Neurodegeneration and convergent factors contributing to the deterioration of the cytoskeleton in Alzheimer's disease, cerebral ischemia and multiple sclerosis (Review)
- Authors:
- Johanna Andrea Gutiérrez‑Vargas
- John Fredy Castro‑Álvarez
- Jose Fernando Zapata‑Berruecos
- Komal Abdul‑Rahim
- Anibal Arteaga‑Noriega
-
Affiliations: Neuroscience and Aging Group (GISAM), Faculty of Health Sciences, Life Sciences Laboratory, Remington University Corporation, Medellín 050023, Colombia, INDEC‑CES Research Group, Neurological Institute of Colombia, Medellín 050023, Colombia, Aga Khan University Hospital, Karachi, Sindh 74800, Pakistan, Family and Community Health Group, Faculty of Health Sciences, Life Sciences Laboratory, Remington University Corporation, Medellín 050023, Colombia - Published online on: February 18, 2022 https://doi.org/10.3892/br.2022.1510
- Article Number: 27
-
Copyright: © Gutiérrez‑Vargas et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Fletcher DA and Mullins RD: Cell mechanics and the cytoskeleton. Nature. 463:485–492. 2010.PubMed/NCBI View Article : Google Scholar | |
Rottner K, Faix J, Bogdan S, Linder S and Kerkhoff E: Actin assembly mechanisms at a glance. J Cell Sci. 130:3427–3435. 2017.PubMed/NCBI View Article : Google Scholar | |
Jay D, García EJ, Lara JE, Medina MA and de la Luz Ibarra M: Determination of a cAMP-dependent protein kinase phosphorylation site in the C-terminal region of human endothelial actin-binding protein. Arch Biochem Biophys. 377:80–84. 2000.PubMed/NCBI View Article : Google Scholar | |
Liem RKH and Messing A: Dysfunctions of neuronal and glial intermediate filaments in disease. J Clin Invest. 119:1814–1824. 2009.PubMed/NCBI View Article : Google Scholar | |
Da Silva JS and Dotti CG: Breaking the neuronal sphere: Regulation of the actin cytoskeleton in neuritogenesis. Nat Rev Neurosci. 3:694–704. 2002.PubMed/NCBI View Article : Google Scholar | |
Medana IM and Esiri MM: Axonal damage: A key predictor of outcome in human CNS diseases. Brain. 126:515–530. 2003.PubMed/NCBI View Article : Google Scholar | |
Goodson HV and Jonasson EM: Microtubules and microtubule-associated proteins. Cold Spring Harb Perspect Biol. 10(a022608)2018.PubMed/NCBI View Article : Google Scholar | |
Jellinger KA: Cell death mechanisms in neurodegeneration. J Cell Mol Med. 5:1–17. 2001.PubMed/NCBI View Article : Google Scholar | |
Muñoz-Lasso DC, Romá-Mateo C, Pallardó FV and Gonzalez-Cabo P: Much more than a scaffold: Cytoskeletal proteins in neurological disorders. Cells. 9(E358)2020.PubMed/NCBI View Article : Google Scholar | |
Henriques AG, Müller T, Oliveira JM, Cova M, da Cruz e Silva CB and da Cruz E Silva OA: Altered protein phosphorylation as a resource for potential AD biomarkers. Sci Rep. 6(30319)2016.PubMed/NCBI View Article : Google Scholar | |
Mietelska-Porowska A, Wasik U, Goras M, Filipek A and Niewiadomska G: Tau protein modifications and interactions: Their role in function and dysfunction. Int J Mol Sci. 15:4671–4713. 2014.PubMed/NCBI View Article : Google Scholar | |
McMurray CT: Neurodegeneration: Diseases of the cytoskeleton? Cell Death Differ. 7:861–865. 2000.PubMed/NCBI View Article : Google Scholar | |
Guo T, Noble W and Hanger DP: Roles of tau protein in health and disease. Acta Neuropathol. 133:665–704. 2017.PubMed/NCBI View Article : Google Scholar | |
Kosik KS, Joachim CL and Selkoe DJ: Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Acta Neuropathol. 83:4044–4048. 1986.PubMed/NCBI View Article : Google Scholar | |
Islas-Hernandez A, Aguilar-Talamantes HS, Bertado-Cortes B, Mejia-delCastillo GJ, Carrera-Pineda R, Cuevas-Garcia CF and Garcia-delaTorre P: BDNF and Tau as biomarkers of severity in multiple sclerosis. Biomark Med. 12:717–726. 2018.PubMed/NCBI View Article : Google Scholar | |
Siller N, Kuhle J, Muthuraman M, Barro C, Uphaus T, Groppa S, Kappos L, Zipp F and Bittner S: Serum neurofilament light chain is a biomarker of acute and chronic neuronal damage in early multiple sclerosis. Mult Scler. 25:678–686. 2019.PubMed/NCBI View Article : Google Scholar | |
Zetterberg H: Plasma Neurofilament light in progressive multiple sclerosis. Acta Neurol Scand. 141:14–15. 2020.PubMed/NCBI View Article : Google Scholar | |
GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, Regional, and national incidence, prevalence, and years lived with disability for 354 Diseases and Injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 392:1789–1858. 2018.PubMed/NCBI View Article : Google Scholar | |
Sanchez JS, Hanseeuw BJ, Lopera F, Sperling RA, Baena A, Bocanegra Y, Aguillon D, Guzmán-Vélez E, Pardilla-Delgado E, Ramirez-Gomez L, et al: Longitudinal amyloid and tau accumulation in autosomal dominant Alzheimer's disease: Findings from the Colombia-Boston (COLBOS) biomarker study. Alzheimers Res Ther. 13(27)2021.PubMed/NCBI View Article : Google Scholar | |
Busche MA and Hyman BT: Synergy between amyloid-β and tau in Alzheimer's disease. Nat Neurosci. 23:1183–1193. 2020.PubMed/NCBI View Article : Google Scholar | |
Drummond E, Pires G, MacMurray C, Askenazi M, Nayak S, Bourdon M, Safar J, Ueberheide B and Wisniewski T: Phosphorylated tau interactome in the human Alzheimer's disease brain. Brain. 143:2803–2817. 2020.PubMed/NCBI View Article : Google Scholar | |
Kandimalla R, Manczak M, Yin X, Wang R and Reddy PH: Hippocampal phosphorylated tau induced cognitive decline, dendritic spine loss and mitochondrial abnormalities in a mouse model of Alzheimer's disease. Hum Mol Genet. 27:30–40. 2018.PubMed/NCBI View Article : Google Scholar | |
Castro-Alvarez JF, Uribe-Arias A, Raigoza DM and Cardona-Gómez GP: Cyclin-dependent kinase 5, a node protein in diminished tauopathy: A systems biology approach. Front Aging Neurosci. 6(232)2014.PubMed/NCBI View Article : Google Scholar | |
Rudrabhatla P, Jaffe H and Pant HC: Direct evidence of phosphorylated neuronal intermediate filament proteins in neurofibrillary tangles (NFTs): Phosphoproteomics of Alzheimer's NFTs. FASEB J. 25:3896–3905. 2011.PubMed/NCBI View Article : Google Scholar | |
Richetin K, Steullet P, Pachoud M, Perbet R, Parietti E, Maheswaran M, Eddarkaoui S, Bégard S, Pythoud C, Rey M, et al: Tau accumulation in astrocytes of the dentate gyrus induces neuronal dysfunction and memory deficits in Alzheimer's disease. Nat Neurosci. 23:1567–1579. 2020.PubMed/NCBI View Article : Google Scholar | |
Ma QL, Zuo X, Yang F, Ubeda OJ, Gant DJ, Alaverdyan M, Kiosea NC, Nazari S, Chen PP, Nothias F, et al: Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris water maze with aging. J Neurosci. 34:7124–7136. 2014.PubMed/NCBI View Article : Google Scholar | |
Lopez-Tobón A, Cepeda-Prado E and Cardona-Gómez GP: Decrease of tau hyperphosphorylation by 17β estradiol requires sphingosine kinase in a glutamate toxicity model. Neurochem Res. 34:2206–2214. 2009.PubMed/NCBI View Article : Google Scholar | |
Posada-Duque RA, Ramirez O, Härtel S, Inestrosa NC, Bodaleo F, González-Billault C, Kirkwood A and Cardona-Gómez GP: CDK5 downregulation enhances synaptic plasticity. Cell Mol Life Sci. 74:153–172. 2017.PubMed/NCBI View Article : Google Scholar | |
Uribe-Arias A, Posada-Duque RA, González-Billault C, Villegas A, Lopera F and Cardona-Gómez GP: p120-catenin is necessary for neuroprotection induced by CDK5 silencing in models of Alzheimer's disease. J Neurochem. 138:624–639. 2016.PubMed/NCBI View Article : Google Scholar | |
Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Yardin C and Terro F: Tau protein kinases: Involvement in Alzheimer's disease. Ageing Res Rev. 12:289–309. 2013.PubMed/NCBI View Article : Google Scholar | |
Reimer L, Betzer C, Kofoed RH, Volbracht C, Fog K, Kurhade C, Nilsson E, Överby AK and Jensen PH: PKR kinase directly regulates tau expression and Alzheimer's disease-related tau phosphorylation. Brain Pathol. 31:103–119. 2021.PubMed/NCBI View Article : Google Scholar | |
Posada-Duque RA, López-Tobón A, Piedrahita D, González-Billault C and Cardona-Gómez GP: p35 and Rac1 underlie the neuroprotection and cognitive improvement induced by CDK5 silencing. J Neurochem. 134:354–370. 2015.PubMed/NCBI View Article : Google Scholar | |
Zheng YL, Li BS, Kanungo J, Kesavapany S, Amin N, Grant P and Pant HC: Cdk5 modulation of mitogen-activated protein kinase signaling regulates neuronal survival. Mol Biol Cell. 18:404–413. 2007.PubMed/NCBI View Article : Google Scholar | |
Cicero S and Herrup K: Cyclin-dependent kinase 5 is essential for neuronal cell cycle arrest and differentiation. J Neurosci. 25:9658–9668. 2005.PubMed/NCBI View Article : Google Scholar | |
Piedrahita D, Castro-Alvarez JF, Boudreau RL, Villegas-Lanau A, Kosik KS, Gallego-Gomez JC and Cardona-Gómez GP: β-Secretase 1's targeting reduces hyperphosphorilated tau, implying autophagy actors in 3xTg-AD mice. Front Cell Neurosci. 9(498)2016.PubMed/NCBI View Article : Google Scholar | |
Choi SH, Kim YH, Hebisch M, Sliwinski C, Lee S, D'Avanzo C, Chen H, Hooli B, Asselin C, Muffat J, et al: A three-dimensional human neural cell culture model of Alzheimer's disease. Nature. 515:274–278. 2014.PubMed/NCBI View Article : Google Scholar | |
Choi AMK, Ryter SW and Levine B: Autophagy in human health and disease. N Engl J Med. 368:651–662. 2013.PubMed/NCBI View Article : Google Scholar | |
Komatsu M, Qing JW, Holstein GR, Friedrich VL Jr, Iwata J, Kominami E, Chait BT, Tanaka K and Yue Z: Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci USA. 104:14489–14494. 2007.PubMed/NCBI View Article : Google Scholar | |
Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E and Tanaka K: Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 441:880–884. 2006.PubMed/NCBI View Article : Google Scholar | |
Kast DJ and Dominguez R: The cytoskeleton-autophagy connection. Curr Biol. 27:R318–R326. 2017.PubMed/NCBI View Article : Google Scholar | |
Villamil Ortiz JG and Cardona Gomez GP: Comparative analysis of autophagy and tauopathy related markers in cerebral ischemia and Alzheimer's disease animal models. Front Aging Neurosci. 7(84)2015.PubMed/NCBI View Article : Google Scholar | |
Mohan R and John A: Microtubule-associated proteins as direct crosslinkers of actin filaments and microtubules. IUBMB Life. 67:395–403. 2015.PubMed/NCBI View Article : Google Scholar | |
Xie C, Soeda Y, Shinzaki Y, In Y, Tomoo K, Ihara Y and Miyasaka T: Identification of key amino acids responsible for the distinct aggregation properties of microtubule-associated protein 2 and tau. J Neurochem. 135:19–26. 2015.PubMed/NCBI View Article : Google Scholar | |
Xie C, Miyasaka T, Yoshimura S, Hatsuta H, Yoshina S, Kage-Nakadai E, Mitani S, Murayama S and Ihara Y: The homologous carboxyl-terminal domains of microtubule-associated protein 2 and Tau induce neuronal dysfunction and have differential fates in the evolution of neurofibrillary tangles. PLoS One. 9(e89796)2014.PubMed/NCBI View Article : Google Scholar | |
Takahashi RH, Capetillo-Zarate E, Lin MT, Milner TA and Gouras GK: Accumulation of Intraneuronal β-Amyloid 42 peptides is associated with early changes in microtubule-associated protein 2 in neurites and synapses. PLoS One. 8(e51965)2013.PubMed/NCBI View Article : Google Scholar | |
Yuan A, Sasaki T, Kumar A, Peterhoff CM, Rao MV, Liem RK, Julien JP and Nixon RA: Peripherin is a subunit of peripheral nerve neurofilaments: Implications for differential vulnerability of CNS and peripheral nervous system axons. J Neurosci. 32:8501–8508. 2012.PubMed/NCBI View Article : Google Scholar | |
Yuan A, Sershen H, Veeranna Basavarajappa BS, Kumar A, Hashim A, Berg M, Lee JH, Sato Y, Rao MV, et al: Neurofilament subunits are integral components of synapses and modulate neurotransmission and behavior in vivo. Mol Psychiatry. 20:986–994. 2015.PubMed/NCBI View Article : Google Scholar | |
Gafson AR, Barthélemy NR, Bomont P, Carare RO, Durham HD, Julien JP, Kuhle J, Leppert D, Nixon RA, Weller RO, et al: Neurofilaments: Neurobiological foundations for biomarker applications. Brain. 143:1975–1998. 2020.PubMed/NCBI View Article : Google Scholar | |
Barry DM, Stevenson W, Bober BG, Wiese PJ, Dale JM, Barry GS, Byers NS, Strope JD, Chang R, Schulz DJ, et al: Expansion of Neurofilament Medium C terminus increases axonal diameter independent of increases in conduction velocity or myelin thickness. J Neurosci. 32:6209–6219. 2012.PubMed/NCBI View Article : Google Scholar | |
Guzmán-Vélez E, Zetterberg H, Fox-Fuller JT, Vila-Castelar C, Sanchez JS, Baena A, Garcia-Ospina G, Aguillon D, Pardilla-Delgado E, Gatchel JR, et al: Associations between plasma neurofilament light, in vivo brain pathology, and cognition in non-demented individuals with autosomal-dominant Alzheimer's disease. Alzheimers Dement. 17:813–821. 2021.PubMed/NCBI View Article : Google Scholar | |
Quiroz YT, Zetterberg H, Reiman EM, Chen Y, Su Y, Fox-Fuller JT, Garcia G, Villegas A, Sepulveda-Falla D, Villada M, et al: Plasma neurofilament light chain in the presenilin 1 E280A autosomal dominant Alzheimer's disease kindred: A cross-sectional and longitudinal cohort study. Lancet Neurol. 19:513–521. 2020.PubMed/NCBI View Article : Google Scholar | |
Rajan KB, Aggarwal NT, McAninch EA, Weuve J, Barnes LL, Wilson RS, DeCarli C and Evans DA: Remote blood biomarkers of longitudinal cognitive outcomes in a population study. Ann Neurol. 88:1065–1076. 2020.PubMed/NCBI View Article : Google Scholar | |
Walsh P, Sudre CH, Fiford CM, Ryan NS, Lashley T, Frost C and Barnes J: ADNI Investigators. The age-dependent associations of white matter hyperintensities and neurofilament light in early- and late-stage Alzheimer's disease. Neurobiol Aging. 97:10–17. 2021.PubMed/NCBI View Article : Google Scholar | |
Delaby C, Alcolea D, Carmona-Iragui M, Illán-Gala I, Morenas-Rodríguez E, Barroeta I, Altuna M, Estellés T, Santos-Santos M, Turon-Sans J, et al: Differential levels of Neurofilament Light protein in cerebrospinal fluid in patients with a wide range of neurodegenerative disorders. Sci Rep. 10(9161)2020.PubMed/NCBI View Article : Google Scholar | |
Idland AV, Sala-Llonch R, Borza T, Watne LO, Wyller TB, Brækhus A, Zetterberg H, Blennow K, Walhovd KB and Fjell AM: CSF neurofilament light levels predict hippocampal atrophy in cognitively healthy older adults. Neurobiol Aging. 49:138–144. 2017.PubMed/NCBI View Article : Google Scholar | |
Henson RL, Doran E, Christian BT, Handen BL, Klunk WE, Lai F, Lee JH, Rosas HD, Schupf N, Zaman SH, et al: Cerebrospinal fluid biomarkers of Alzheimer's disease in a cohort of adults with Down syndrome. Alzheimers Dement (Amst). 12(e12057)2020.PubMed/NCBI View Article : Google Scholar | |
Sveinsson OA, Kjartansson O and Valdimarsson EM: Cerebral ischemia/infarction-epidemiology, causes and symptoms. Laeknabladid. 100:271–279. 2014.PubMed/NCBI View Article : Google Scholar : (In Icelandic). | |
Cao L, Tan L, Wang HF, Jiang T, Zhu XC and Yu JT: Cerebral Microinfarcts and dementia: A systematic review and metaanalysis. Curr Alzheimer Res. 14:802–808. 2017.PubMed/NCBI View Article : Google Scholar | |
Pluta R, Januszewski S and Czuczwar SJ: Brain ischemia as a prelude to Alzheimer's disease. Front Aging Neurosci. 13(636653)2021.PubMed/NCBI View Article : Google Scholar | |
Yoshimi K, Takeda M, Nishimura T, Kudo T, Nakamura Y, Tada K and Iwata N: An immunohistochemical study of MAP2 and clathrin in gerbil hippocampus after cerebral ischemia. Brain Res. 560:149–158. 1991.PubMed/NCBI View Article : Google Scholar | |
Vanicky I, Balchen T and Diemer NH: Alterations in MAP2 immunostainability after prolonged complete brain ischaemia in the rat. Neuroreport. 7:161–164. 1995.PubMed/NCBI | |
Mages B, Fuhs T, Aleithe S, Blietz A, Hobusch C, Härtig W, Schob S, Krueger M and Michalski D: The Cytoskeletal Elements MAP2 and NF-L show substantial alterations in different stroke models while elevated serum levels highlight especially MAP2 as a sensitive biomarker in stroke patients. Mol Neurobiol. 58:4051–4069. 2021.PubMed/NCBI View Article : Google Scholar | |
Johanna GV, Fredy CA, David VC, Natalia MV, Angel CR and Patricia CG: Rac1 activity changes are associated with neuronal pathology and spatial memory long-term recovery after global cerebral ischemia. Neurochem Int. 57:762–773. 2010.PubMed/NCBI View Article : Google Scholar | |
Gutiérrez-Vargas JA, Moreno H and Cardona-Gómez GP: Targeting CDK5 post-stroke provides long-term neuroprotection and rescues synaptic plasticity. J Cereb Blood Flow Metab. 37:2208–2223. 2017.PubMed/NCBI View Article : Google Scholar | |
Pérez-Corredor PA, Gutiérrez-Vargas JA, Ciro-Ramírez L, Balcazar N and Cardona-Gómez GP: High fructose diet-induced obesity worsens post-ischemic brain injury in the hippocampus of female rats. Nutr Neurosci: Mar 2, 2020 (Epub ahead of print). | |
Dawson DA and Hallenbeck JM: Acute focal ischemia-induced alterations in MAP2 immunostaining: Description of temporal changes and utilization as a marker for volumetric assessment of acute brain injury. J Cereb Blood Flow Metab. 16:170–174. 1996.PubMed/NCBI View Article : Google Scholar | |
Akulinin VA and Dahlstrom A: Quantitative analysis of MAP2 immunoreactivity in human neocortex of three patients surviving after brain ischemia. Neurochem Res. 28:373–378. 2003.PubMed/NCBI View Article : Google Scholar | |
Pluta R, Ułamek-Kozioł M, Januszewski S and Czuczwar SJ: Tau protein dysfunction after brain ischemia. J Alzheimers Dis. 66:429–437. 2018.PubMed/NCBI View Article : Google Scholar | |
Gutiérrez-Vargas JA, Múnera A and Cardona-Gómez GP: CDK5 knockdown prevents hippocampal degeneration and cognitive dysfunction produced by cerebral ischemia. J Cereb Blood Flow Metab. 35:1937–1949. 2015.PubMed/NCBI View Article : Google Scholar | |
Pluta R, Bogucka-Kocka A, Ułamek-Kozioł M, Bogucki J, Januszewski S, Kocki J and Czuczwar SJ: Ischemic tau protein gene induction as an additional key factor driving development of Alzheimer's phenotype changes in CA1 area of hippocampus in an ischemic model of Alzheimer's disease. Pharmacol Rep. 70:881–884. 2018.PubMed/NCBI View Article : Google Scholar | |
Mailliot C, Podevin-Dimster V, Rosenthal RE, Sergeant N, Delacourte A, Fiskum G and Buée L: Rapid tau protein dephosphorylation and differential rephosphorylation during cardiac arrest-induced cerebral ischemia and reperfusion. J Cereb Blood Flow Metab. 20:543–549. 2000.PubMed/NCBI View Article : Google Scholar | |
Wen Y, Yang S, Liu R and Simpkins JW: Transient cerebral ischemia induces site-specific hyperphosphorylation of tau protein. Brain Res. 1022:30–38. 2004.PubMed/NCBI View Article : Google Scholar | |
Uchihara T, Nakamura A, Arai T, Ikeda K and Tsuchiya K: Microglial tau undergoes phosphorylation-independent modification after ischemia. Glia. 45:180–187. 2004.PubMed/NCBI View Article : Google Scholar | |
Fujii H, Takahashi T, Mukai T, Tanaka S, Hosomi N, Maruyama H, Sakai N and Matsumoto M: Modifications of tau protein after cerebral ischemia and reperfusion in rats are similar to those occurring in Alzheimer's disease-Hyperphosphorylation and cleavage of 4- and 3-repeat tau. J Cereb Blood Flow Metab. 37:2441–2457. 2017.PubMed/NCBI View Article : Google Scholar | |
Shiiya N, Kunihara T, Miyatake T, Matsuzaki K and Yasuda K: Tau protein in the cerebrospinal fluid is a marker of brain injury after aortic surgery. Ann Thorac Surg. 77:2034–2038. 2004.PubMed/NCBI View Article : Google Scholar | |
Hesse C, Rosengren L, Andreasen N, Davidsson P, Vanderstichele H, Vanmechelen E and Blennow K: Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke. Neurosci Lett. 297:187–190. 2001.PubMed/NCBI View Article : Google Scholar | |
Onatsu J, Vanninen R, JÄkÄlÄ P, Mustonen P, Pulkki K, Korhonen M, Hedman M, HÖglund K, Blennow K, Zetterberg H, et al: Tau, S100B and NSE as blood biomarkers in acute cerebrovascular events. In Vivo. 34:2577–2586. 2020.PubMed/NCBI View Article : Google Scholar | |
Bitsch A, Horn C, Kemmling Y, Seipelt M, Hellenbrand U, Stiefel M, Ciesielczyk B, Cepek L, Bahn E, Ratzka P, et al: Serum tau protein level as a marker of axonal damage in acute ischemic stroke. Eur Neurol. 47:45–51. 2002.PubMed/NCBI View Article : Google Scholar | |
Kurzepa J, Bielewicz J, Grabarska A, Stelmasiak Z, Stryjecka-Zimmer M and Bartosik-Psujek H: Matrix metalloproteinase-9 contributes to the increase of tau protein in serum during acute ischemic stroke. J Clin Neurosci. 17:997–999. 2010.PubMed/NCBI View Article : Google Scholar | |
Lasek-Bal A, Jedrzejowska-Szypulka H, Rozycka J, Bal W, Kowalczyk A, Holecki M, Dulawa J and Lewin-Kowalik J: The presence of Tau protein in blood as a potential prognostic factor in stroke patients. J Physiol Pharmacol. 67:691–696. 2016.PubMed/NCBI | |
Bielewicz J, Kurzepa J, Czekajska-Chehab E, Stelmasiak Z and Bartosik-Psujek H: Does serum Tau protein predict the outcome of patients with ischemic stroke? J Mol Neurosci. 43:241–245. 2011.PubMed/NCBI View Article : Google Scholar | |
Wunderlich MT, Lins H, Skalej M, Wallesch CW and Goertler M: Neuron-specific enolase and tau protein as neurobiochemical markers of neuronal damage are related to early clinical course and long-term outcome in acute ischemic stroke. Clin Neurol Neurosurg. 108:558–563. 2006.PubMed/NCBI View Article : Google Scholar | |
De Vos A, Bjerke M, Brouns R, De Roeck N, Jacobs D, Van den Abbeele L, Guldolf K, Zetterberg H, Blennow K, Engelborghs S and Vanmechelen E: Neurogranin and tau in cerebrospinal fluid and plasma of patients with acute ischemic stroke. BMC Neurol. 17(170)2017.PubMed/NCBI View Article : Google Scholar | |
Irving EA, Nicoll J, Graham DI and Dewar D: Increased tau immunoreactivity in oligodendrocytes following human stroke and head injury. Neurosci Lett. 213:189–192. 1996.PubMed/NCBI View Article : Google Scholar | |
Uphaus T, Bittner S, Gröschel S, Steffen F, Muthuraman M, Wasser K, Weber-Krüger M, Zipp F, Wachter R and Gröschel K: NfL (Neurofilament Light Chain) levels as a predictive marker for long-term outcome after ischemic stroke. Stroke. 50:3077–3084. 2019.PubMed/NCBI View Article : Google Scholar | |
Khalil M, Teunissen CE, Otto M, Piehl F, Sormani MP, Gattringer T, Barro C, Kappos L, Comabella M, Fazekas F, et al: Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol. 14:577–589. 2018.PubMed/NCBI View Article : Google Scholar | |
Peters N, van Leijsen E, Tuladhar AM, Barro C, Konieczny MJ, Ewers M, Lyrer P, Engelter ST, Kuhle J, Duering M and de Leeuw FE: Serum Neurofilament light Chain is associated with incident Lacunes in progressive cerebral small vessel disease. J Stroke. 22:369–376. 2020.PubMed/NCBI View Article : Google Scholar | |
Duering M, Konieczny MJ, Tiedt S, Baykara E, Tuladhar AM, Leijsen EV, Lyrer P, Engelter ST, Gesierich B, Achmüller M, et al: Serum Neurofilament Light Chain levels are related to small vessel disease burden. J Stroke. 20:228–238. 2018.PubMed/NCBI View Article : Google Scholar | |
Paolini Paoletti F, Simoni S, Parnetti L and Gaetani L: The contribution of small vessel disease to neurodegeneration: Focus on Alzheimer's disease, Parkinson's disease and multiple sclerosis. Int J Mol Sci. 22(4958)2021.PubMed/NCBI View Article : Google Scholar | |
Knopman DS: Cerebrovascular disease and dementia. Br J Radiol. 80 (Suppl 2):S121–S127. 2007.PubMed/NCBI View Article : Google Scholar | |
Dendrou CA, Fugger L and Friese MA: Immunopathology of multiple sclerosis. Nat Rev Immunol. 15:545–558. 2015.PubMed/NCBI View Article : Google Scholar | |
Virgilio E, Vecchio D, Crespi I, Serino R, Cantello R, Dianzani U and Comi C: Cerebrospinal Tau levels as a predictor of early disability in multiple sclerosis. Mult Scler Relat Disord. 56(103231)2021.PubMed/NCBI View Article : Google Scholar | |
Mirzaii-Dizgah MH, Mirzaii-Dizgah MR and Mirzaii-Dizgah I: Serum and saliva total tau protein as a marker for relapsing-remitting multiple sclerosis. Med Hypotheses. 135(109476)2020.PubMed/NCBI View Article : Google Scholar | |
Shafit-Zagardo B, Kress Y, Zhao ML and Lee SC: A novel microtubule-associated protein-2 expressed in oligodendrocytes in multiple sclerosis lesions. J Neurochem. 73:2531–2537. 1999.PubMed/NCBI View Article : Google Scholar | |
Wang P, Jiang LL, Wang C, Zhu Z and Lai C: Neurofilament protein as a potential biomarker of axonal degeneration in experimental autoimmune encephalomyelitis. Neurol India. 68:364–367. 2020.PubMed/NCBI View Article : Google Scholar | |
Rosengren LE, Karlsson JE, Karlsson JO, Persson LI and Wikkelsø C: Patients with amyotrophic lateral sclerosis and other neurodegenerative diseases have increased levels of neurofilament protein in CSF. J Neurochem. 67:2013–2018. 1996.PubMed/NCBI View Article : Google Scholar | |
Lycke JN, Karlsson JE, Andersen O and Rosengren LE: Neurofilament protein in cerebrospinal fluid: A potential marker of activity in multiple sclerosis. J Neurol Neurosurg Psychiatry. 64:402–404. 1998.PubMed/NCBI View Article : Google Scholar | |
Kuhle J, Barro C, Andreasson U, Derfuss T, Lindberg R, Sandelius Å, Liman V, Norgren N, Blennow K and Zetterberg H: Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa. Clin Chem Lab Med. 54:1655–1661. 2016.PubMed/NCBI View Article : Google Scholar | |
Varhaug KN, Torkildsen Ø, Myhr KM and Vedeler CA: Neurofilament light Chain as a biomarker in multiple sclerosis. Front Neurol. 10(338)2019.PubMed/NCBI View Article : Google Scholar | |
Norgren N, Rosengren L and Stigbrand T: Elevated neurofilament levels in neurological diseases. Brain Res. 987:25–31. 2003.PubMed/NCBI View Article : Google Scholar | |
Cai L and Huang J: Neurofilament light chain as a biological marker for multiple sclerosis: A meta-analysis study. Neuropsychiatr Dis Treat. 14:2241–2254. 2018.PubMed/NCBI View Article : Google Scholar | |
Disanto G, Barro C, Benkert P, Naegelin Y, Schädelin S, Giardiello A, Zecca C, Blennow K, Zetterberg H, Leppert D, et al: Serum Neurofilament light: A biomarker of neuronal damage in multiple sclerosis. Ann Neurol. 81:857–870. 2017.PubMed/NCBI View Article : Google Scholar | |
Barro C, Benkert P, Disanto G, Tsagkas C, Amann M, Naegelin Y, Leppert D, Gobbi C, Granziera C, Yaldizli Ö, et al: Serum neurofilament as a predictor of disease worsening and brain and spinal cord atrophy in multiple sclerosis. Brain. 141:2382–2391. 2018.PubMed/NCBI View Article : Google Scholar | |
Arrambide G, Espejo C, Eixarch H, Villar LM, Alvarez-Cermeño JC, Picón C, Kuhle J, Disanto G, Kappos L, Sastre-Garriga J, et al: Neurofilament light chain level is a weak risk factor for the development of MS. Neurology. 87:1076–1084. 2016.PubMed/NCBI View Article : Google Scholar | |
Comabella M and Montalban X: Body fluid biomarkers in multiple sclerosis. Lancet Neurol. 13:113–126. 2014.PubMed/NCBI View Article : Google Scholar | |
Matute-Blanch C, Villar LM, Álvarez-Cermeño JC, Rejdak K, Evdoshenko E, Makshakov G, Nazarov V, Lapin S, Midaglia L, Vidal-Jordana A, et al: Neurofilament light chain and oligoclonal bands are prognostic biomarkers in radiologically isolated syndrome. Brain. 141:1085–1093. 2018.PubMed/NCBI View Article : Google Scholar | |
Khalil M: Are neurofilaments valuable biomarkers for long-term disease prognostication in MS? Mult Scler. 24:1270–1271. 2018.PubMed/NCBI View Article : Google Scholar | |
Giovannoni G: Peripheral blood neurofilament light chain levels: The neurologist's C-reactive protein? Brain. 141:2235–2237. 2018.PubMed/NCBI View Article : Google Scholar |