1
|
Wuyts WA, Agostini C, Antoniou KM, Bouros
D, Chambers RC, Cottin V, Egan JJ, Lambrecht BN, Lories R, Parfrey
H, et al: The pathogenesis of pulmonary fibrosis: a moving target.
Eur Respir J. 41:1207–1218. 2013.PubMed/NCBI View Article : Google Scholar
|
2
|
Thannickal VJ, Toews GB, White ES, Lynch
JP III and Martinez FJ: Mechanisms of pulmonary fibrosis. Annu Rev
Med. 55:395–417. 2004.PubMed/NCBI View Article : Google Scholar
|
3
|
Richeldi L, Collard HR and Jones MG:
Idiopathic pulmonary fibrosis. Lancet. 389:1941–1952.
2017.PubMed/NCBI View Article : Google Scholar
|
4
|
Bouros D and Antoniou KM: Current and
future therapeutic approaches in idiopathic pulmonary fibrosis. Eur
Respir J. 26:693–703. 2005.PubMed/NCBI View Article : Google Scholar
|
5
|
Luppi F, Cerri S, Beghè B, Fabbri LM and
Richeldi L: Corticosteroid and immunomodulatory agents in
idiopathic pulmonary fibrosis. Respir Med. 98:1035–1044.
2004.PubMed/NCBI View Article : Google Scholar
|
6
|
Zamora-Ros R, Achaintre D, Rothwell JA,
Rinaldi S, Assi N, Ferrari P, Leitzmann M, Boutron-Ruault MC,
Fagherazzi G, Auffret A, et al: Urinary excretions of 34 dietary
polyphenols and their associations with lifestyle factors in the
EPIC cohort study. Sci Rep. 6(26905)2016.PubMed/NCBI View Article : Google Scholar
|
7
|
van Dam RM, Naidoo N and Landberg R:
Dietary flavonoids and the development of type 2 diabetes and
cardiovascular diseases: Review of recent findings. Curr Opin
Lipidol. 24:25–33. 2013.PubMed/NCBI View Article : Google Scholar
|
8
|
Wang X, Ouyang YY, Liu J and Zhao G:
Flavonoid intake and risk of CVD: A systematic review and
meta-analysis of prospective cohort studies. Br J Nutr. 111:1–11.
2014.PubMed/NCBI View Article : Google Scholar
|
9
|
Xing L, Zhang H, Qi R, Tsao R and Mine Y:
Recent advances in the understanding of the health benefits and
molecular mechanisms associated with green tea polyphenols. J Agric
Food Chem. 67:1029–1043. 2019.PubMed/NCBI View Article : Google Scholar
|
10
|
Azambuja JH, Mancuso RI, Via FID, Torello
CO and Saad STO: Protective effect of green tea and
epigallocatechin-3-gallate in a LPS-induced systemic inflammation
model. J Nutr Biochem. 101(108920)2022.PubMed/NCBI View Article : Google Scholar
|
11
|
Sae-tan S, Grove KA and Lambert JD: Weight
control and prevention of metabolic syndrome by green tea.
Pharmacol Res. 64:146–154. 2011.PubMed/NCBI View Article : Google Scholar
|
12
|
Tsai CF, Hsu YW, Ting HC, Huang CF and Yen
CC: The in vivo antioxidant and antifibrotic properties of green
tea (Camellia sinensis, Theaceae). Food Chem. 136:1337–1344.
2013.PubMed/NCBI View Article : Google Scholar
|
13
|
Wei H, Ge Q, Zhang LY, Xie J, Gan RH, Lu
YG and Zheng DL: EGCG inhibits growth of tumoral lesions on lip and
tongue of K-Ras transgenic mice through the Notch pathway. J Nutr
Biochem. 99(108843)2022.PubMed/NCBI View Article : Google Scholar
|
14
|
Wang M, Zhong H, Zhang X, Huang X, Wang J,
Li Z, Chen M and Xiao Z: EGCG promotes PRKCA expression to
alleviate LPS-induced acute lung injury and inflammatory response.
Sci Rep. 11(11014)2021.PubMed/NCBI View Article : Google Scholar
|
15
|
Meng J, Chen Y, Wang J, Qiu J, Chang C, Bi
F, Wu X and Liu W: EGCG protects vascular endothelial cells from
oxidative stress-induced damage by targeting the
autophagy-dependent PI3K-AKT-mTOR pathway. Ann Transl Med.
8(200)2020.PubMed/NCBI View Article : Google Scholar
|
16
|
Sriram N, Kalayarasan S and Sudhandiran G:
Epigallocatechin-3-gallate exhibits anti-fibrotic effect by
attenuating bleomycin-induced glycoconjugates, lysosomal hydrolases
and ultrastructural changes in rat model pulmonary fibrosis. Chem
Biol Interact. 180:271–280. 2009.PubMed/NCBI View Article : Google Scholar
|
17
|
Sriram N, Kalayarasan S and Sudhandiran G:
Enhancement of antioxidant defense system by
epigallocatechin-3-gallate during bleomycin induced experimental
pulmonary fibrosis. Biol Pharm Bull. 31:1306–1311. 2008.PubMed/NCBI View Article : Google Scholar
|
18
|
Cai Y, Yu X, Hu S and Yu J: A brief review
on the mechanisms of miRNA regulation. Genomics Proteomics
Bioinformatics. 7:147–154. 2009.PubMed/NCBI View Article : Google Scholar
|
19
|
Shenoy A and Blelloch RH: Regulation of
microRNA function in somatic stem cell proliferation and
differentiation. Nat Rev Mol Cell Biol. 15:565–576. 2014.PubMed/NCBI View
Article : Google Scholar
|
20
|
Jordan SD, Krüger M, Willmes DM, Redemann
N, Wunderlich FT, Brönneke HS, Merkwirth C, Kashkar H, Olkkonen VM,
Böttger T, et al: Obesity-induced overexpression of miRNA-143
inhibits insulin-stimulated AKT activation and impairs glucose
metabolism. Nat Cell Biol. 13:434–446. 2011.PubMed/NCBI View
Article : Google Scholar
|
21
|
Nejad C, Stunden HJ and Gantier MP: A
guide to miRNAs in inflammation and innate immune responses. FEBS
J. 285:3695–3716. 2018.PubMed/NCBI View Article : Google Scholar
|
22
|
O'Reilly S: MicroRNAs in fibrosis:
Opportunities and challenges. Arthritis Res Ther.
18(11)2016.PubMed/NCBI View Article : Google Scholar
|
23
|
Bayraktar R, Van Roosbroeck K and Calin
GA: Cell-to-cell communication: microRNAs as hormones. Mol Oncol.
11:1673–1686. 2017.PubMed/NCBI View Article : Google Scholar
|
24
|
Xie H, Gao YM, Zhang YC, Jia MW, Peng F,
Meng QH and Wang YC: Low let-7d exosomes from pulmonary vascular
endothelial cells drive lung pericyte fibrosis through the
TGFβRI/FoxM1/Smad/β-catenin pathway. J Cell Mol Med.
24:13913–13926. 2020.PubMed/NCBI View Article : Google Scholar
|
25
|
Joven J, Espinel E, Rull A, Aragonès G,
Rodríguez-Gallego E, Camps J, Micol V, Herranz-López M, Menéndez
JA, Borrás I, et al: Plant-derived polyphenols regulate expression
of miRNA paralogs miR-103/107 and miR-122 and prevent diet-induced
fatty liver disease in hyperlipidemic mice. Biochim Biophys Acta.
1820:894–899. 2012.PubMed/NCBI View Article : Google Scholar
|
26
|
Gismondi A, Nanni V, Monteleone V, Colao
C, Di Marco G and Canini A: Plant miR171 modulates mTOR pathway in
HEK293 cells by targeting GNA12. Mol Biol Rep. 48:435–449.
2021.PubMed/NCBI View Article : Google Scholar
|
27
|
Cione E, La Torre C, Cannataro R, Caroleo
MC, Plastina P and Gallelli L: Quercetin, epigallocatechin gallate,
curcumin, and resveratrol: From dietary sources to human MicroRNA
modulation. Molecules. 25(63)2019.PubMed/NCBI View Article : Google Scholar
|
28
|
Ou HC, Song TY, Yeh YC, Huang CY, Yang SF,
Chiu TH, Tsai KL, Chen KL, Wu YJ, Tsai CS, et al: EGCG protects
against oxidized LDL-induced endothelial dysfunction by inhibiting
LOX-1-mediated signaling. J Appl Physiol (1985). 108:1745–1756.
2010.PubMed/NCBI View Article : Google Scholar
|
29
|
Kanlaya R, Peerapen P, Nilnumkhum A,
Plumworasawat S, Sueksakit K and Thongboonkerd V:
Epigallocatechin-3-gallate prevents TGF-β1-induced
epithelial-mesenchymal transition and fibrotic changes of renal
cells via GSK-3β/β-catenin/Snail1 and Nrf2 pathways. J Nutr
Biochem. 76(108266)2020.PubMed/NCBI View Article : Google Scholar
|
30
|
Marugame Y, Takeshita N, Yamada S,
Yoshitomi R, Kumazoe M, Fujimura Y and Tachibana H: Sesame lignans
upregulate glutathione S-transferase expression and downregulate
microRNA-669c-3p. Biosci Microbiota Food Health. 41:66–72.
2022.PubMed/NCBI View Article : Google Scholar
|
31
|
Tan Z, Jiang X, Zhou W, Deng B, Cai M,
Deng S, Xu Y, Ding W, Chen G, Chen R, et al: Taohong siwu decoction
attenuates myocardial fibrosis by inhibiting fibrosis proliferation
and collagen deposition via TGFBR1 signaling pathway. J
Ethnopharmacol. 270(113838)2021.PubMed/NCBI View Article : Google Scholar
|
32
|
Xu Z, He B, Jiang Y, Zhang M, Tian Y, Zhou
N, Zhou Y, Chen M, Tang M, Gao J and Peng F: Igf2bp2 knockdown
improves CCl4-induced liver fibrosis and TGF-β-activated
mouse hepatic stellate cells by regulating Tgfbr1. Int
Immunopharmacol. 110(108987)2022.PubMed/NCBI View Article : Google Scholar
|
33
|
Schnaper HW, Hayashida T and Poncelet AC:
It's a Smad world: Regulation of TGF-beta signaling in the kidney.
J Am Soc Nephrol. 13:1126–1128. 2002.PubMed/NCBI View Article : Google Scholar
|
34
|
Sonnylal S, Denton CP, Zheng B, Keene DR,
He R, Adams HP, Vanpelt CS, Geng YJ, Deng JM, Behringer RR and de
Crombrugghe B: Postnatal induction of transforming growth factor
beta signaling in fibroblasts of mice recapitulates clinical,
histologic, and biochemical features of scleroderma. Arthritis
Rheum. 56:334–344. 2007.PubMed/NCBI View Article : Google Scholar
|
35
|
Khalil H, Kanisicak O, Prasad V, Correll
RN, Fu X, Schips T, Vagnozzi RJ, Liu R, Huynh T, Lee SJ, et al:
Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac
fibrosis. J Clin Invest. 127:3770–3783. 2017.PubMed/NCBI View
Article : Google Scholar
|
36
|
Masuda A, Nakamura T, Abe M, Iwamoto H,
Sakaue T, Tanaka T, Suzuki H, Koga H and Torimura T: Promotion of
liver regeneration and anti-fibrotic effects of the TGF-β receptor
kinase inhibitor galunisertib in CCl4-treated mice. Int J Mol Med.
46:427–438. 2020.PubMed/NCBI View Article : Google Scholar
|
37
|
Li J, Yue S, Fang J, Zeng J, Chen S, Tian
J, Nie S, Liu X and Ding H: MicroRNA-10a/b inhibit
TGF-β/Smad-induced renal fibrosis by targeting TGF-β receptor 1 in
diabetic kidney disease. Mol Ther Nucleic Acids. 28:488–499.
2022.PubMed/NCBI View Article : Google Scholar
|
38
|
Mittal S, Inamdar S, Acharya J, Pekhale K,
Kalamkar S, Boppana R and Ghaskadbi S: miR-3666 inhibits
development of hepatic steatosis by negatively regulating PPARγ.
Biochim Biophys Acta Mol Cell Biol Lipids.
1865(158777)2020.PubMed/NCBI View Article : Google Scholar
|
39
|
Naito Y, Ushiroda C, Mizushima K, Inoue R,
Yasukawa Z, Abe A and Takagi T: Epigallocatechin-3-gallate (EGCG)
attenuates non-alcoholic fatty liver disease via modulating the
interaction between gut microbiota and bile acids. J Clin Biochem
Nutr. 67:2–9. 2020.PubMed/NCBI View Article : Google Scholar
|
40
|
Salehi M and Sharifi M: Exosomal miRNAs as
novel cancer biomarkers: Challenges and opportunities. J Cell
Physiol. 233:6370–6380. 2018.PubMed/NCBI View Article : Google Scholar
|
41
|
Byun EB, Kim WS, Sung NY and Byun EH:
Epigallocatechin-3-gallate regulates anti-inflammatory action
through 67-kDa laminin receptor-mediated tollip signaling induction
in lipopolysaccharide-stimulated human intestinal epithelial cells.
Cell Physiol Biochem. 46:2072–2081. 2018.PubMed/NCBI View Article : Google Scholar
|
42
|
Tachibana H, Koga K, Fujimura Y and Yamada
K: A receptor for green tea polyphenol EGCG. Nat Struct Mol Biol.
11:380–381. 2004.PubMed/NCBI View Article : Google Scholar
|
43
|
Yamada S, Tsukamoto S, Huang Y, Makio A,
Kumazoe M, Yamashita S and Tachibana H:
Epigallocatechin-3-O-gallate up-regulates microRNA-let-7b
expression by activating 67-kDa laminin receptor signaling in
melanoma cells. Sci Rep. 6(19225)2016.PubMed/NCBI View Article : Google Scholar
|