A metabolomic and proteomic study to elucidate the molecular mechanisms of immunotherapy resistance in patients with oesophageal squamous cell carcinoma
- Authors:
- Lijuan Gao
- Yongshun Chen
-
Affiliations: Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University First Clinical College, Wuhan, Hubei 430060, P.R. China - Published online on: April 6, 2023 https://doi.org/10.3892/br.2023.1619
- Article Number: 36
This article is mentioned in:
Abstract
Bagchi S, Yuan R and Engleman EG: Immune checkpoint inhibitors for the treatment of cancer: Clinical impact and mechanisms of response and resistance. Annu Rev Pathol. 16:223–249. 2021.PubMed/NCBI View Article : Google Scholar | |
Carlino MS, Larkin J and Long GV: Immune checkpoint inhibitors in melanoma. Lancet. 398:1002–1014. 2021.PubMed/NCBI View Article : Google Scholar | |
Li F, Chen Y, Pang M, Yang P and Jing H: Immune checkpoint inhibitors and cellular treatment for lymphoma immunotherapy. Clin Exp Immunol. 205:1–11. 2021.PubMed/NCBI View Article : Google Scholar | |
Kojima T, Shah MA, Muro K, Francois E, Adenis A, Hsu CH, Doi T, Moriwaki T, Kim SB, Lee SH, et al: Randomized phase III KEYNOTE-181 study of pembrolizumab versus chemotherapy in advanced esophageal cancer. J Clin Oncol. 38:4138–4148. 2020.PubMed/NCBI View Article : Google Scholar | |
Kato K, Cho BC, Takahashi M, Okada M, Lin CY, Chin K, Kadowaki S, Ahn MJ, Hamamoto Y, Doki Y, et al: Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 20:1506–1517. 2019.PubMed/NCBI View Article : Google Scholar | |
Huang J, Xu J, Chen Y, Zhuang W, Zhang Y, Chen Z, Chen J, Zhang H, Niu Z, Fan Q, et al: Camrelizumab versus investigator's choice of chemotherapy as second-line therapy for advanced or metastatic oesophageal squamous cell carcinoma (ESCORT): A multicentre, randomised, open-label, phase 3 study. Lancet Oncol. 21:832–842. 2020.PubMed/NCBI View Article : Google Scholar | |
Sun JM, Shen L, Shah MA, Enzinger P, Adenis A, Doi T, Kojima T, Metges JP, Li Z, Kim SB, et al: Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590): A randomised, placebo-controlled, phase 3 study. Lancet. 398:759–771. 2021.PubMed/NCBI View Article : Google Scholar | |
Luo H, Lu J, Bai Y, Mao T, Wang J, Fan Q, Zhang Y, Zhao K, Chen Z, Gao S, et al: Effect of camrelizumab vs placebo added to chemotherapy on survival and progression-free survival in patients with advanced or metastatic esophageal squamous cell carcinoma: The ESCORT-1st randomized clinical trial. JAMA. 326:916–925. 2021.PubMed/NCBI View Article : Google Scholar | |
Rinschen MM, Ivanisevic J, Giera M and Siuzdak G: Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Biol. 20:353–367. 2019.PubMed/NCBI View Article : Google Scholar | |
Muthubharathi BC, Gowripriya T and Balamurugan K: Metabolomics: Small molecules that matter more. Mol Omics. 17:210–229. 2021.PubMed/NCBI View Article : Google Scholar | |
Chen PH, Cai L, Huffman K, Yang C, Kim J, Faubert B, Boroughs L, Ko B, Sudderth J, McMillan EA, et al: Metabolic diversity in human non-small cell lung cancer cells. Mol Cell. 76:838–851.e5. 2019.PubMed/NCBI View Article : Google Scholar | |
Shen Y, Sun M, Zhu J, Wei M, Li H, Zhao P, Wang J, Li R, Tian L, Tao Y, et al: Tissue metabolic profiling reveals major metabolic alteration in colorectal cancer. Mol Omics. 17:464–471. 2021.PubMed/NCBI View Article : Google Scholar | |
Li L and Ma J: Molecular characterization of metabolic subtypes of gastric cancer based on metabolism-related lncRNA. Sci Rep. 11(21491)2021.PubMed/NCBI View Article : Google Scholar | |
Chen CJ, Lee DY, Yu J, Lin YN and Lin TM: Recent advances in LC-MS-based metabolomics for clinical biomarker discovery. Mass Spectrom Rev. (e21785)2022.PubMed/NCBI View Article : Google Scholar : (Epub ahead of print). | |
Seger C and Salzmann L: After another decade: LC-MS/MS became routine in clinical diagnostics. Clin Biochem. 82:2–11. 2020.PubMed/NCBI View Article : Google Scholar | |
Beccaria M and Cabooter D: Current developments in LC-MS for pharmaceutical analysis. Analyst. 145:1129–1157. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhang S, Wang H and Zhu MJ: A sensitive GC/MS detection method for analyzing microbial metabolites short chain fatty acids in fecal and serum samples. Talanta. 196:249–254. 2019.PubMed/NCBI View Article : Google Scholar | |
Beale DJ, Pinu FR, Kouremenos KA, Poojary MM, Narayana VK, Boughton BA, Kanojia K, Dayalan S, Jones OAH and Dias DA: Review of recent developments in GC-MS approaches to metabolomics-based research. Metabolomics. 14(152)2018.PubMed/NCBI View Article : Google Scholar | |
Hu R, Li T, Yang Y, Tian Y and Zhang L: NMR-based metabolomics in cancer research. Adv Exp Med Biol. 1280:201–218. 2021.PubMed/NCBI View Article : Google Scholar | |
Bichmann L, Gupta S, Rosenberger G, Kuchenbecker L, Sachsenberg T, Ewels P, Alka O, Pfeuffer J, Kohlbacher O and Röst H: DIAproteomics: A multifunctional data analysis pipeline for data-independent acquisition proteomics and peptidomics. J Proteome Res. 20:3758–3766. 2021.PubMed/NCBI View Article : Google Scholar | |
Ma L, Muscat JE, Sinha R, Sun D and Xiu G: Proteomics of exhaled breath condensate in lung cancer and controls using data-independent acquisition (DIA): A pilot study. J Breath Res. 15(026002)2021.PubMed/NCBI View Article : Google Scholar | |
Krasny L and Huang PH: Data-independent acquisition mass spectrometry (DIA-MS) for proteomic applications in oncology. Mol Omics. 17:29–42. 2021.PubMed/NCBI View Article : Google Scholar | |
Zheng X, Xu K, Zhou B, Chen T, Huang Y, Li Q, Wen F, Ge W, Wang J, Yu S, et al: A circulating extracellular vesicles-based novel screening tool for colorectal cancer revealed by shotgun and data-independent acquisition mass spectrometry. J Extracell Vesicles. 9(1750202)2020.PubMed/NCBI View Article : Google Scholar | |
Rao J, Wan X, Tou F, He Q, Xiong A, Chen X, Cui W and Zheng Z: Molecular characterization of advanced colorectal cancer using serum proteomics and metabolomics. Front Mol Biosci. 8(687229)2021.PubMed/NCBI View Article : Google Scholar | |
Zhang Q, Zhang Y, Sun S, Wang K, Qian J, Cui Z, Tao T and Zhou J: ACOX2 is a prognostic marker and impedes the progression of hepatocellular carcinoma via PPARα pathway. Cell Death Dis. 12(15)2021.PubMed/NCBI View Article : Google Scholar | |
Kong R, Qian X and Ying W: Pancreatic cancer cells spectral library by DIA-MS and the phenotype analysis of gemcitabine sensitivity. Sci Data. 9(283)2022.PubMed/NCBI View Article : Google Scholar | |
Keam SP, Gulati T, Gamell C, Caramia F, Huang C, Schittenhelm RB, Kleifeld O, Neeson PJ, Haupt Y and Williams SG: Exploring the oncoproteomic response of human prostate cancer to therapeutic radiation using data-independent acquisition (DIA) mass spectrometry. Prostate. 78:563–575. 2018.PubMed/NCBI View Article : Google Scholar | |
Sun Y, Li L, Zhou Y, Ge W, Wang H, Wu R, Liu W, Chen H, Xiao Q, Cai X, et al: Stratification of follicular thyroid tumours using data-independent acquisition proteomics and a comprehensive thyroid tissue spectral library. Mol Oncol. 16:1611–1624. 2022.PubMed/NCBI View Article : Google Scholar | |
Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, McFadden ET and Carbone PP: Toxicity and response criteria of the Eastern cooperative oncology group. Am J Clin Oncol. 5:649–655. 1982.PubMed/NCBI | |
Schwartz LH, Litière S, de Vries E, Ford R, Gwyther S, Mandrekar S, Shankar L, Bogaerts J, Chen A, Dancey J, et al: RECIST 1.1-update and clarification: From the RECIST committee. Eur J Cancer. 62:132–137. 2016.PubMed/NCBI View Article : Google Scholar | |
Greene FL, Page DL, Fleming ID, Fritz AG, Balch CM, Haller DG and Morrow M (eds): AJCC cancer staging manual. 6th edition. American Joint Committe on Cancer, Chicago, IL, pp91-99, 2002. | |
Demichev V, Messner CB, Vernardis SI, Lilley KS and Ralser M: DIA-NN: Neural networks and interference correction enable deep proteome coverage in high throughput. Nat Methods. 17:41–44. 2020.PubMed/NCBI View Article : Google Scholar | |
Yu G, Wang LG, Han Y and He QY: clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS. 16:284–287. 2012.PubMed/NCBI View Article : Google Scholar | |
Yang T, Hui R, Nouws J, Sauler M, Zeng T and Wu Q: Untargeted metabolomics analysis of esophageal squamous cell cancer progression. J Transl Med. 20(127)2022.PubMed/NCBI View Article : Google Scholar | |
White L, Ma J, Liang S, Sanchez-Espiridion B and Liang D: LC-MS/MS determination of d-mannose in human serum as a potential cancer biomarker. J Pharm Biomed Anal. 137:54–59. 2017.PubMed/NCBI View Article : Google Scholar | |
Mir SA, Rajagopalan P, Jain AP, Khan AA, Datta KK, Mohan SV, Lateef SS, Sahasrabuddhe N, Somani BL, Keshava Prasad TS, et al: LC-MS-based serum metabolomic analysis reveals dysregulation of phosphatidylcholines in esophageal squamous cell carcinoma. J Proteomics. 127:96–102. 2015.PubMed/NCBI View Article : Google Scholar | |
Zhang J, Bowers J, Liu L, Wei S, Gowda GA, Hammoud Z and Raftery D: Esophageal cancer metabolite biomarkers detected by LC-MS and NMR methods. PLoS One. 7(e30181)2012.PubMed/NCBI View Article : Google Scholar | |
Liang S, Sanchez-Espiridion B, Xie H, Ma J, Wu X and Liang D: Determination of proline in human serum by a robust LC-MS/MS method: Application to identification of human metabolites as candidate biomarkers for esophageal cancer early detection and risk stratification. Biomed Chromatogr. 29:570–577. 2015.PubMed/NCBI View Article : Google Scholar | |
Song E, Zhu R, Hammoud ZT and Mechref Y: LC-MS/MS quantitation of esophagus disease blood serum glycoproteins by enrichment with hydrazide chemistry and lectin affinity chromatography. J Proteome Res. 13:4808–4820. 2014.PubMed/NCBI View Article : Google Scholar | |
Zhang H, Wang L, Hou Z, Ma H, Mamtimin B, Hasim A and Sheyhidin I: Metabolomic profiling reveals potential biomarkers in esophageal cancer progression using liquid chromatography-mass spectrometry platform. Biochem Biophys Res Commun. 491:119–125. 2017.PubMed/NCBI View Article : Google Scholar | |
Guo JH, Xing GL, Fang XH, Wu HF, Zhang B, Yu JZ, Fan ZM and Wang LD: Proteomic profiling of fetal esophageal epithelium, esophageal cancer, and tumor-adjacent esophageal epithelium and immunohistochemical characterization of a representative differential protein, PRX6. World J Gastroenterol. 23:1434–1442. 2017.PubMed/NCBI View Article : Google Scholar | |
Yazdian-Robati R, Ahmadi H, Riahi MM, Lari P, Aledavood SA, Rashedinia M, Abnous K and Ramezani M: Comparative proteome analysis of human esophageal cancer and adjacent normal tissues. Iran J Basic Med Sci. 20:265–271. 2017.PubMed/NCBI View Article : Google Scholar | |
O'Neill JR, Pak HS, Pairo-Castineira E, Save V, Paterson-Brown S, Nenutil R, Vojtěšek B, Overton I, Scherl A and Hupp TR: Quantitative shotgun proteomics unveils candidate novel esophageal adenocarcinoma (EAC)-specific proteins. Mol Cell Proteomics. 16:1138–1150. 2017.PubMed/NCBI View Article : Google Scholar | |
Schwacke J, Millar TP, Hammond CE, Saha A, Hoffman BJ, Romagnuolo J, Hill EG and Smolka AJ: Discrimination of normal and esophageal cancer plasma proteomes by MALDI-TOF mass spectrometry. Dig Dis Sci. 60:1645–1654. 2015.PubMed/NCBI View Article : Google Scholar | |
Wang D, Chen J, Han J, Wang K, Fang W, Jin J and Xue S: iTRAQ and two-dimensional-LC-MS/MS reveal NAA10 is a potential biomarker in esophageal squamous cell carcinoma. Proteomics Clin Appl. 16(e2100081)2022.PubMed/NCBI View Article : Google Scholar | |
Singh S, Bano A, Saraya A, Das P and Sharma R: iTRAQ-based analysis for the identification of MARCH8 targets in human esophageal squamous cell carcinoma. J Proteomics. 236(104125)2021.PubMed/NCBI View Article : Google Scholar | |
Wang X, Peng Y, Xie M, Gao Z, Yin L, Pu Y and Liu R: Identification of extracellular matrix protein 1 as a potential plasma biomarker of ESCC by proteomic analysis using iTRAQ and 2D-LC-MS/MS. Proteomics Clin Appl. 11(1600163)2017.PubMed/NCBI View Article : Google Scholar | |
Deng F, Zhou K, Li Q, Liu D, Li M, Wang H, Zhang W and Ma Y: iTRAQ-based quantitative proteomic analysis of esophageal squamous cell carcinoma. Tumour Biol. 37:1909–1918. 2016.PubMed/NCBI View Article : Google Scholar | |
Liu W, Xie L, He YH, Wu ZY, Liu LX, Bai XF, Deng DX, Xu XE, Liao LD, Lin W, et al: Large-scale and high-resolution mass spectrometry-based proteomics profiling defines molecular subtypes of esophageal cancer for therapeutic targeting. Nat Commun. 12(4961)2021.PubMed/NCBI View Article : Google Scholar | |
Li Y, Yang B, Ma Y, Peng X, Wang Z, Sheng B, Wei Z, Cui Y and Liu Z: Phosphoproteomics reveals therapeutic targets of esophageal squamous cell carcinoma. Signal Transduct Target Ther. 6(381)2021.PubMed/NCBI View Article : Google Scholar | |
Joyce D, Albanese C, Steer J, Fu M, Bouzahzah B and Pestell RG: NF-kappaB and cell-cycle regulation: the cyclin connection. Cytokine Growth Factor Rev. 12:73–90. 2001.PubMed/NCBI View Article : Google Scholar | |
Grivennikov SI and Karin M: Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 21:11–19. 2010.PubMed/NCBI View Article : Google Scholar | |
Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H and Vandenabeele P: Regulated necrosis: The expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 15:135–147. 2014.PubMed/NCBI View Article : Google Scholar | |
Taniguchi K, Wu LW, Grivennikov SI, de Jong PR, Lian I, Yu FX, Wang K, Ho SB, Boland BS, Chang JT, et al: A gp130-Src-YAP module links inflammation to epithelial regeneration. Nature. 519:57–62. 2015.PubMed/NCBI View Article : Google Scholar | |
Johnson RF and Perkins ND: Nuclear factor-κB, p53, and mitochondria: Regulation of cellular metabolism and the Warburg effect. Trends Biochem Sci. 37:317–324. 2012.PubMed/NCBI View Article : Google Scholar | |
Xia Y, Shen S and Verma IM: NF-κB, an active player in human cancers. Cancer Immunol Res. 2:823–830. 2014.PubMed/NCBI View Article : Google Scholar | |
Wu Y and Zhou BP: Inflammation: A driving force speeds cancer metastasis. Cell Cycle. 8:3267–3273. 2009.PubMed/NCBI View Article : Google Scholar | |
Amato CM, Hintzsche JD, Wells K, Applegate A, Gorden NT, Vorwald VM, Tobin RP, Nassar K, Shellman YG, Kim J, et al: Pre-treatment mutational and transcriptomic landscape of responding metastatic melanoma patients to anti-PD1 immunotherapy. Cancers (Basel). 12(1943)2020.PubMed/NCBI View Article : Google Scholar | |
Roh W, Chen PL, Reuben A, Spencer CN, Prieto PA, Miller JP, Gopalakrishnan V, Wang F, Cooper ZA, Reddy SM, et al: Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci Transl Med. 9(eaah3560)2017.PubMed/NCBI View Article : Google Scholar | |
Shi LZ, Fu T, Guan B, Chen J, Blando JM, Allison JP, Xiong L, Subudhi SK, Gao J and Sharma P: Interdependent IL-7 and IFN-γ signalling in T-cell controls tumour eradication by combined α-CTLA-4+α-PD-1 therapy. Nat Commun. 7(12335)2016.PubMed/NCBI View Article : Google Scholar | |
Dong MB, Wang G, Chow RD, Ye L, Zhu L, Dai X, Park JJ, Kim HR, Errami Y, Guzman CD, et al: Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8 T cells. Cell. 178:1189–1204.e23. 2019.PubMed/NCBI View Article : Google Scholar | |
Li G, Boucher JC, Kotani H, Park K, Zhang Y, Shrestha B, Wang X, Guan L, Beatty N, Abate-Daga D and Davila ML: 4-1BB enhancement of CAR T function requires NF-κB and TRAFs. JCI Insight. 3(e121322)2018.PubMed/NCBI View Article : Google Scholar | |
Philipson BI, O'Connor RS, May MJ, June CH, Albelda SM and Milone MC: 4-1BB costimulation promotes CAR T cell survival through noncanonical NF-κB signaling. Sci Signal. 13(eaay8248)2020.PubMed/NCBI View Article : Google Scholar | |
Schumacher LY, Vo DD, Garban HJ, Comin-Anduix B, Owens SK, Dissette VB, Glaspy JA, McBride WH, Bonavida B, Economou JS and Ribas A: Immunosensitization of tumor cells to dendritic cell-activated immune responses with the proteasome inhibitor bortezomib (PS-341, Velcade). J Immunol. 176:4757–4765. 2006.PubMed/NCBI View Article : Google Scholar | |
Enzler T, Sano Y, Choo MK, Cottam HB, Karin M, Tsao H and Park JM: Cell-selective inhibition of NF-κB signaling improves therapeutic index in a melanoma chemotherapy model. Cancer Discov. 1:496–507. 2011.PubMed/NCBI View Article : Google Scholar | |
Xiao Z, Su Z, Han S, Huang J, Lin L and Shuai X: Dual pH-sensitive nanodrug blocks PD-1 immune checkpoint and uses T cells to deliver NF-κB inhibitor for antitumor immunotherapy. Sci Adv. 6(eaay7785)2020.PubMed/NCBI View Article : Google Scholar | |
Cai M, He J, Xiong J, Tay LW, Wang Z, Rog C, Wang J, Xie Y, Wang G, Banno Y, et al: Phospholipase D1-regulated autophagy supplies free fatty acids to counter nutrient stress in cancer cells. Cell Death Dis. 7(e2448)2016.PubMed/NCBI View Article : Google Scholar | |
Palikaras K, Lionaki E and Tavernarakis N: Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol. 20:1013–1022. 2018.PubMed/NCBI View Article : Google Scholar | |
Ganesan R, Mallets E and Gomez-Cambronero J: The transcription factors Slug (SNAI2) and Snail (SNAI1) regulate phospholipase D (PLD) promoter in opposite ways towards cancer cell invasion. Mol Oncol. 10:663–676. 2016.PubMed/NCBI View Article : Google Scholar | |
Ho HY, Lin CW, Chien MH, Reiter RJ, Su SC, Hsieh YH and Yang SF: Melatonin suppresses TPA-induced metastasis by downregulating matrix metalloproteinase-9 expression through JNK/SP-1 signaling in nasopharyngeal carcinoma. J Pineal Res. 61:479–492. 2016.PubMed/NCBI View Article : Google Scholar | |
Issuree PD, Pushparaj PN, Pervaiz S and Melendez AJ: Resveratrol attenuates C5a-induced inflammatory responses in vitro and in vivo by inhibiting phospholipase D and sphingosine kinase activities. FASEB J. 23:2412–2424. 2009.PubMed/NCBI View Article : Google Scholar | |
Park MH and Min do S: Quercetin-induced downregulation of phospholipase D1 inhibits proliferation and invasion in U87 glioma cells. Biochem Biophys Res Commun. 412:710–715. 2011.PubMed/NCBI View Article : Google Scholar | |
Garcia A, Zheng Y, Zhao C, Toschi A, Fan J, Shraibman N, Brown HA, Bar-Sagi D, Foster DA and Arbiser JL: Honokiol suppresses survival signals mediated by Ras-dependent phospholipase D activity in human cancer cells. Clin Cancer Res. 14:4267–4274. 2008.PubMed/NCBI View Article : Google Scholar | |
Huang B, Song BL and Xu C: Cholesterol metabolism in cancer: Mechanisms and therapeutic opportunities. Nat Metab. 2:132–141. 2020.PubMed/NCBI View Article : Google Scholar | |
Voisin M, de Medina P, Mallinger A, Dalenc F, Huc-Claustre E, Leignadier J, Serhan N, Soules R, Ségala G, Mougel A, et al: Identification of a tumor-promoter cholesterol metabolite in human breast cancers acting through the glucocorticoid receptor. Proc Natl Acad Sci USA. 114:E9346–E9355. 2017.PubMed/NCBI View Article : Google Scholar | |
Chimento A, Casaburi I, Avena P, Trotta F, De Luca A, Rago V, Pezzi V and Sirianni R: Cholesterol and its metabolites in tumor growth: Therapeutic potential of statins in cancer treatment. Front Endocrinol (Lausanne). 9(807)2019.PubMed/NCBI View Article : Google Scholar | |
Ding X, Zhang W, Li S and Yang H: The role of cholesterol metabolism in cancer. Am J Cancer Res. 9:219–227. 2019.PubMed/NCBI | |
Wang Y, Liu C and Hu L: Cholesterol regulates cell proliferation and apoptosis of colorectal cancer by modulating miR-33a-PIM3 pathway. Biochem Biophys Res Commun. 511:685–692. 2019.PubMed/NCBI View Article : Google Scholar | |
Liu Z, Liu X, Liu S and Cao Q: Cholesterol promotes the migration and invasion of renal carcinoma cells by regulating the KLF5/miR-27a/FBXW7 pathway. Biochem Biophys Res Commun. 502:69–75. 2018.PubMed/NCBI View Article : Google Scholar | |
Raccosta L, Fontana R, Maggioni D, Lanterna C, Villablanca EJ, Paniccia A, Musumeci A, Chiricozzi E, Trincavelli ML, Daniele S, et al: The oxysterol-CXCR2 axis plays a key role in the recruitment of tumor-promoting neutrophils. J Exp Med. 210:1711–1728. 2013.PubMed/NCBI View Article : Google Scholar | |
Condamine T, Dominguez GA, Youn JI, Kossenkov AV, Mony S, Alicea-Torres K, Tcyganov E, Hashimoto A, Nefedova Y, Lin C, et al: Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci Immunol. 1(aaf8943)2016.PubMed/NCBI View Article : Google Scholar | |
Goossens P, Rodriguez-Vita J, Etzerodt A, Masse M, Rastoin O, Gouirand V, Ulas T, Papantonopoulou O, Van Eck M, Auphan-Anezin N, et al: Membrane cholesterol efflux drives tumor-associated macrophage reprogramming and tumor progression. Cell Metab. 29:1376–1389.e4. 2019.PubMed/NCBI View Article : Google Scholar | |
Kidani Y, Elsaesser H, Hock MB, Vergnes L, Williams KJ, Argus JP, Marbois BN, Komisopoulou E, Wilson EB, Osborne TF, et al: Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat Immunol. 14:489–499. 2013.PubMed/NCBI View Article : Google Scholar | |
Larsen SB, Dehlendorff C, Skriver C, Dalton SO, Jespersen CG, Borre M, Brasso K, Nørgaard M, Johansen C, Sørensen HT, et al: Postdiagnosis statin use and mortality in danish patients with prostate cancer. J Clin Oncol. 35:3290–3297. 2017.PubMed/NCBI View Article : Google Scholar | |
Xia Y, Xie Y, Yu Z, Xiao H, Jiang G, Zhou X, Yang Y, Li X, Zhao M, Li L, et al: The mevalonate pathway is a druggable target for vaccine adjuvant discovery. Cell. 175:1059–1073.e21. 2018.PubMed/NCBI View Article : Google Scholar | |
Maione F, Oliaro-Bosso S, Meda C, Di Nicolantonio F, Bussolino F, Balliano G, Viola F and Giraudo E: The cholesterol biosynthesis enzyme oxidosqualene cyclase is a new target to impair tumour angiogenesis and metastasis dissemination. Sci Rep. 5(9054)2015.PubMed/NCBI View Article : Google Scholar | |
Lanterna C, Musumeci A, Raccosta L, Corna G, Moresco M, Maggioni D, Fontana R, Doglioni C, Bordignon C, Traversari C and Russo V: The administration of drugs inhibiting cholesterol/oxysterol synthesis is safe and increases the efficacy of immunotherapeutic regimens in tumor-bearing mice. Cancer Immunol Immunother. 65:1303–1315. 2016.PubMed/NCBI View Article : Google Scholar | |
Lu Y, Wang Y, Qiu Y and Xuan W: Analysis of the relationship between the expression level of TTR and APOH and prognosis in patients with colorectal cancer metastasis based on bioinformatics. Contrast Media Mol Imaging. 2022(1121312)2022.PubMed/NCBI View Article : Google Scholar | |
Li X, Wang L, Wang L, Feng Z and Peng C: Single-cell sequencing of hepatocellular carcinoma reveals cell interactions and cell heterogeneity in the microenvironment. Int J Gen Med. 14:10141–10153. 2021.PubMed/NCBI View Article : Google Scholar | |
Mandili G, Notarpietro A, Khadjavi A, Allasia M, Battaglia A, Lucatello B, Frea B, Turrini F, Novelli F, Giribaldi G and Destefanis P: Beta-2-glycoprotein-1 and alpha-1-antitrypsin as urinary markers of renal cancer in von Hippel-Lindau patients. Biomarkers. 23:123–130. 2018.PubMed/NCBI View Article : Google Scholar | |
Fan T, Lu Z, Liu Y, Wang L, Tian H, Zheng Y, Zheng B, Xue L, Tan F, Xue Q, et al: A novel immune-related seventeen-gene signature for predicting early stage lung squamous cell carcinoma prognosis. Front Immunol. 12(665407)2021.PubMed/NCBI View Article : Google Scholar | |
Qiu XT, Song YC, Liu J, Wang ZM, Niu X and He J: Identification of an immune-related gene-based signature to predict prognosis of patients with gastric cancer. World J Gastrointest Oncol. 12:857–876. 2020.PubMed/NCBI View Article : Google Scholar |