
The role of immunogenic cell death in gastrointestinal cancer immunotherapy (Review)
- Authors:
- Worawat Songjang
- Chatchai Nensat
- Sutatip Pongcharoen
- Arunya Jiraviriyakul
-
Affiliations: Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand, Biomedical Sciences, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand, Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand - Published online on: August 17, 2021 https://doi.org/10.3892/br.2021.1462
- Article Number: 86
-
Copyright: © Songjang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Rammensee HG: From basic immunology to new therapies for cancer patients. In: Cancer Immunotherapy Meets. Oncology. In Honor of Christoph Huber. Britten CM, Kreiter S, Diken M and Rammensee HG (eds). Springer International Publishing, Cham, pp3-11, 2014. | |
Galluzzi L, Buqué A, Kepp O, Zitvogel L and Kroemer G: Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 17:97–111. 2017.PubMed/NCBI View Article : Google Scholar | |
Matzinger P: Tolerance, danger, and the extended family. Annual Rev Immunol. 12:991–1045. 1994.PubMed/NCBI View Article : Google Scholar | |
Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P and Vandenabeele P: Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer. 12:860–875. 2012.PubMed/NCBI View Article : Google Scholar | |
Kroemer G, Galluzzi L, Kepp O and Zitvogel L: Immunogenic cell death in cancer therapy. Annu Rev Immunol. 31:51–72. 2013.PubMed/NCBI View Article : Google Scholar | |
Pol J, Vacchelli E, Aranda F, Castoldi F, Eggermont A, Cremer I, Sautès-Fridman C, Fucikova J, Galon J, Spisek R, et al: Trial Watch: Immunogenic cell death inducers for anticancer chemotherapy. Oncoimmunology. 4(e1008866)2015.PubMed/NCBI View Article : Google Scholar | |
Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, Apetoh L, Aranda F, Barnaba V, Bloy N, et al: Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology. 3(e955691)2014.PubMed/NCBI View Article : Google Scholar | |
Toomey PG, Vohra NA, Ghansah T, Sarnaik AA and Pilon-Thomas SA: Immunotherapy for gastrointestinal malignancies. Cancer Control. 20:32–42. 2013.PubMed/NCBI View Article : Google Scholar | |
Rawla P and Barsouk A: Epidemiology of gastric cancer: Global trends, risk factors and prevention. Gastroenterol Rev. 14:26–38. 2019.PubMed/NCBI View Article : Google Scholar | |
Grady WM and Carethers JM: Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology. 135:1079–1099. 2008.PubMed/NCBI View Article : Google Scholar | |
Morse MA, Hochster H and Benson A: Perspectives on treatment of metastatic colorectal cancer with immune checkpoint inhibitor therapy. Oncologist. 25:33–45. 2020.PubMed/NCBI View Article : Google Scholar | |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018.PubMed/NCBI View Article : Google Scholar | |
Mittal S and El-Serag HB: Epidemiology of hepatocellular carcinoma: Consider the population. J Clin Gastroenterol. 47 (Suppl):S2–S6. 2013.PubMed/NCBI View Article : Google Scholar | |
McGlynn KA and London WT: The global epidemiology of hepatocellular carcinoma: Present and future. Clin Liver Dis. 15:223–243. 2011.PubMed/NCBI View Article : Google Scholar | |
Kamsa-Ard S, Luvira V, Suwanrungruang K, Kamsa-Ard S, Luvira V, Santong C, Srisuk T, Pugkhem A, Bhudhisawasdi V and Pairojkul C: Cholangiocarcinoma trends, incidence, and relative survival in Khon Kaen, Thailand from 1989 through 2013: A population-based cancer registry study. J Epidemiol. 29:197–204. 2019.PubMed/NCBI View Article : Google Scholar | |
Bertuccio P, Malvezzi M, Carioli G, Hashim D, Boffetta P, El-Serag HB, La Vecchia C and Negri E: Global trends in mortality from intrahepatic and extrahepatic cholangiocarcinoma. J Hepatol. 71:104–114. 2019.PubMed/NCBI View Article : Google Scholar | |
Blechacz B: Cholangiocarcinoma: Current knowledge and new developments. Gut Liver. 11:13–26. 2017.PubMed/NCBI View Article : Google Scholar | |
Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, Cardinale V, Carpino G, Andersen JB, Braconi C, et al: Cholangiocarcinoma 2020: The next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol. 17:557–588. 2020.PubMed/NCBI View Article : Google Scholar | |
Sripa B and Pairojkul C: Cholangiocarcinoma: Lessons from Thailand. Curr Opin Gastroenterol. 24:349–356. 2008.PubMed/NCBI View Article : Google Scholar | |
Pereira NP and Corrêa JR: Pancreatic cancer: Treatment approaches and trends. J Cancer Metastasis Treat. 4(18)2018. | |
Matsuoka T and Yashiro M: Precision medicine for gastrointestinal cancer: Recent progress and future perspective. World J Gastrointest Oncol. 12:1–20. 2020.PubMed/NCBI View Article : Google Scholar | |
Abdul-Latif M, Townsend K, Dearman C, Shiu KK and Khan K: Immunotherapy in gastrointestinal cancer: The current scenario and future perspectives. Cancer Treat Rev. 88(102030)2020.PubMed/NCBI View Article : Google Scholar | |
Tannapfel A and Reinacher-Schick A: Immunotherapy in gastrointestinal cancer: Where Do We Stand? Visc Med. 35:1–2. 2019.PubMed/NCBI View Article : Google Scholar | |
Suntharalingam M, Winter K, Ilson DH, Dicker A, Kachnic LA, Chakravarthy AAK, Gaffney DK, Thakrar HV, Horiba MN, Deutsch M, et al: The initial report of RTOG 0436: A phase III trial evaluating the addition of cetuximab to paclitaxel, cisplatin, and radiation for patients with esophageal cancer treated without surgery. J Clin Oncol. 32:LBA6. 2014. | |
O'Connell MJ, Colangelo LH, Beart RW, Petrelli NJ, Allegra CJ, Sharif S, Pitot HC, Shields AF, Landry JC, Ryan DP, et al: Capecitabine and oxaliplatin in the preoperative multimodality treatment of rectal cancer: Surgical end points from national surgical adjuvant breast and bowel project trial R-04. J Clin Oncol. 32:1927–1934. 2014.PubMed/NCBI View Article : Google Scholar | |
Mortara L, Balza E, Bruno A, Poggi A, Orecchia P and Carnemolla B: Anti-cancer therapies employing il-2 cytokine tumor targeting: Contribution of innate, adaptive and immunosuppressive cells in the anti-tumor efficacy. Front Immunol. 9(2905)2018.PubMed/NCBI View Article : Google Scholar | |
Hollingsworth RE and Jansen K: Turning the corner on therapeutic cancer vaccines. NPJ Vaccines. 4(7)2019.PubMed/NCBI View Article : Google Scholar | |
Cheever MA and Higano CS: PROVENGE (Sipuleucel-T) in prostate cancer: The first FDA-approved therapeutic cancer vaccine. Clin Cancer Res. 17:3520–3526. 2011.PubMed/NCBI View Article : Google Scholar | |
Kudrin A: Overview of cancer vaccines: Considerations for development. Hum Vaccin Immunother. 8:1335–1353. 2012.PubMed/NCBI View Article : Google Scholar | |
Reitsma DJ and Combest AJ: Challenges in the development of an autologous heat shock protein based anti-tumor vaccine. Hum Vaccin Immunother. 8:1152–1155. 2012.PubMed/NCBI View Article : Google Scholar | |
Ozao-Choy J, Lee DJ and Faries MB: Melanoma vaccines: Mixed past, promising future. Surg Clin North Am. 94:1017–1030. 2014.PubMed/NCBI View Article : Google Scholar | |
Niccolai E, Taddei A, Prisco D and Amedei A: Gastric cancer and the epoch of immunotherapy approaches. World J Gastroenterol. 21:5778–5793. 2015.PubMed/NCBI View Article : Google Scholar | |
Morse MA, Deng Y, Coleman D, Hull S, Kitrell-Fisher E, Nair S, Schlom J, Ryback ME and Lyerly HK: A Phase I study of active immunotherapy with carcinoembryonic antigen peptide (CAP-1)-pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen. Clin Cancer Res. 5:1331–1338. 1999.PubMed/NCBI | |
Li J, Valentin A, Beach RK, Alicea C, Felber BK and Pavlakis GN: DNA is an efficient booster of dendritic cell-based vaccine. Hum Vaccin Immunother. 11:1927–1935. 2015.PubMed/NCBI View Article : Google Scholar | |
Maeda Y, Yoshimura K, Matsui H, Shindo Y, Tamesa T, Tokumitsu Y, Hashimoto N, Tokuhisa Y, Sakamoto K, Sakai K, et al: Dendritic cells transfected with heat-shock protein 70 messenger RNA for patients with hepatitis C virus-related hepatocellular carcinoma: A phase 1 dose escalation clinical trial. Cancer Immunol Immunother. 64:1047–1056. 2015.PubMed/NCBI View Article : Google Scholar | |
Song W, Kong HL, Carpenter H, Torii H, Granstein R, Rafii S, Moore MA and Crystal RG: Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity. J Exp Med. 186:1247–1256. 1997.PubMed/NCBI View Article : Google Scholar | |
Jiraviriyakul A, Songjang W, Kaewthet P, Tanawatkitichai P, Bayan P and Pongcharoen S: Honokiol-enhanced cytotoxic T lymphocyte activity against cholangiocarcinoma cells mediated by dendritic cells pulsed with damage-associated molecular patterns. World J Gastroenterol. 25:3941–3955. 2019.PubMed/NCBI View Article : Google Scholar | |
Gottfried E, Krieg R, Eichelberg C, Andreesen R, Mackensen A and Krause SW: Characterization of cells prepared by dendritic cell-tumor cell fusion. Cancer Immun. 2(15)2002.PubMed/NCBI | |
Kavanagh B, Ko A, Venook A, Margolin K, Zeh H, Lotze M, Schillinger B, Liu W, Lu Y, Mitsky P, et al: Vaccination of metastatic colorectal cancer patients with matured dendritic cells loaded with multiple major histocompatibility complex class I peptides. J Immunother. 30:762–772. 2007.PubMed/NCBI View Article : Google Scholar | |
Vonderheide RH, Domchek SM, Schultze JL, George DJ, Hoar KM, Chen DY, Stephans KF, Masutomi K, Loda M, Xia Z, et al: Vaccination of cancer patients against telomerase induces functional antitumor CD8+ T lymphocytes. Clin Cancer Res. 10:828–839. 2004.PubMed/NCBI View Article : Google Scholar | |
Rosalia RA, Quakkelaar ED, Redeker A, Khan S, Camps M, Drijfhout JW, Silva AL, Jiskoot W, van Hall T, van Veelen PA, et al: Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and T-cell activation. Eur J Immunol. 43:2554–2565. 2013.PubMed/NCBI View Article : Google Scholar | |
Medema JP, Schuurhuis DH, Rea D, van Tongeren J, de Jong J, Bres SA, Laban S, Toes RE, Toebes M, Schumacher TN, et al: Expression of the serpin serine protease inhibitor 6 protects dendritic cells from cytotoxic T lymphocyte-induced apoptosis: Differential modulation by T helper type 1 and type 2 cells. J Exp Med. 194:657–667. 2001.PubMed/NCBI View Article : Google Scholar | |
Zhang QM, He SJ, Shen N, Luo B, Fan R, Fu J, Luo GR, Zhou SF, Xiao SW and Xie XX: Overexpression of MAGE-D4 in colorectal cancer is a potentially prognostic biomarker and immunotherapy target. Int J Clin Exp Pathol. 7:3918–3927. 2014.PubMed/NCBI | |
Kono K, Takahashi A, Sugai H, Fujii H, Choudhury AR, Kiessling R and Matsumoto Y: Dendritic cells pulsed with HER-2/neu-derived peptides can induce specific T-cell responses in patients with gastric cancer. Clin Cancer Res. 8:3394–3400. 2002.PubMed/NCBI | |
Smith AM, Justin T, Michaeli D and Watson SA: Phase I/II study of G17-DT, an Anti-gastrin immunogen, in advanced colorectal cancer. Clin Cancer Res. 6:4719–4724. 2000.PubMed/NCBI | |
Higashihara Y, Kato J, Nagahara A, Izumi K, Konishi M, Kodani T, Serizawa N, Osada T and Watanabe S: Phase I clinical trial of peptide vaccination with URLC10 and VEGFR1 epitope peptides in patients with advanced gastric cancer Int J. Oncol. 44:662–668. 2014.PubMed/NCBI View Article : Google Scholar | |
Mazzaferro V, Coppa J, Carrabba MG, Rivoltini L, Schiavo M, Regalia E, Mariani L, Camerini T, Marchianò A, Andreola S, et al: Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin Cancer Res. 9:3235–3245. 2003.PubMed/NCBI | |
Dolcetti R, De Re V and Canzonieri V: Immunotherapy for gastric cancer: Time for a Personalized Approach? Int J Mol Sci. 19(1602)2018.PubMed/NCBI View Article : Google Scholar | |
Le DT, Lutz E, Uram JN, Sugar EA, Onners B, Solt S, Zheng L, Diaz LA Jr, Donehower RC, Jaffee EM and Laheru DA: Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J Immunother. 36:382–389. 2013.PubMed/NCBI View Article : Google Scholar | |
Ikeda M, Okusaka T, Ohno I, Mitsunaga S, Kondo S, Ueno H, Morizane C, Gemmoto K, Suna H, Ushida Y and Furuse J: Phase I studies of peptide vaccine cocktails derived from GPC3, WDRPUH and NEIL3 for advanced hepatocellular carcinoma. Immunotherapy. 13:371–385. 2021.PubMed/NCBI View Article : Google Scholar | |
Butterfield LH, Ribas A, Meng WS, Dissette VB, Amarnani S, Vu HT, Seja E, Todd K, Glaspy JA, McBride WH and Economou JS: T-cell responses to HLA-A*0201 immunodominant peptides derived from alpha-fetoprotein in patients with hepatocellular cancer. Clin Cancer Res. 9:5902–5908. 2003.PubMed/NCBI | |
Tsuchiya N, Yoshikawa T, Fujinami N, Saito K, Mizuno S, Sawada Y, Endo I and Nakatsura T: Immunological efficacy of glypican-3 peptide vaccine in patients with advanced hepatocellular carcinoma. Oncoimmunology. 6(e1346764)2017.PubMed/NCBI View Article : Google Scholar | |
Zhang Q, Chen G, Peng L, Wang X, Yang Y, Liu C, Shi W, Su C, Wu H, Liu X, et al: Increased safety with preserved antitumoral efficacy on hepatocellular carcinoma with dual-regulated oncolytic adenovirus. Clin Cancer Res. 12:6523–6531. 2006.PubMed/NCBI View Article : Google Scholar | |
Lepisto AJ, Moser AJ, Zeh H, Lee K, Bartlett D, McKolanis JR, Geller BA, Schmotzer A, Potter DP, Whiteside T, et al: A phase I/II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as adjuvant therapy in patients with resected pancreatic and biliary tumors. Cancer Ther. 6:955–964. 2008.PubMed/NCBI | |
Kawamura J, Sugiura F, Sukegawa Y, Yoshioka Y, Hida JI, Hazama S and Okuno K: Multicenter, phase II clinical trial of peptide vaccination with oral chemotherapy following curative resection for stage III colorectal cancer. Oncology Lett. 15:4241–4247. 2018.PubMed/NCBI View Article : Google Scholar | |
Rahma OE, Hamilton JM, Wojtowicz M, Dakheel O, Bernstein S, Liewehr DJ, Steinberg SM and Khleif SN: The immunological and clinical effects of mutated ras peptide vaccine in combination with IL-2, GM-CSF, or both in patients with solid tumors. J Transl Med. 12(55)2014.PubMed/NCBI View Article : Google Scholar | |
Quandt J, Schlude C, Bartoschek M, Will R, Cid-Arregui A, Schölch S, Reissfelder C, Weitz J, Schneider M, Wiemann S, et al: Long-peptide vaccination with driver gene mutations in p53 and Kras induces cancer mutation-specific effector as well as regulatory T cell responses. Oncoimmunology. 7(e1500671)2018.PubMed/NCBI View Article : Google Scholar | |
Hessmann E, Patzak MS, Klein L, Chen N, Kari V, Ramu I, Bapiro TE, Frese KK, Gopinathan A, Richards FM, et al: Fibroblast drug scavenging increases intratumoural gemcitabine accumulation in murine pancreas cancer. Gut. 67:497–507. 2018.PubMed/NCBI View Article : Google Scholar | |
Scarpa M, Ruffolo C, Canal F, Scarpa M, Basato S, Erroi F, Fiorot A, Dall'Agnese L, Pozza A, Porzionato A, et al: Mismatch repair gene defects in sporadic colorectal cancer enhance immune surveillance. Oncotarget. 6:43472–43482. 2015.PubMed/NCBI View Article : Google Scholar | |
Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, De Jesus-Acosta A, Delord JP, Geva R, Gottfried M, Penel N, Hansen AR, et al: Efficacy of Pembrolizumab in patients with noncolorectal high microsatellite Instability/Mismatch Repair-deficient cancer: Results from the phase II KEYNOTE-158 Study. J Clin Oncol. 38:1–10. 2019.PubMed/NCBI View Article : Google Scholar | |
Fucikova J, Kepp O, Kasikova L, Petroni G, Yamazaki T, Liu P, Zhao L, Spisek R, Kroemer G and Galluzzi L: Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 11(1013)2020.PubMed/NCBI View Article : Google Scholar | |
Suzuki Y, Mimura K, Yoshimoto Y, Watanabe M, Ohkubo Y, Izawa S, Murata K, Fujii H, Nakano T and Kono K: Immunogenic tumor cell death induced by chemoradiotherapy in patients with esophageal squamous cell carcinoma. Cancer Res. 72:3967–3976. 2012.PubMed/NCBI View Article : Google Scholar | |
Ratschker T, Egenberger L, Alev M, Zschiesche L, Band J, Schreiber E, Frey B, Derer A, Alexiou C and Janko C: Mitoxantrone-loaded nanoparticles for magnetically controlled tumor therapy-induction of tumor cell death, release of danger signals and activation of immune cells. Pharmaceutics. 12(923)2020.PubMed/NCBI View Article : Google Scholar | |
Zhao X, Yang K, Zhao R, Ji T, Wang X, Yang X, Zhang Y, Cheng K, Liu S, Hao J, et al: Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy. Biomaterials. 102:187–197. 2016.PubMed/NCBI View Article : Google Scholar | |
Turrini E, Catanzaro E, Muraro MG, Governa V, Trella E, Mele V, Calcabrini C, Morroni F, Sita G, Hrelia P, et al: Hemidesmus indicus induces immunogenic death in human colorectal cancer cells. Oncotarget. 9:24443–24456. 2018.PubMed/NCBI View Article : Google Scholar | |
Wu CJ, Tsai YT, Lee IJ, Wu PY, Lu LS, Tsao WS, Huang YJ, Chang CC, Ka SM and Tao MH: Combination of radiation and interleukin 12 eradicates large orthotopic hepatocellular carcinoma through immunomodulation of tumor microenvironment. Oncoimmunology. 7(e1477459)2018.PubMed/NCBI View Article : Google Scholar | |
He H, Liu L, Liang R, Zhou H, Pan H, Zhang S and Cai L: Tumor-targeted nanoplatform for in situ oxygenation-boosted immunogenic phototherapy of colorectal cancer. Acta Biomaterialia. 104:188–197. 2020.PubMed/NCBI View Article : Google Scholar | |
Van Loenhout J, Flieswasser T, Freire Boullosa L, De Waele J, Van Audenaerde J, Marcq E, Jacobs J, Lin A, Lion E, Dewitte H, et al: Cold atmospheric plasma-treated PBS eliminates immunosuppressive pancreatic stellate cells and induces immunogenic cell death of pancreatic cancer cells. Cancers. 11(1597)2019.PubMed/NCBI View Article : Google Scholar | |
Pardoll DM: The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264. 2012.PubMed/NCBI View Article : Google Scholar | |
Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA and Sharpe AH: Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 3:541–547. 1995.PubMed/NCBI View Article : Google Scholar | |
Borch TH, Donia M, Andersen MH and Svane IM: Reorienting the immune system in the treatment of cancer by using anti-PD-1 and anti-PD-L1 antibodies. Drug Discov Today. 20:1127–1134. 2015.PubMed/NCBI View Article : Google Scholar | |
Schildberg FA, Klein SR, Freeman GJ and Sharpe AH: Coinhibitory pathways in the B7-CD28 ligand-receptor family. Immunity. 44:955–972. 2016.PubMed/NCBI View Article : Google Scholar | |
Lee B, Hutchinson R, Wong HL, Tie J, Putoczki T, Tran B, Gibbs P and Christie M: Emerging biomarkers for immunomodulatory cancer treatment of upper gastrointestinal, pancreatic and hepatic cancers. Semin Cancer Biol. 52:241–252. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhou G, Noordam L, Sprengers D, Doukas M, Boor PPC, van Beek AA, Erkens R, Mancham S, Grünhagen D, Menon AG, et al: Blockade of LAG3 enhances responses of tumor-infiltrating T cells in mismatch repair-proficient liver metastases of colorectal cancer. Oncoimmunology. 7(e1448332)2018.PubMed/NCBI View Article : Google Scholar | |
Huyghe N, Baldin P and Van den Eynde M: Immunotherapy with immune checkpoint inhibitors in colorectal cancer: What is the future beyond deficient mismatch-repair tumours? Gastroenterol Rep (Oxf). 8:11–24. 2020.PubMed/NCBI View Article : Google Scholar | |
Chung KY, Gore I, Fong L, Venook A, Beck SB, Dorazio P, Criscitiello PJ, Healey DI, Huang B, Gomez-Navarro J and Saltz LB: Phase II study of the anti-cytotoxic T-Lymphocyte-associated antigen 4 monoclonal antibody, tremelimumab, in patients with refractory metastatic colorectal cancer. J Clin Oncol. 28:3485–3490. 2010.PubMed/NCBI View Article : Google Scholar | |
Torphy RJ, Zhu Y and Schulick RD: Immunotherapy for pancreatic cancer: Barriers and breakthroughs. Ann Gastroenterol Surg. 2:274–281. 2018.PubMed/NCBI View Article : Google Scholar | |
Kudo M, Matilla A, Santoro A, Melero I, Gracian AC, Acosta-Rivera M, Choo SP, El-Khoueiry AB, Kuromatsu R, El-Rayes BF, et al: Checkmate-040: Nivolumab (NIVO) in patients (pts) with advanced hepatocellular carcinoma (aHCC) and Child-Pugh B (CPB) status. J Clin Oncol. 37(327)2019. | |
Ledford H, Else H and Warren M: Cancer immunologists scoop medicine Nobel prize. Nature. 562:20–21. 2018.PubMed/NCBI View Article : Google Scholar | |
Sakakibara K, Sato T, Kufe DW, VonHoff DD and Kawabe T: CBP501 induces immunogenic tumor cell death and CD8 T cell infiltration into tumors in combination with platinum, and increases the efficacy of immune checkpoint inhibitors against tumors in mice. Oncotarget. 8:78277–78288. 2017.PubMed/NCBI View Article : Google Scholar | |
Landry MR, DuRoss AN, Neufeld MJ, Hahn L, Sahay G, Luxenhofer R and Sun C: Low dose novel PARP-PI3K inhibition via nanoformulation improves colorectal cancer immunoradiotherapy. Materials today Bio. 8(100082)2020.PubMed/NCBI View Article : Google Scholar | |
Zhu H, Shan Y, Ge K, Lu J, Kong W and Jia C: Oxaliplatin induces immunogenic cell death in hepatocellular carcinoma cells and synergizes with immune checkpoint blockade therapy. Cell Oncol (Dordr). 43:1203–1214. 2020.PubMed/NCBI View Article : Google Scholar | |
Maruoka Y, Furusawa A, Okada R, Inagaki F, Fujimura D, Wakiyama H, Kato T, Nagaya T, Choyke PL and Kobayashi H: Near-infrared photoimmunotherapy combined with CTLA4 checkpoint blockade in syngeneic mouse cancer models. Vaccines (Basel). 8(528)2020.PubMed/NCBI View Article : Google Scholar | |
Antoniotti C, Borelli B, Rossini D, Pietrantonio F, Morano F, Salvatore L, Lonardi S, Marmorino F, Tamberi S, Corallo S, et al: AtezoTRIBE: A randomised phase II study of FOLFOXIRI plus bevacizumab alone or in combination with atezolizumab as initial therapy for patients with unresectable metastatic colorectal cancer. BMC Cancer. 20(683)2020.PubMed/NCBI View Article : Google Scholar | |
Fumet JD, Isambert N, Hervieu A, Zanetta S, Guion JF, Hennequin A, Rederstorff E, Bertaut A and Ghiringhelli F: Phase Ib/II trial evaluating the safety, tolerability and immunological activity of durvalumab (MEDI4736) (anti-PD-L1) plus tremelimumab (anti-CTLA-4) combined with FOLFOX in patients with metastatic colorectal cancer. ESMO Open. 3(e000375)2018.PubMed/NCBI View Article : Google Scholar | |
Bang YJ, Muro K, Fuchs CS, Golan T, Geva R, Hara H, Jalal SI, Borg C, Doi T, Wainberg ZA, et al: KEYNOTE-059 cohort 2: Safety and efficacy of pembrolizumab (pembro) plus 5-fluorouracil (5-FU) and cisplatin for first-line (1L) treatment of advanced gastric cancer. J Clin Oncol. 35(4012)2017. | |
Bailly C, Thuru X and Quesnel B: Combined cytotoxic chemotherapy and immunotherapy of cancer: Modern times. NAR Cancer. 2(zcaa002)2020.PubMed/NCBI View Article : Google Scholar | |
Dosset M, Vargas TR, Lagrange A, Boidot R, Végran F, Roussey A, Chalmin F, Dondaine L, Paul C, Lauret Marie-Joseph E, et al: PD-1/PD-L1 pathway: An adaptive immune resistance mechanism to immunogenic chemotherapy in colorectal cancer. Oncoimmunology. 7(e1433981)2018.PubMed/NCBI View Article : Google Scholar | |
Chu TH, Chan HH, Hu TH, Wang EM, Ma YL, Huang SC, Wu JC, Chang YC, Weng WT, Wen ZH, et al: Celecoxib enhances the therapeutic efficacy of epirubicin for Novikoff hepatoma in rats. Cancer Med. 7:2567–2580. 2018.PubMed/NCBI View Article : Google Scholar | |
Wang F, Lau JKC and Yu J: The role of natural killer cell in gastrointestinal cancer: Killer or helper. Oncogene. 40:717–730. 2021.PubMed/NCBI View Article : Google Scholar | |
Amedei A, Niccolai E and D'Elios MM: T cells and adoptive immunotherapy: Recent developments and future prospects in gastrointestinal oncology. Clin Dev Immunol. 2011(320571)2011.PubMed/NCBI View Article : Google Scholar | |
Guo Y and Han W: Cytokine-induced killer (CIK) cells: From basic research to clinical translation. Chin J Cancer. 34:99–107. 2015.PubMed/NCBI View Article : Google Scholar | |
Sakamoto N, Ishikawa T, Kokura S, Okayama T, Oka K, Ideno M, Sakai F, Kato A, Tanabe M, Enoki T, et al: Phase I clinical trial of autologous NK cell therapy using novel expansion method in patients with advanced digestive cancer. J Transl Med. 13(277)2015.PubMed/NCBI View Article : Google Scholar | |
Shiozawa M, Chang CH, Huang YC, Chen YC, Chi MS, Hao HC, Chang YC, Takeda S, Chi KH and Wang YS: Pharmacologically upregulated carcinoembryonic antigen-expression enhances the cytolytic activity of genetically-modified chimeric antigen receptor NK-92MI against colorectal cancer cells. BMC Immunol. 19(27)2018.PubMed/NCBI View Article : Google Scholar | |
Liu B, Liu ZZ, Zhou ML, Lin JW, Chen XM, Li Z, Gao WB, Yu ZD and Liu T: Development of c-MET-specific chimeric antigen receptor-engineered natural killer cells with cytotoxic effects on human liver cancer HepG2 cells. Mol Med Rep. 20:2823–2831. 2019.PubMed/NCBI View Article : Google Scholar | |
Krause SW, Gastpar R, Andreesen R, Gross C, Ullrich H, Thonigs G, Pfister K and Multhoff G: Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: A clinical phase i trial. Clin Cancer Res. 10:3699–3707. 2004.PubMed/NCBI View Article : Google Scholar | |
Andreesen R, Scheibenbogen C, Brugger W, Krause S, Meerpohl HG, Leser HG, Engler H and Löhr GW: Adoptive transfer of tumor cytotoxic macrophages generated in vitro from circulating blood monocytes: A new approach to cancer immunotherapy. Cancer Res. 50:7450–7456. 1990.PubMed/NCBI | |
Klichinsky M, Ruella M, Shestova O, Lu XM, Best A, Zeeman M, Schmierer M, Gabrusiewicz K, Anderson NR, Petty NE, et al: Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol. 38:947–953. 2020.PubMed/NCBI View Article : Google Scholar | |
Liu Y and Wang R: Immunotherapy targeting tumor-associated macrophages. Front Med (Lausanne). 7(583708)2020.PubMed/NCBI View Article : Google Scholar | |
Fesnak AD, June CH and Levine BL: Engineered T cells: The promise and challenges of cancer immunotherapy. Nat Rev Cancer. 16:566–581. 2016.PubMed/NCBI View Article : Google Scholar | |
Mirzaei HR, Rodriguez A, Shepphird J, Brown CE and Badie B: Chimeric antigen receptors T cell therapy in solid tumor: Challenges and clinical applications. Front Immunol. 8(1850)2017.PubMed/NCBI View Article : Google Scholar | |
Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T, Lin Y, et al: Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 377:2531–2544. 2017.PubMed/NCBI View Article : Google Scholar | |
Hou B, Tang Y, Li W, Zeng Q and Chang D: Efficiency of CAR-T therapy for treatment of solid tumor in clinical trials: A meta-analysis. Disease Markers. 2019(3425291)2019.PubMed/NCBI View Article : Google Scholar | |
Bebnowska D, Grywalska E, Niedźwiedzka-Rystwej P, Sosnowska-Pasiarska B, Smok-Kalwat J, Pasiarski M, Góźdź S, Roliński J and Polkowski W: CAR-T cell therapy-an overview of targets in gastric cancer. J Clin Med. 9(1894)2020.PubMed/NCBI View Article : Google Scholar | |
Alrifai D, Sarker D and Maher J: Prospects for adoptive immunotherapy of pancreatic cancer using chimeric antigen receptor-engineered T-cells. Immunopharm Immunot. 38:50–60. 2016.PubMed/NCBI View Article : Google Scholar | |
Cheng X, Zhao G and Zhao Y: Combination immunotherapy approaches for pancreatic cancer treatment. Can J Gastroenterol Hepatol. 2018(6240467)2018.PubMed/NCBI View Article : Google Scholar | |
Song Y, Tong C, Wang Y, Gao Y, Dai H, Guo Y, Zhao X, Wang Y, Wang Z, Han W and Chen L: Effective and persistent antitumor activity of HER2-directed CAR-T cells against gastric cancer cells in vitro and xenotransplanted tumors in vivo. Protein Cell. 9:867–878. 2018.PubMed/NCBI View Article : Google Scholar | |
Tao K, He M, Tao F, Xu G, Ye M, Zheng Y and Li Y: Development of NKG2D-based chimeric antigen receptor-T cells for gastric cancer treatment. Cancer Chemother Pharmacol. 82:815–827. 2018.PubMed/NCBI View Article : Google Scholar | |
Han H, Wang S, Hu Y, Li Z, Yang W, Lv Y, Wang L, Zhang L and Ji J: Monoclonal antibody 3H11 chimeric antigen receptors enhance T cell effector function and exhibit efficacy against gastric cancer. Oncol Lett. 15:6887–6894. 2018.PubMed/NCBI View Article : Google Scholar | |
Kim M, Pyo S, Kang CH, Lee CO, Lee HK, Choi SU and Park CH: Folate receptor 1 (FOLR1) targeted chimeric antigen receptor (CAR) T cells for the treatment of gastric cancer. PLoS One. 13(e0198347)2018.PubMed/NCBI View Article : Google Scholar | |
DeLeon TT, Zhou YM, Nagalo BM, Yokoda RT, Ahn DH, Ramanathan RK, Salomao MA, Aqel BA, Mahipal A, Bekaii-Saab TS and Borad MJ: Novel immunotherapy strategies for hepatobiliary cancers. Immunotherapy. 10:1077–1091. 2018.PubMed/NCBI View Article : Google Scholar | |
Xu JY, Ye ZL, Jiang DQ, He JC, Ding YM, Li LF, Lv SQ, Wang Y, Jin HJ and Qian QJ: Mesothelin-targeting chimeric antigen receptor-modified T cells by piggyBac transposon system suppress the growth of bile duct carcinoma. Tumor Biol. 39(1010428317695949)2017.PubMed/NCBI View Article : Google Scholar | |
Guo Y, Feng K, Liu Y, Wu Z, Dai H, Yang Q, Wang Y, Jia H and Han W: Phase I study of chimeric antigen receptor-modified T cells in patients with EGFR-positive advanced biliary tract cancers. Clin Cancer Res. 24:1277–1286. 2018.PubMed/NCBI View Article : Google Scholar | |
Yan M, Schwaederle M, Arguello D, Millis SZ, Gatalica Z and Kurzrock R: HER2 expression status in diverse cancers: Review of results from 37,992 patients. Cancer Metastasis Rev. 34:157–164. 2015.PubMed/NCBI View Article : Google Scholar | |
Cui J, Li L, Wang C, Jin H, Yao C, Wang Y, Li D, Tian H, Niu C, Wang G, et al: Combined cellular immunotherapy and chemotherapy improves clinical outcome in patients with gastric carcinoma. Cytotherapy. 17:979–988. 2015.PubMed/NCBI View Article : Google Scholar | |
El-Sayes N, Vito A and Mossman K: Tumor heterogeneity: A great barrier in the age of cancer immunotherapy. Cancers. 13(806)2021.PubMed/NCBI View Article : Google Scholar | |
Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C, Staehler M, Brugger W, Dietrich PY, Mendrzyk R, et al: Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med. 18:1254–1261. 2012.PubMed/NCBI View Article : Google Scholar | |
Minute L, Teijeira A, Sanchez-Paulete AR, Ochoa MC, Alvarez M, Otano I, Etxeberrria I, Bolaños E, Azpilikueta A, Garasa S, et al: Cellular cytotoxicity is a form of immunogenic cell death. J Immunother Cancer. 8(e000325)2020.PubMed/NCBI View Article : Google Scholar | |
Jiang Q, Zhang C, Wang H, Peng T, Zhang L, Wang Y, Han W and Shi C: Mitochondria-targeting immunogenic cell death inducer improves the adoptive T-cell therapy against solid tumor. Front Oncol. 9(1196)2019.PubMed/NCBI View Article : Google Scholar | |
Schwacha MG, Rani M, Nicholson SE, Lewis AM, Holloway TL, Sordo S and Cap AP: Dermal γδ T-cells can be activated by mitochondrial damage-associated molecular patterns. PLoS One. 11(e0158993)2016.PubMed/NCBI View Article : Google Scholar | |
Schwacha MG, Rani M, Zhang Q, Nunez-Cantu O and Cap AP: Mitochondrial damage-associated molecular patterns activate γδ T-cells. Innate immunity. 20:261–268. 2014.PubMed/NCBI View Article : Google Scholar | |
Gebremeskel S and Johnston B: Concepts and mechanisms underlying chemotherapy induced immunogenic cell death: Impact on clinical studies and considerations for combined therapies. Oncotarget. 6:41600–41619. 2015.PubMed/NCBI View Article : Google Scholar | |
Xie W, Forveille S, Iribarren K, Sauvat A, Senovilla L, Wang Y, Humeau J, Perez-Lanzon M, Zhou H, Martínez-Leal JF, et al: Lurbinectedin synergizes with immune checkpoint blockade to generate anticancer immunity. Oncoimmunology. 8(e1656502)2019.PubMed/NCBI View Article : Google Scholar | |
Limagne E, Thibaudin M, Nuttin L, Spill A, Derangère V, Fumet JD, Amellal N, Peranzoni E, Cattan V and Ghiringhelli F: Trifluridine/Tipiracil plus Oxaliplatin improves PD-1 blockade in colorectal cancer by inducing immunogenic cell death and depleting macrophages. Cancer Immunol Res. 7:1958–1969. 2019.PubMed/NCBI View Article : Google Scholar |