1
|
Klein UL, Lia M, Shen Q, Smith PM, Tang H,
Mo T, Crespo M, Siegel R, Bhagat G and Dalla-Favera R: The
DLEU2/Mir-15a/Mir-16-1 locus, commonly deleted in B-cell chronic
Lymphocytic leukemia (CLL), controls B-cell compartment expansion
and its deletion leads to CLL in mice. Blood. 112(25)2008.
|
2
|
Klein U, Lia M, Crespo M, Siegel R, Shen
Q, Mo T, Ambesi-Impiombato A, Califano A, Migliazza A, Bhagat G, et
al: The DLEU2/miR-15a/16-1 cluster controls B cell proliferation
and its deletion leads to chronic lymphocytic leukemia. Cancer
Cell. 17:28–40. 2010.PubMed/NCBI View Article : Google Scholar
|
3
|
Döhner H, Stilgenbauer S, Benner A,
Leupolt E, Kröber A, Bullinger L, Döhner K, Bentz M and Lichter P:
Genomic aberrations and survival in chronic lymphocytic leukemia. N
Engl J Med. 343:1910–1916. 2000.PubMed/NCBI View Article : Google Scholar
|
4
|
Kalachikov S, Migliazza A, Cayanis E,
Fracchiolla NS, Bonaldo MF, Lawton L, Jelenc P, Ye X, Qu X, Chien
M, et al: Cloning and gene mapping of the chromosome 13q14 region
deleted in chronic lymphocytic leukemia. Genomics. 42:369–377.
1997.PubMed/NCBI View Article : Google Scholar
|
5
|
Bullrich F, Fujii H, Calin G, Mabuchi H,
Negrini M, Pekarsky Y, Rassenti L, Alder H, Reed JC, Keating MJ, et
al: Characterization of the 13q14 tumor suppressor locus in CLL:
Identification of ALT1, an alternative splice variant of the LEU2
gene. Cancer Res. 61:6640–6648. 2001.PubMed/NCBI
|
6
|
Corcoran MM, Rasool O, Liu Y, Iyengar A,
Grander D, Ibbotson RE, Merup M, Wu X, Brodyansky V, Gardiner AC,
et al: Detailed molecular delineation of 13q14.3 loss in B-cell
chronic lymphocytic leukemia. Blood. 91:1382–1390. 1998.PubMed/NCBI
|
7
|
Liu Y, Corcoran M, Rasool O, Ivanova G,
Ibbotson R, Grandér D, Iyengar A, Baranova A, Kashuba V, Merup M,
et al: Cloning of two candidate tumor suppressor genes within a 10
kb region on chromosome 13q14, frequently deleted in chronic
lymphocytic leukemia. Oncogene. 15:2463–2473. 1997.PubMed/NCBI View Article : Google Scholar
|
8
|
Li Y, Sun N, Lu Z, Sun S, Huang J, Chen Z
and He J: Prognostic alternative mRNA splicing signature in
non-small cell lung cancer. Cancer Lett. 393:40–51. 2017.PubMed/NCBI View Article : Google Scholar
|
9
|
Lerner M, Harada M, Lovén J, Castro J,
Davis Z, Oscier D, Henriksson M, Sangfelt O, Grandér D and Corcoran
MM: DLEU2, frequently deleted in malignancy, functions as a
critical host gene of the cell cycle inhibitory microRNAs miR-15a
and miR-16-1. Exp Cell Res. 315:2941–2952. 2009.PubMed/NCBI View Article : Google Scholar
|
10
|
Jiang XP, Ai WB, Wan LY, Zhang YQ and Wu
JF: The roles of microRNA families in hepatic fibrosis. Cell
Biosci. 7(34)2017.PubMed/NCBI View Article : Google Scholar
|
11
|
Chen Z, Zhang J, Zhang Z, Feng Z, Wei J,
Lu J, Fang Y, Liang Y, Cen J, Pan Y, et al: The putative tumor
suppressor microRNA-30a-5p modulates clear cell renal cell
carcinoma aggressiveness through repression of ZEB2. Cell Death
Dis. 8(e2859)2017.PubMed/NCBI View Article : Google Scholar
|
12
|
Xu B, Gong X, Zi L, Li G, Dong S, Chen X
and Li Y: Silencing of DLEU2 suppresses pancreatic cancer cell
proliferation and invasion by upregulating microRNA-455. Cancer
Sci. 110:1676–1685. 2019.PubMed/NCBI View Article : Google Scholar
|
13
|
Boue S, Letunic I and Bork P: Alternative
splicing and evolution. BioEssays. 25:1031–1034. 2003.PubMed/NCBI View Article : Google Scholar
|
14
|
Modrek B and Lee C: A genomic view of
alternative splicing. Nat Genet. 30:13–19. 2002.PubMed/NCBI View Article : Google Scholar
|
15
|
Pan Q, Shai O, Lee LJ, Frey BJ and
Blencowe BJ: Deep surveying of alternative splicing complexity in
the human transcriptome by high-throughput sequencing. Nat Genet.
40:1413–1415. 2008.PubMed/NCBI View
Article : Google Scholar
|
16
|
Soergel DAW, Lareau LF and Brenner SE:
Regulation of gene expression by coupling of alternative splicing
and NMD. In: Madame Curie Bioscience Database. Landes Bioscience,
Austin, TX, 2000-2013.
|
17
|
Edwalds-Gilbert G: Regulation of mRNA
Splicing by Signal Transduction. Nat Educ. 3(43)2010.
|
18
|
Tress ML, Abascal F and Valencia A:
Alternative splicing may not be the key to proteome complexity.
Trends Biochem Sci. 42:98–110. 2017.PubMed/NCBI View Article : Google Scholar
|
19
|
Ankö ML and Neugebauer KM: Long noncoding
RNAs add another layer to pre-mRNA splicing regulation. Mol Cell.
39:833–834. 2010.PubMed/NCBI View Article : Google Scholar
|
20
|
Romero-Barrios N, Legascue MF, Benhamed M,
Ariel F and Crespi M: Splicing regulation by long noncoding RNAs.
Nucleic Acids Res. 46:2169–2184. 2018.PubMed/NCBI View Article : Google Scholar
|
21
|
Gil N and Ulitsky I: Production of spliced
long noncoding RNAs specifies regions with increased enhancer
activity. Cell Syst. 7:537–547.e3. 2018.PubMed/NCBI View Article : Google Scholar
|
22
|
Soreq L, Guffanti A, Salomonis N,
Simchovitz A, Israe Z, Bergman H and Soreq H: Long non-coding RNA
and alternative splicing modulations in Parkinson's leukocytes
identified by RNA sequencing. PLOS Comput Biol.
10(e1003517)2014.PubMed/NCBI View Article : Google Scholar
|
23
|
Kiegle EA, Garden A, Lacchini E and Kater
MM: A genomic view of alternative splicing of long non-coding RNAs
during rice seed development reveals extensive splicing and lncRNA
gene families. Front Plant Sci. 9(115)2018.PubMed/NCBI View Article : Google Scholar
|
24
|
Yates AD, Achuthan P, Akanni W, Allen J,
Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, Azov AG, Bennett
R, et al: Ensembl 2020. Nucleic Acids Res. 48:D682–D688.
2020.PubMed/NCBI View Article : Google Scholar
|
25
|
Williams M, Cheng YY, Kirschner MB, Sarun
KH, Schelch K, Winata P, McCaughan B, Kao S, Van Zandwijk N and
Reid G: Transcriptional suppression of the miR-15/16 family by
c-Myc in malignant pleural mesothelioma. Oncotarget. 10:4125–4138.
2019.PubMed/NCBI View Article : Google Scholar
|
26
|
Ma W, Zhang CQ, Dang CX, Cai HY, Li HL,
Miao GY, Wang JK and Zhang LJ: Upregulated long-non-coding RNA
DLEU2 exon 9 expression was an independent indicator of unfavorable
overall survival in patients with esophageal adenocarcinoma. Biomed
Pharmacother. 113(108655)2019.PubMed/NCBI View Article : Google Scholar
|
27
|
Morenos L, Chatterton Z, Ng JL, Halemba
MS, Parkinso-Bates M, Mechinaud F, Elwood N, Saffery R and Wong NC:
Hypermethylation and down-regulation of DLEU2 in paediatric acute
myeloid leukaemia independent of embedded tumour suppressor
miR-15a/16-1. Mol Cancer. 13(123)2014.PubMed/NCBI View Article : Google Scholar
|
28
|
Park MH, Gutiérrez-García AK and Choudhury
M: Mono-(2-ethylhexyl) phthalate aggravates inflammatory response
via sirtuin regulation and inflammasome activation in RAW 264.7
cells. Chem Res Toxicol. 32:935–942. 2019.PubMed/NCBI View Article : Google Scholar
|
29
|
Guo Y, Bai M, Lin L, Huang J, An Y, Liang
L, Liu Y and Huang W: LncRNA DLEU2 aggravates the progression of
hepatocellular carcinoma through binding to EZH2. Biomed
Pharmacother. 118(109272)2019.PubMed/NCBI View Article : Google Scholar
|
30
|
Wu W, Zhao Y, Gao E, Li Y, Guo X, Zhao T,
He W and Zhang H: LncRNA DLEU2 accelerates the tumorigenesis and
invasion of non-small cell lung cancer by sponging miR-30a-5p. J
Cell Mol Med. 24:441–450. 2020.PubMed/NCBI View Article : Google Scholar
|
31
|
Zhou Y, Shi H, Du Y, Zhao G, Wang X, Li Q,
Liu J, Ye L, Shen Z, Guo Y, et al: lncRNA DLEU2 modulates cell
proliferation and invasion of non-small cell lung cancer by
regulating miR-30c-5p/SOX9 axis. Aging (Albany NY). 11:7386–7401.
2019.PubMed/NCBI View Article : Google Scholar
|
32
|
Lu T, Wang R, Cai H and Cui Y: Long
non-coding RNA DLEU2 promotes the progression of esophageal cancer
through miR-30e-5p/E2F7 axis. Biomed Pharmacother.
123(109650)2020.PubMed/NCBI View Article : Google Scholar
|
33
|
Zheng ZM and Wang X: Regulation of
cellular miRNA expression by human papillomaviruses. Biochim
Biophys Acta. 1809:668–677. 2011.PubMed/NCBI View Article : Google Scholar
|
34
|
Corcoran MM, Hammarsund M, Zhu C, Lerner
M, Kapanadze B, Wilson B, Larsson C, Forsberg L, Ibbotson RE,
Einhorn S, et al: DLEU2 encodes an antisense RNA for the putative
bicistronic RFP2/LEU5 gene in humans and mouse. Genes Chromosomes
Cancer. 40:285–297. 2004.PubMed/NCBI View Article : Google Scholar
|