/NCBI View Article : Google Scholar | |
Grabowska J, Lopez-Venegas MA, Affandi AJ and den-Haan JMM: CD169+ macrophages capture and Dendritic cells instruct: The interplay of the gatekeeper and the general of the immune system. Front Immunol. 9(2472)2018.PubMed/NCBI View Article : Google Scholar | |
Van Dinther D, Veninga H, Iborra S, Borg EGF, Hoogterp L, Olesek K, Beijer MR, Schetters STT, Kalay H, Garcia-Vallejo JJ, et al: Functional CD169 on macrophages mediates interaction with Dendritic cells for CD8(+) T Cell cross-priming. Cell Rep. 22:1484–1495. 2018.PubMed/NCBI View Article : Google Scholar | |
Barral P, Polzella P, Bruckbauer A, van Rooijen N, Besra GS, Cerundolo V and Batista FD: CD169(+) macrophages present lipid antigens to mediate early activation of iNKT cells in lymph nodes. Nat Immunol. 11:303–312. 2010.PubMed/NCBI View Article : Google Scholar | |
Kawasaki N, Vela JL, Nycholat CM, Rademacher C, Khurana A, van Rooijen N, Crocker PR, Kronenberg M and Paulson JC: Targeted delivery of lipid antigen to macrophages via the CD169/sialoadhesin endocytic pathway induces robust invariant natural killer T cell activation. Proc Natl Acad Sci USA. 110:7826–7831. 2013.PubMed/NCBI View Article : Google Scholar | |
Covarrubias R, Wilhelm AJ and Major AS: Specific deletion of LDL receptor-related protein on macrophages has skewed in vivo effects on cytokine production by invariant natural killer T cells. PLoS One. 9(e102236)2014.PubMed/NCBI View Article : Google Scholar | |
Trahtemberg U and Mevorach D: Apoptotic cells induced signaling for immune homeostasis in macrophages and Dendritic cells. Front Immunol. 8(1356)2017.PubMed/NCBI View Article : Google Scholar | |
Vives-Pi M, Rodríguez-Fernández S and Pujol-Autonell I: How apoptotic β-cells direct immune response to tolerance or to autoimmune diabetes: A review. Apoptosis. 20:263–272. 2015.PubMed/NCBI View Article : Google Scholar | |
Tanaka M and Miyake Y: Apoptotic cell clearance and autoimmune disorder. Curr Med Chem. 14:2892–2897. 2007.PubMed/NCBI View Article : Google Scholar | |
Miyake Y, Asano K, Kaise H, Uemura M, Nakayama M and Tanaka M: Critical role of macrophages in the marginal zone in the suppression of immune responses to apoptotic cell-associated antigens. J Clin Invest. 117:2268–2278. 2007.PubMed/NCBI View Article : Google Scholar | |
Asano K, Nabeyama A, Miyake Y, Qiu CH, Kurita A, Tomura M, Kanagawa O, Fujii S and Tanaka M: CD169-positive macrophages dominate antitumor immunity by crosspresenting dead cell-associated antigens. Immunity. 34:85–95. 2011.PubMed/NCBI View Article : Google Scholar | |
Ravishankar B, Liu H, Shinde R, Chandler P, Baban B, Tanaka M, Munn DH, Mellor AL, Karlsson MC and McGaha TL: Tolerance to apoptotic cells is regulated by indoleamine 2,3-dioxygenase. Proc Natl Acad Sci USA. 109:3909–3914. 2012.PubMed/NCBI View Article : Google Scholar | |
Black LV, Saunderson SC, Coutinho FP, Muhsin-Sharafaldine MR, Damani TT, Dunn AC and McLellan AD: The CD169 sialoadhesin molecule mediates cytotoxic T-cell responses to tumour apoptotic vesicles. Immunol Cell Biol. 94:430–438. 2016.PubMed/NCBI View Article : Google Scholar | |
Qiu CH, Miyake Y, Kaise H, Kitamura H, Ohara O and Tanaka M: Novel subset of CD8{alpha}+ dendritic cells localized in the marginal zone is responsible for tolerance to cell-associated antigens. J Immunol. 182:4127–4136. 2009.PubMed/NCBI View Article : Google Scholar | |
Hao S, Han X, Wang D, Yang Y, Li Q, Li X and Qiu CH: Critical role of CCL22/CCR4 axis in the maintenance of immune homeostasis during apoptotic cell clearance by splenic CD8α(+) CD103(+) dendritic cells. Immunology. 148:174–186. 2016.PubMed/NCBI View Article : Google Scholar | |
Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 233:6425–6440. 2018.PubMed/NCBI View Article : Google Scholar | |
Detienne S, Welsby I, Collignon C, Wouters S, Coccia M, Delhaye S, Van Maele L, Thomas S, Swertvaegher M, Detavernier A, et al: Central role of CD169(+) lymph node resident macrophages in the adjuvanticity of the QS-21 component of AS01. Sci Rep. 6(39475)2016.PubMed/NCBI View Article : Google Scholar | |
Wang D, Li Q, Yang Y, Hao S, Han X, Song J, Yin Y, Li X, Tanaka M and Qiu CH: Macrophage subset expressing CD169 in peritoneal cavity-regulated mucosal inflammation together with lower levels of CCL22. Inflammation. 40:1191–1203. 2017.PubMed/NCBI View Article : Google Scholar | |
Li Q, Wang D, Hao S, Han X, Xia Y, Li X, Chen Y, Tanaka M and Qiu CH: CD169 expressing macrophage, a key subset in mesenteric lymph nodes promotes mucosal inflammation in dextran sulfate sodium-induced colitis. Front Immunol. 8(669)2017.PubMed/NCBI View Article : Google Scholar | |
Asano K, Takahashi N, Ushiki M, Monya M, Aihara F, Kuboki E, Moriyama S, Iida M, Kitamura H, Qiu CH, et al: Intestinal CD169(+) macrophages initiate mucosal inflammation by secreting CCL8 that recruits inflammatory monocytes. Nat Commun. 6(7802)2015.PubMed/NCBI View Article : Google Scholar | |
Xia Y, Tian LM, Liu Y, Guo KS, Lv M, Li QT, Hao SY, Ma CH, Chen YX, Tanaka M, et al: Low dose of cyanidin-3-O-glucoside alleviated dextran sulfate sodium-induced colitis, mediated by CD169+ macrophage pathway. Inflamm Bowel Dis. 25:1510–1521. 2019.PubMed/NCBI View Article : Google Scholar | |
Bogie JF, Boelen E, Louagie E, Delputte P, Elewaut D, van Horssen J, Hendriks JJ and Hellings N: CD169 is a marker for highly pathogenic phagocytes in multiple sclerosis. Mult Scle. 24:290–300. 2018.PubMed/NCBI View Article : Google Scholar | |
Xiong YS, Cheng Y, Lin QS, Wu AL, Yu J, Li C, Sun Y, Zhong RQ and Wu LJ: Increased expression of Siglec-1 on peripheral blood monocytes and its role in mononuclear cell reactivity to autoantigen in rheumatoid arthritis. Rheumatology (Oxford). 53:250–259. 2014.PubMed/NCBI View Article : Google Scholar | |
Guo X, Nakamura K, Kohyama K, Harada C, Behanna HA, Watterson DM, Matsumoto Y and Harada T: Inhibition of glial cell activation ameliorates the severity of experimental autoimmune encephalomyelitis. Neurosci Res. 59:457–466. 2007.PubMed/NCBI View Article : Google Scholar | |
Karasawa K, Asano K, Moriyama S, Ushiki M, Monya M, Iida M, Kuboki E, Yagita H, Uchida K, Nitta K and Tanaka M: Vascular-resident CD169-positive monocytes and macrophages control neutrophil accumulation in the kidney with ischemia-reperfusion injury. J Am Soc Nephrol. 26:896–906. 2015.PubMed/NCBI View Article : Google Scholar | |
Shinde PV, Xu HC, Maney SK, Kloetgen A, Namineni S, Zhuang Y, Honke N, Shaabani N, Bellora N, Doerrenberg M, et al: Tumor necrosis factor-mediated survival of CD169(+) cells promotes immune activation during vesicular stomatitis virus infection. J Virol. 92:e01637–e01617. 2018.PubMed/NCBI View Article : Google Scholar | |
Uchil PD, Pi R, Haugh KA, Ladinsky MS, Ventura JD, Barrett BS, Santiago ML, Bjorkman PJ, Kassiotis G, Sewald X and Mothes W: A protective role for the lectin CD169/Siglec-1 against a pathogenic murine retrovirus. Cell Host Microbe. 25:87–100.e10. 2019.PubMed/NCBI View Article : Google Scholar | |
Frederico B, Chao B, Lawler C, May JS and Stevenson PG: Subcapsular sinus macrophages limit acute gammaherpesvirus dissemination. J Gen Virol. 96:2314–2327. 2015.PubMed/NCBI View Article : Google Scholar | |
Junt T, Moseman EA, Iannacone M, Massberg S, Lang PA, Boes M, Fink K, Henrickson SE, Shayakhmetov DM, Di Paolo NC, et al: Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature. 450:110–114. 2007.PubMed/NCBI View Article : Google Scholar | |
Honke N, Shaabani N, Merches K, Gassa A, Kraft A, Ehrhardt K, Häussinger D, Löhning M, Dittmer U, Hengel H, et al: Immunoactivation induced by chronic viral infection inhibits viral replication and drives immunosuppression through sustained IFN-I responses. Eur J Immunol. 46:372–380. 2016.PubMed/NCBI View Article : Google Scholar | |
Shaabani N, Duhan V, Khairnar V, Gassa A, Ferrer-Tur R, Häussinger D, Recher M, Zelinskyy G, Liu J, Dittmer U, et al: CD169(+) macrophages regulate PD-L1 expression via type I interferon and thereby prevent severe immunopathology after LCMV infection. Cell Death Dis. 7(e2446)2016.PubMed/NCBI View Article : Google Scholar | |
Teijaro JR: Too much of a good thing: Sustained type 1 interferon signaling limits humoral responses to secondary viral infection. Eur J Immunol. 46:300–302. 2016.PubMed/NCBI View Article : Google Scholar | |
Oh DS, Oh JE, Jung HE and Lee HK: Transient depletion of CD169(+) cells contributes to impaired early protection and effector CD8(+) T cell recruitment against mucosal respiratory syncytial virus infection. Front Immunol. 8(819)2017.PubMed/NCBI View Article : Google Scholar | |
Jans J, Unger WWJ, Vissers M, Ahout IML, Schreurs I, Wickenhagen A, de Groot R, de Jonge MI and Ferwerda G: Siglec-1 inhibits RSV-induced interferon gamma production by adult T cells in contrast to newborn T cells. Eur J Immunol. 48:621–631. 2018.PubMed/NCBI View Article : Google Scholar | |
Hammonds JE, Beeman N, Ding L, Takushi S, Francis AC, Wang JJ, Melikyan GB and Spearman P: Siglec-1 initiates formation of the virus-containing compartment and enhances macrophage-to-T cell transmission of HIV-1. PLoS Pathog. 13(e1006181)2017.PubMed/NCBI View Article : Google Scholar | |
Jobe O, Kim J and Rao M: The role of Siglec-1 in HIV-1/macrophage interaction. Macrophage (Houst). 3(e1435)2016.PubMed/NCBI | |
Pino M, Erkizia I, Benet S, Erikson E, Fernández-Figueras MT, Guerrero D, Dalmau J, Ouchi D, Rausell A, Ciuffi A, et al: HIV-1 immune activation induces Siglec-1 expression and enhances viral trans-infection in blood and tissue myeloid cells. Retrovirology. 12(37)2015.PubMed/NCBI View Article : Google Scholar | |
Martinez-Picado J, McLaren PJ, Erkizia I, Martin MP, Benet S, Rotger M, Dalmau J, Ouchi D, Wolinsky SM, Penugonda S, et al: Identification of Siglec-1 null individuals infected with HIV-1. Nat Commun. 7(12412)2016.PubMed/NCBI View Article : Google Scholar | |
Akiyama H, Ramirez NP, Gibson G, Kline C, Watkins S, Ambrose Z and Gummuluru S: Interferon-inducible CD169/Siglec1 attenuates anti-HIV-1 effects of alpha interferon. J Virol. 91:e00972–e00917. 2017.PubMed/NCBI View Article : Google Scholar | |
Yu X, Feizpour A, Ramirez NG, Wu L, Akiyama H, Xu F, Gummuluru S and Reinhard BM: Glycosphingolipid-functionalized nanoparticles recapitulate CD169-dependent HIV-1 uptake and trafficking in dendritic cells. Nat Commun. 5(4136)2014.PubMed/NCBI View Article : Google Scholar | |
Farhood B, Najafi M and Mortezaee K: CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: A review. J Cell Physiol. 234:8509–8521. 2019.PubMed/NCBI View Article : Google Scholar | |
Joyce JA and Fearon DT: T cell exclusion, immune privilege, and the tumor microenvironment. Science. 348:74–80. 2015.PubMed/NCBI View Article : Google Scholar | |
Schnurr M, Scholz C, Rothenfusser S, Galambos P, Dauer M, Röbe J, Endres S and Eigler A: Apoptotic pancreatic tumor cells are superior to cell lysates in promoting cross-priming of cytotoxic T cells and activate NK and gammadelta T cells. Cancer Res. 62:2347–2352. 2002.PubMed/NCBI | |
Jenne L, Arrighi JF, Jonuleit H, Saurat JH and Hauser C: Dendritic cells containing apoptotic melanoma cells prime human CD8+ T cells for efficient tumor cell lysis. Cancer Res. 60:4446–4452. 2000.PubMed/NCBI | |
Van Dinther D, Veninga H, Revet M, Hoogterp L, Olesek K, Grabowska J, Borg EGF, Kalay H, van Kooyk Y and den Haan JMM: Comparison of protein and peptide targeting for the development of a CD169-based vaccination strategy against melanoma. Front Immunol. 9(1997)2018.PubMed/NCBI View Article : Google Scholar | |
Asano T, Ohnishi K, Shiota T, Motoshima T, Sugiyama Y, Yatsuda J, Kamba T, Ishizaka K and Komohara Y: CD169-positive sinus macrophages in the lymph nodes determine bladder cancer prognosis. Cancer Sci. 109:1723–1730. 2018.PubMed/NCBI View Article : Google Scholar | |
Takeya H, Shiota T, Yagi T, Ohnishi K, Baba Y, Miyasato Y, Kiyozumi Y, Yoshida N, Takeya M, Baba H and Komohara Y: High CD169 expression in lymph node macrophages predicts a favorable clinical course in patients with esophageal cancer. Pathol Int. 68:685–693. 2018.PubMed/NCBI View Article : Google Scholar | |
Ohnishi K, Yamaguchi M, Erdenebaatar C, Saito F, Tashiro H, Katabuchi H, Takeya M and Komohara Y: Prognostic significance of CD169-positive lymph node sinus macrophages in patients with endometrial carcinoma. Cancer Sci. 107:846–852. 2016.PubMed/NCBI View Article : Google Scholar | |
Ohnishi K, Komohara Y, Saito Y, Miyamoto Y, Watanabe M, Baba H and Takeya M: CD169-positive macrophages in regional lymph nodes are associated with a favorable prognosis in patients with colorectal carcinoma. Cancer Sci. 104:1237–1244. 2013.PubMed/NCBI View Article : Google Scholar | |
Saito Y, Ohnishi K, Miyashita A, Nakahara S, Fujiwara Y, Horlad H, Motoshima T, Fukushima S, Jinnin M, Ihn H, et al: Prognostic significance of CD169+ lymph node sinus macrophages in patients with malignant melanoma. Cancer Immunol Res. 3:1356–1363. 2015.PubMed/NCBI View Article : Google Scholar | |
Marmey B, Boix C, Barbaroux JB, Dieu-Nosjean MC, Diebold J, Audouin J, Fridman WH, Mueller CG and Molina TJ: CD14 and CD169 expression in human lymph nodes and spleen: Specific expansion of CD14+CD169- monocyte-derived cells in diffuse large B-cell lymphomas. Hum Pathol. 37:68–77. 2006.PubMed/NCBI View Article : Google Scholar | |
Van Dinther D, Lopez Venegas M, Veninga H, Olesek K, Hoogterp L, Revet M, Ambrosini M, Kalay H, Stöckl J, van Kooyk Y and den Haan JMM: Activation of CD8+ T cell responses after melanoma antigen targeting to CD169+ antigen presenting cells inmice and humans. Cancers (Basel). 11(183)2019.PubMed/NCBI View Article : Google Scholar | |
Topf MC, Harshyne L, Tuluc M, Mardekian S, Vimawala S, Cognetti DM, Curry JM, Rodeck U and Luginbuhl A: Loss of CD169(+) subcapsular macrophages during metastatic spread of head and neck squamous cell carcinoma. Otolaryngol Head Neck Surg. 161:67–73. 2019.PubMed/NCBI View Article : Google Scholar | |
Takeuchi H, Tanaka M, Tanaka A, Tsunemi A and Yamamoto H: Predominance of M2-polarized macrophages in bladder cancer affects angiogenesis, tumor grade and invasiveness. Oncol Lett. 11:3403–3408. 2016.PubMed/NCBI View Article : Google Scholar | |
Iftakhar-E-Khuda I, Fair-Mäkelä R, Kukkonen-Macchi A, Elima K, Karikoski M, Rantakari P, Miyasaka M, Salmi M and Jalkanen S: Gene-expression profiling of different arms of lymphatic vasculature identifies candidates for manipulation of cell traffic. Proc Natl Acad Sci USA. 113:10643–10648. 2016.PubMed/NCBI View Article : Google Scholar | |
Wang B, Liu H, Dong X, Wu S, Zeng H, Liu Z, Wan D, Dong W, He W, Chen X, et al: High CD204+ tumor-infiltrating macrophage density predicts a poor prognosis in patients with urothelial cell carcinoma of the bladder. Oncotarget. 6:20204–20214. 2015.PubMed/NCBI View Article : Google Scholar | |
Li JQ, Yu XJ, Wang YC, Huang LY, Liu CQ, Zheng L, Fang YJ and Xu J: Distinct patterns and prognostic values of tumor-infiltrating macrophages in hepatocellular carcinoma and gastric cancer. J Transl Med. 15(37)2017.PubMed/NCBI View Article : Google Scholar | |
Al Dubayee MS, Alayed H, Almansour R, Alqaoud N, Alnamlah R, Obeid D, Alshahrani A, Zahra MM, Nasr A, Al-Bawab A and Aljada A: Differential expression of human peripheral mononuclear cells phenotype markers in type 2 diabetic patients and type 2 diabetic patients on metformin. Front Endocrinol (Lausanne). 9(537)2018.PubMed/NCBI View Article : Google Scholar | |
Jing W, Guo X, Wang G, Bi Y, Han L, Zhu Q, Qiu C, Tanaka M and Zhao Y: Breast cancer cells promote CD169(+) macrophage-associated immunosuppression through JAK2-mediated PD-L1 upregulation on macrophages. Int Immunopharmacol. 78(106012)2020.PubMed/NCBI View Article : Google Scholar |