Strategies for in situ tissue engineering of vascularized bone regeneration (Review)
- Authors:
- Yijun He
- Lin Liang
- Cheng Luo
- Zhi-Yong Zhang
- Jiongfeng Huang
-
Affiliations: Department of Osteoarthropathy and Sports Medicine, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong 511400, P.R. China, Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China - Published online on: May 22, 2023 https://doi.org/10.3892/br.2023.1625
- Article Number: 42
-
Copyright: © He et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Hankenson KD, Dishowitz M, Gray C and Schenker M: Angiogenesis in bone regeneration. Injury. 42:556–561. 2011.PubMed/NCBI View Article : Google Scholar | |
He Y, Wang W, Lin S, Yang Y, Song L, Jing Y, Chen L, He Z, Li W, Xiong A, et al: Fabrication of a bio-instructive scaffold conferred with a favorable microenvironment allowing for superior implant osseointegration and accelerated in situ vascularized bone regeneration via type H vessel formation. Bioact Mater. 9:491–507. 2021.PubMed/NCBI View Article : Google Scholar | |
Gaharwar AK, Singh I and Khademhosseini A: Engineered biomaterials for in situ tissue regeneration. Nat Rev Mater. 5:686–705. 2020. | |
Zheng ZW, Chen YH, Wu DY, Wang JB, Lv MM, Wang XS, Sun J and Zhang ZY: Development of an accurate and proactive immunomodulatory strategy to improve bone substitute material-mediated osteogenesis and angiogenesis. Theranostics. 8:5482–5500. 2018.PubMed/NCBI View Article : Google Scholar | |
Feng J and Ye L: Coupling between osteogenesis and angiogenesis. FASEB J. 22(233.2)2008. | |
Kusumbe AP, Ramasamy SK and Adams RH: Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 507:323–328. 2014.PubMed/NCBI View Article : Google Scholar | |
Ramasamy SK, Kusumbe AP, Wang L and Adams RH: Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature. 507:376–380. 2014.PubMed/NCBI View Article : Google Scholar | |
Rather HA, Jhala D and Vasita R: Dual functional approaches for osteogenesis coupled angiogenesis in bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 103(109761)2019.PubMed/NCBI View Article : Google Scholar | |
Liu H, Du Y, Yang G, Hu X, Wang L, Liu B, Wang J and Zhang S: Delivering proangiogenic factors from 3D-printed polycaprolactone scaffolds for vascularized bone regeneration. Adv Healthc Mater. 9(2000727)2020.PubMed/NCBI View Article : Google Scholar | |
Lanza R, Langer R, Vacanti J and Atala A (eds): Principles of tissue engineering. 5th edition. xli, 2020. | |
De Pieri A, Rochev Y and Zeugolis DI: Scaffold-free cell-based tissue engineering therapies: Advances, shortfalls and forecast. NPJ Regen Med. 6(18)2021.PubMed/NCBI View Article : Google Scholar | |
Li L, Lu H, Zhao Y, Luo J, Yang L, Liu W and He Q: Functionalized cell-free scaffolds for bone defect repair inspired by self-healing of bone fractures: A review and new perspectives. Mater Sci Eng C Mater Biol Appl. 98:1241–1251. 2019.PubMed/NCBI View Article : Google Scholar | |
Yang C, Ma H, Wang Z, Younis MR, Liu C, Wu C, Luo Y and Huang P: 3D printed wesselsite nanosheets functionalized scaffold facilitates NIR-II photothermal therapy and vascularized bone regeneration. Adv Sci (Weinh). 8(2100894)2021.PubMed/NCBI View Article : Google Scholar | |
Yan Y, Chen H, Zhang H, Guo C, Yang K, Chen K, Cheng R, Qian N, Sandler N, Zhang YS, et al: Vascularized 3D printed scaffolds for promoting bone regeneration. Biomaterials. 190-191:97–110. 2019.PubMed/NCBI View Article : Google Scholar | |
Komeri R, Kasoju N and Kumar PRA: In vitro cytotoxicity and cytocompatibility assays for biomaterial testing under regulatory platform. Biomedical Product and Materials Evaluation, pp329-353, 2022. | |
Liu WC, Chen S, Zheng L and Qin L: Angiogenesis assays for the evaluation of angiogenic properties of orthopaedic biomaterials-a general review. Adv Healthc Mater. 6(1600434)2017.PubMed/NCBI View Article : Google Scholar | |
Ji C, Qiu M, Ruan H, Li C, Cheng L, Wang J, Li C, Qi J, Cui W and Deng L: Transcriptome analysis revealed the symbiosis niche of 3D scaffolds to accelerate bone defect healing. Adv Sci (Weinh). 9(e2105194)2022.PubMed/NCBI View Article : Google Scholar | |
Song W, Fhu CW, Ang KH, Liu CH, Johari NA, Lio D, Abraham S, Hong W, Moss SE, Greenwood J and Wang X: The fetal mouse metatarsal bone explant as a model of angiogenesis. Nat Protoc. 10:1459–1473. 2015.PubMed/NCBI View Article : Google Scholar | |
Bellacen K and Lewis EC: Aortic ring assay. J Vis Exp. 24(1564)2009.PubMed/NCBI View Article : Google Scholar | |
Diomede F, Marconi GD, Fonticoli L, Pizzicanella J, Merciaro I, Bramanti P, Mazzon E and Trubiani O: Functional relationship between osteogenesis and angiogenesis in tissue regeneration. Int J Mol Sci. 21(3242)2020.PubMed/NCBI View Article : Google Scholar | |
Schott NG, Friend NE and Stegemann JP: Coupling osteogenesis and vasculogenesis in engineered orthopedic tissues. Tissue Eng Part B Rev. 27:199–214. 2021.PubMed/NCBI View Article : Google Scholar | |
Wang T, Zhai Y, Nuzzo M, Yang X, Yang Y and Zhang X: Layer-by-layer nanofiber-enabled engineering of biomimetic periosteum for bone repair and reconstruction. Biomaterials. 182:279–288. 2018.PubMed/NCBI View Article : Google Scholar | |
Tang Y, Luo K, Tan J, Zhou R, Chen Y, Chen C, Rong Z, Deng M, Yu X, Zhang C, et al: Laminin alpha 4 promotes bone regeneration by facilitating cell adhesion and vascularization. Acta Biomater. 126:183–198. 2021.PubMed/NCBI View Article : Google Scholar | |
Peng Y, Wu S, Li Y and Crane JL: Type H blood vessels in bone modeling and remodeling. Theranostics. 10:426–436. 2020.PubMed/NCBI View Article : Google Scholar | |
Mangir N, Dikici S, Claeyssens F and MacNeil S: Using ex ovo chick chorioallantoic membrane (CAM) assay to evaluate the biocompatibility and angiogenic response to biomaterials. Acs Biomater Sci Eng. 5:3190–3200. 2019.PubMed/NCBI View Article : Google Scholar | |
Duan R, Zhang Y, van Dijk L, Barbieri D, van den Beucken J, Yuan H and de Bruijn J: Coupling between macrophage phenotype, angiogenesis and bone formation by calcium phosphates. Mater Sci Eng C Mater Biol Appl. 122(111948)2021.PubMed/NCBI View Article : Google Scholar | |
Wang YH, Zhao CZ, Wang RY, Du QX, Liu JY and Pan J: The crosstalk between macrophages and bone marrow mesenchymal stem cells in bone healing. Stem Cell Res Ther. 13(511)2022.PubMed/NCBI View Article : Google Scholar | |
Fernandez-Yague MA, Abbah SA, McNamara L, Zeugolis DI, Pandit A and Biggs MJ: Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Adv Drug Deliver Rev. 84:1–29. 2015.PubMed/NCBI View Article : Google Scholar | |
Niu Y, Wang Z, Shi Y, Dong L and Wang C: Modulating macrophage activities to promote endogenous bone regeneration: Biological mechanisms and engineering approaches. Bioact Mater. 6:244–261. 2020.PubMed/NCBI View Article : Google Scholar | |
Li J, Liu Y, Zhang Y, Yao B, Enhejirigala Li Z, Song W, Wang Y, Duan X, Yuan X, et al: Biophysical and biochemical cues of biomaterials guide mesenchymal stem cell behaviors. Front Cell Dev Biol. 9(640388)2021.PubMed/NCBI View Article : Google Scholar | |
Bobbert FSL and Zadpoor AA: Effects of bone substitute architecture and surface properties on cell response, angiogenesis, and structure of new bone. J Mater Chem B. 5:6175–6192. 2017.PubMed/NCBI View Article : Google Scholar | |
Amini AR, Adams DJ, Laurencin CT and Nukavarapu SP: Optimally porous and biomechanically compatible scaffolds for large-area bone regeneration. Tissue Eng Part A. 18:1376–1388. 2012.PubMed/NCBI View Article : Google Scholar | |
Reinwald Y, Johal RK, Ghaemmaghami AM, Rose FRAJ, Howdle SM and Shakesheff KM: Interconnectivity and permeability of supercritical fluid-foamed scaffolds and the effect of their structural properties on cell distribution. Polymer. 55:435–444. 2014. | |
Murphy CM, Haugh MG and O'Brien FJ: The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 31:461–466. 2010.PubMed/NCBI View Article : Google Scholar | |
Hayashi K, Munar ML and Ishikawa K: Effects of macropore size in carbonate apatite honeycomb scaffolds on bone regeneration. Mater Sci Eng C Mater Biol Appl. 111(110848)2020.PubMed/NCBI View Article : Google Scholar | |
Wang J, Wu D, Zhang Z, Li J, Shen Y, Wang Z, Li Y, Zhang ZY and Sun J: Biomimetically ornamented rapid prototyping fabrication of an apatite-collagen-polycaprolactone composite construct with nano-micro-macro hierarchical structure for large bone defect treatment. ACS Appl Mater Interfaces. 7:26244–26256. 2015.PubMed/NCBI View Article : Google Scholar | |
Liu Y, Yang S, Cao L, Zhang X, Wang J and Liu C: Facilitated vascularization and enhanced bone regeneration by manipulation hierarchical pore structure of scaffolds. Mater Sci Eng C Mater Biol Appl. 110(110622)2020.PubMed/NCBI View Article : Google Scholar | |
Shen J, Wang W, Zhai X, Chen B, Qiao W, Li W, Li P, Zhao Y, Meng Y, Qian S, et al: 3D-printed nanocomposite scaffolds with tunable magnesium ionic microenvironment induce in situ bone tissue regeneration. Appl Mater Today. 16:493–507. 2019. | |
Zhang ZZ, Zhang HZ and Zhang ZY: 3D printed poly(ε-caprolactone) scaffolds function with simvastatin-loaded poly(lactic-co-glycolic acid) microspheres to repair load-bearing segmental bone defects. Exp Ther Med. 17:79–90. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhang W, Shi W, Wu S, Kuss M, Jiang X, Untrauer JB, Reid SP and Duan B: 3D printed composite scaffolds with dual small molecule delivery for mandibular bone regeneration. Biofabrication. 12(035020)2020.PubMed/NCBI View Article : Google Scholar | |
Lian M, Sun B, Han Y, Yu B, Xin W, Xu R, Ni B, Jiang W, Hao Y, Zhang X, et al: A low-temperature-printed hierarchical porous sponge-like scaffold that promotes cell-material interaction and modulates paracrine activity of MSCs for vascularized bone regeneration. Biomaterials. 274(120841)2021.PubMed/NCBI View Article : Google Scholar | |
Musumeci G: The effect of mechanical loading on articular cartilage. J Funct Morphol Kinesiol. 1:154–161. 2016. | |
Lee J, Abdeen AA, Tang X, Saif TA and Kilian KA: Matrix directed adipogenesis and neurogenesis of mesenchymal stem cells derived from adipose tissue and bone marrow. Acta Biomater. 42:46–55. 2016.PubMed/NCBI View Article : Google Scholar | |
Guo M, Pegoraro AF, Mao A, Zhou EH, Arany PR, Han Y, Burnette DT, Jensen MH, Kasza KE, Moore JR, et al: Cell volume change through water efflux impacts cell stiffness and stem cell fate. Proc Natl Acad Sci USA. 114:E8618–E8627. 2017.PubMed/NCBI View Article : Google Scholar | |
Meng Z, Qiu Y, Lin KC, Kumar A, Placone JK, Fang C, Wang KC, Lu S, Pan M, Hong AW, et al: RAP2 mediates mechanoresponses of the Hippo pathway. Nature. 560:655–660. 2018.PubMed/NCBI View Article : Google Scholar | |
Bastounis EE, Yeh YT and Theriot JA: Subendothelial stiffness alters endothelial cell traction force generation while exerting a minimal effect on the transcriptome. Sci Rep. 9(18209)2019.PubMed/NCBI View Article : Google Scholar | |
Yeh YT, Hur SS, Chang J, Wang KC, Chiu JJ, Li YS and Chien S: Matrix stiffness regulates endothelial cell proliferation through septin 9. PLoS One. 7(e46889)2012.PubMed/NCBI View Article : Google Scholar | |
Santos L, Fuhrmann G, Juenet M, Amdursky N, Horejs CM, Campagnolo P and Stevens MM: Extracellular stiffness modulates the expression of functional proteins and growth factors in endothelial cells. Adv Healthc Mater. 4:2056–2063. 2015.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Wang X, Zhang Y, Liu Y, Wang D, Yu X, Wang H, Bai Z, Jiang YC, Li X, et al: Endothelial cell migration regulated by surface topography of poly(ε-caprolactone) nanofibers. ACS Biomater Sci Eng. 7:4959–4970. 2021.PubMed/NCBI View Article : Google Scholar | |
Abagnale G, Steger M, Nguyen VH, Hersch N, Sechi A, Joussen S, Denecke B, Merkel R, Hoffmann B, Dreser A, et al: Surface topography enhances differentiation of mesenchymal stem cells towards osteogenic and adipogenic lineages. Biomaterials. 61:316–326. 2015.PubMed/NCBI View Article : Google Scholar | |
Yang C, Zhao C, Wang X, Shi M, Zhu Y, Jing L, Wu C and Chang J: Stimulation of osteogenesis and angiogenesis by micro/nano hierarchical hydroxyapatite via macrophage immunomodulation. Nanoscale. 11:17699–17708. 2019.PubMed/NCBI View Article : Google Scholar | |
Sapir Y, Cohen S, Friedman G and Polyak B: The promotion of in vitro vessel-like organization of endothelial cells in magnetically responsive alginate scaffolds. Biomaterials. 33:4100–4109. 2012.PubMed/NCBI View Article : Google Scholar | |
Yun HM, Ahn SJ, Park KR, Kim MJ, Kim JJ, Jin GZ, Kim HW and Kim EC: Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation. Biomaterials. 85:88–98. 2016.PubMed/NCBI View Article : Google Scholar | |
Hao S, Meng J, Zhang Y, Liu J, Nie X, Wu F, Yang Y, Wang C, Gu N and Xu H: Macrophage phenotypic mechanomodulation of enhancing bone regeneration by superparamagnetic scaffold upon magnetization. Biomaterials. 140:16–25. 2017.PubMed/NCBI View Article : Google Scholar | |
Zonari A, Novikoff S, Electo NRP, Breyner NM, Gomes DA, Martins A, Neves NM, Reis RL and Goes AM: Endothelial differentiation of human stem cells seeded onto electrospun polyhydroxybutyrate/polyhydroxybutyrate-co-hydroxyvalerate fiber mesh. PLoS One. 7(e35422)2012.PubMed/NCBI View Article : Google Scholar | |
Zhang C, Wang W, Hao X, Peng Y, Zheng Y, Liu J, Kang Y, Zhao F, Luo Z, Guo J, et al: A novel approach to enhance bone regeneration by controlling the polarity of GaN/AlGaN heterostructures. Adv Funct Mater. 31(2007487)2021. | |
Safina I and Embree MC: Biomaterials for recruiting and activating endogenous stem cells in situ tissue regeneration. Acta Biomater. 143:26–38. 2022.PubMed/NCBI View Article : Google Scholar | |
Vermeulen S, Tahmasebi Birgani Z and Habibovic P: Biomaterial-induced pathway modulation for bone regeneration. Biomaterials. 283(121431)2022.PubMed/NCBI View Article : Google Scholar | |
Pan Y, Chen J, Yu Y, Dai K, Wang J and Liu C: Enhancement of BMP-2-mediated angiogenesis and osteogenesis by 2-N,6-O-sulfated chitosan in bone regeneration. Biomater Sci. 6:431–439. 2018.PubMed/NCBI View Article : Google Scholar | |
Einhorn TA and Gerstenfeld LC: Fracture healing: Mechanisms and interventions. Nat Rev Rheumatol. 11:45–54. 2015.PubMed/NCBI View Article : Google Scholar | |
Wang W and Yeung KWK: Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater. 2:224–247. 2017.PubMed/NCBI View Article : Google Scholar | |
Kanakaris NK, Calori GM, Verdonk R, Burssens P, De Biase P, Capanna R, Vangosa LB, Cherubino P, Baldo F, Ristiniemi J, et al: Application of BMP-7 to tibial non-unions: A 3-year multicenter experience. Injury. 39 (Suppl 2):S83–S90. 2008.PubMed/NCBI View Article : Google Scholar | |
Jones AL, Bucholz RW, Bosse MJ, Mirza SK, Lyon TR, Webb LX, Pollak AN, Golden JD and Valentin-Opran A: BMP-2 Evaluation in Surgery for Tibial Trauma-Allgraft (BESTT-ALL) Study Group. Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects. A randomized, controlled trial. J Bone Joint Surg Am. 88:1431–1441. 2006.PubMed/NCBI View Article : Google Scholar | |
Gillman CE and Jayasuriya AC: FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater Sci Eng C Mater Biol Appl. 130(112466)2021.PubMed/NCBI View Article : Google Scholar | |
Pearson HB, Mason DE, Kegelman CD, Zhao L, Dawahare JH, Kacena MA and Boerckel JD: Effects of bone morphogenetic protein-2 on neovascularization during large bone defect regeneration. Tissue Eng Part A. 25:1623–1634. 2019.PubMed/NCBI View Article : Google Scholar | |
Akiyama I, Yoshino O, Osuga Y, Shi J, Harada M, Koga K, Hirota Y, Hirata T, Fujii T, Saito S and Kozuma S: Bone morphogenetic protein 7 increased vascular endothelial growth factor (VEGF)-a expression in human granulosa cells and VEGF receptor expression in endothelial cells. Reprod Sci. 21:477–482. 2014.PubMed/NCBI View Article : Google Scholar | |
Boraiah S, Paul O, Hawkes D, Wickham M and Lorich DG: Complications of recombinant human BMP-2 for treating complex tibial plateau fractures: A preliminary report. Clin Orthop Relat Res. 467:3257–3262. 2009.PubMed/NCBI View Article : Google Scholar | |
Chen J, Zhou X, Sun W, Zhang Z, Teng W, Wang F, Sun H, Zhang W, Wang J, Yu X, et al: Vascular derived ECM improves therapeutic index of BMP-2 and drives vascularized bone regeneration. Small. 18(e2107991)2022.PubMed/NCBI View Article : Google Scholar | |
Keramaris NC, Calori GM, Nikolaou VS, Schemitsch EH and Giannoudis PV: Fracture vascularity and bone healing: A systematic review of the role of VEGF. Injury. 39 (Suppl 2):S45–S57. 2008.PubMed/NCBI View Article : Google Scholar | |
Eckardt H, Bundgaard KG, Christensen KS, Lind M, Hansen ES and Hvid I: Effects of locally applied vascular endothelial growth factor (VEGF) and VEGF-inhibitor to the rabbit tibia during distraction osteogenesis. J Orthop Res. 21:335–340. 2003.PubMed/NCBI View Article : Google Scholar | |
Leach JK, Kaigler D, Wang Z, Krebsbach PH and Mooney DJ: Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Biomaterials. 27:3249–3255. 2006.PubMed/NCBI View Article : Google Scholar | |
Kaigler D, Wang Z, Horger K, Mooney DJ and Krebsbach PH: VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. J Bone Miner Res. 21:735–744. 2006.PubMed/NCBI View Article : Google Scholar | |
Gu J, Zhang Q, Geng M, Wang W, Yang J, Khan AUR, Du H, Sha Z, Zhou X and He C: Construction of nanofibrous scaffolds with interconnected perfusable microchannel networks for engineering of vascularized bone tissue. Bioact Mater. 6:3254–3268. 2021.PubMed/NCBI View Article : Google Scholar | |
Lee SS, Kim JH, Jeong J, Kim SHL, Koh RH, Kim I, Bae S, Lee H and Hwang NS: Sequential growth factor releasing double cryogel system for enhanced bone regeneration. Biomaterials. 257(120223)2020.PubMed/NCBI View Article : Google Scholar | |
Subbiah R, Hwang MP, Van SY, Do SH, Park H, Lee K, Kim SH, Yun K and Park K: Osteogenic/angiogenic dual growth factor delivery microcapsules for regeneration of vascularized bone tissue. Adv Healthc Mater. 4:1982–1992. 2015.PubMed/NCBI View Article : Google Scholar | |
Zhou X, Chen J, Sun H, Wang F, Wang Y, Zhang Z, Teng W, Ye Y, Huang D, Zhang W, et al: Spatiotemporal regulation of angiogenesis/osteogenesis emulating natural bone healing cascade for vascularized bone formation. J Nanobiotechnology. 19(420)2021.PubMed/NCBI View Article : Google Scholar | |
Wang C, Lai J, Li K, Zhu S, Lu B, Liu J, Tang Y and Wei Y: Cryogenic 3D printing of dual-delivery scaffolds for improved bone regeneration with enhanced vascularization. Bioact Mater. 6:137–145. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhang M, Yu W, Niibe K, Zhang W, Egusa H, Tang T and Jiang X: The effects of platelet-derived growth factor-BB on bone marrow stromal cell-mediated vascularized bone regeneration. Stem Cells Int. 2018(3272098)2018.PubMed/NCBI View Article : Google Scholar | |
Han Y, You X, Xing W, Zhang Z and Zou W: Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res. 6(16)2018.PubMed/NCBI View Article : Google Scholar | |
Xie H, Cui Z, Wang L, Xia Z, Hu Y, Xian L, Li C, Xie L, Crane J, Wan M, et al: PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat Med. 20:1270–1278. 2014.PubMed/NCBI View Article : Google Scholar | |
Xu R, Yallowitz A, Qin A, Wu Z, Shin DY, Kim JM, Debnath S, Ji G, Bostrom MP, Yang X, et al: Targeting skeletal endothelium to ameliorate bone loss. Nat Med. 24:823–833. 2018.PubMed/NCBI View Article : Google Scholar | |
Lin Z, Shen D, Zhou W, Zheng Y, Kong T, Liu X, Wu S, Chu PK, Zhao Y, Wu J, et al: Regulation of extracellular bioactive cations in bone tissue microenvironment induces favorable osteoimmune conditions to accelerate in situ bone regeneration. Bioact Mater. 6:2315–2330. 2021.PubMed/NCBI View Article : Google Scholar | |
Habibovic P and Barralet JE: Bioinorganics and biomaterials: Bone repair. Acta Biomater. 7:3013–3026. 2011.PubMed/NCBI View Article : Google Scholar | |
Zhai W, Lu H, Wu C, Chen L, Lin X, Naoki K, Chen G and Chang J: Stimulatory effects of the ionic products from Ca-Mg-Si bioceramics on both osteogenesis and angiogenesis in vitro. Acta Biomater. 9:8004–8014. 2013.PubMed/NCBI View Article : Google Scholar | |
Du Z, Leng H, Guo L, Huang Y, Zheng T, Zhao Z, Liu X, Zhang X, Cai Q and Yang X: Calcium silicate scaffolds promoting bone regeneration via the doping of Mg2+ or Mn2+ ion. Compos Part B Eng. 190(107937)2020. | |
Dashnyam K, Buitrago JO, Bold T, Mandakhbayar N, Perez RA, Knowles JC, Lee JH and Kim HW: Angiogenesis-promoted bone repair with silicate-shelled hydrogel fiber scaffolds. Biomater Sci. 7:5221–5231. 2019.PubMed/NCBI View Article : Google Scholar | |
Lin Z, Wu J, Qiao W, Zhao Y, Wong KHM, Chu PK, Bian L, Wu S, Zheng Y, Cheung KMC, et al: Precisely controlled delivery of magnesium ions thru sponge-like monodisperse PLGA/nano-MgO-alginate core-shell microsphere device to enable in-situ bone regeneration. Biomaterials. 174:1–16. 2018.PubMed/NCBI View Article : Google Scholar | |
Valerio P, Pereira MM, Goes AM and Leite MF: The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials. 25:2941–2948. 2004.PubMed/NCBI View Article : Google Scholar | |
Feng W, Ye F, Xue W, Zhou Z and Kang YJ: Copper regulation of hypoxia-inducible factor-1 activity. Mol Pharmacol. 75:174–182. 2009.PubMed/NCBI View Article : Google Scholar | |
Lin Z, Cao Y, Zou J, Zhu F, Gao Y, Zheng X, Wang H, Zhang T and Wu T: Improved osteogenesis and angiogenesis of a novel copper ions doped calcium phosphate cement. Mater Sci Eng C Mater Biol Appl. 114(111032)2020.PubMed/NCBI View Article : Google Scholar | |
Bose S, Fielding G, Tarafder S and Bandyopadhyay A: Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends Biotechnol. 31:594–605. 2013.PubMed/NCBI View Article : Google Scholar | |
Zhai Z, Qu X, Li H, Yang K, Wan P, Tan L, Ouyang Z, Liu X, Tian B, Xiao F, et al: The effect of metallic magnesium degradation products on osteoclast-induced osteolysis and attenuation of NF-κB and NFATc1 signaling. Biomaterials. 35:6299–6310. 2014.PubMed/NCBI View Article : Google Scholar | |
Wallach S: Effects of magnesium on skeletal metabolism. Magnes Trace Elem. 9:1–14. 1990.PubMed/NCBI | |
Sojka JE and Weaver CM: Magnesium supplementation and osteoporosis. Nutr Rev. 53:71–74. 1995.PubMed/NCBI View Article : Google Scholar | |
Pichler K, Kraus T, Martinelli E, Sadoghi P, Musumeci G, Uggowitzer PJ and Weinberg AM: Cellular reactions to biodegradable magnesium alloys on human growth plate chondrocytes and osteoblasts. Int Orthop. 38:881–889. 2014.PubMed/NCBI View Article : Google Scholar | |
Lin S, Yang G, Jiang F, Zhou M, Yin S, Tang Y, Tang T, Zhang Z, Zhang W and Jiang X: A magnesium-enriched 3D culture system that mimics the bone development microenvironment for vascularized bone regeneration. Adv Sci (Weinh). 6(1900209)2019.PubMed/NCBI View Article : Google Scholar | |
Zhang X, Huang P, Jiang G, Zhang M, Yu F, Dong X, Wang L, Chen Y, Zhang W, Qi Y, et al: A novel magnesium ion-incorporating dual-crosslinked hydrogel to improve bone scaffold-mediated osteogenesis and angiogenesis. Mater Sci Eng C Mater Biol Appl. 121(111868)2021.PubMed/NCBI View Article : Google Scholar | |
Hu T, Xu H, Wang C, Qin H and An Z: Magnesium enhances the chondrogenic differentiation of mesenchymal stem cells by inhibiting activated macrophage-induced inflammation. Sci Rep. 8(3406)2018.PubMed/NCBI View Article : Google Scholar | |
Wang M, Yu Y, Dai K, Ma Z, Liu Y, Wang J and Liu C: Improved osteogenesis and angiogenesis of magnesium-doped calcium phosphate cement via macrophage immunomodulation. Biomater Sci. 4:1574–1583. 2016.PubMed/NCBI View Article : Google Scholar | |
Minchenko A and Caro J: Regulation of endothelin-1 gene expression in human microvascular endothelial cells by hypoxia and cobalt: Role of hypoxia responsive element. Mol Cell Biochem. 208:53–62. 2000.PubMed/NCBI View Article : Google Scholar | |
Tanaka T, Kojima I, Ohse T, Ingelfinger JR, Adler S, Fujita T and Nangaku M: Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model. Lab Invest. 85:1292–1307. 2005.PubMed/NCBI View Article : Google Scholar | |
Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS and Kaelin WG Jr: HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science. 292:464–468. 2001.PubMed/NCBI View Article : Google Scholar | |
Ryan EJ, Ryan AJ, González-Vázquez A, Philippart A, Ciraldo FE, Hobbs C, Nicolosi V, Boccaccini AR, Kearney CJ and O'Brien FJ: Collagen scaffolds functionalised with copper-eluting bioactive glass reduce infection and enhance osteogenesis and angiogenesis both in vitro and in vivo. Biomaterials. 197:405–416. 2019.PubMed/NCBI View Article : Google Scholar | |
Hoppe A, Güldal NS and Boccaccini AR: A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 32:2757–2774. 2011.PubMed/NCBI View Article : Google Scholar | |
Saghiri MA, Asatourian A, Orangi J, Sorenson CM and Sheibani N: Functional role of inorganic trace elements in angiogenesis-Part II: Cr, Si, Zn, Cu, and S. Crit Rev Oncol Hematol. 96:143–155. 2015.PubMed/NCBI View Article : Google Scholar | |
Dashnyam K, Jin GZ, Kim JH, Perez R, Jang JH and Kim HW: Promoting angiogenesis with mesoporous microcarriers through a synergistic action of delivered silicon ion and VEGF. Biomaterials. 116:145–157. 2017.PubMed/NCBI View Article : Google Scholar | |
A A, Menon D, T B S, Koyakutty M, Mohan CC, Nair SV and Nair MB: Bioinspired composite matrix containing hydroxyapatite-silica core-shell nanorods for bone tissue engineering. ACS Appl Mater Interfaces. 9:26707–26718. 2017.PubMed/NCBI View Article : Google Scholar | |
Kim JJ, El-Fiqi A and Kim HW: Synergetic cues of bioactive nanoparticles and nanofibrous structure in bone scaffolds to stimulate osteogenesis and angiogenesis. ACS Appl Mater Interfaces. 9:2059–2073. 2017.PubMed/NCBI View Article : Google Scholar | |
Šalandová M, van Hengel IAJ, Apachitei I, Zadpoor AA, van der Eerden BCJ and Fratila-Apachitei LE: Inorganic agents for enhanced angiogenesis of orthopedic biomaterials. Adv Healthc Mater. 10(e2002254)2021.PubMed/NCBI View Article : Google Scholar | |
Qiao W, Wong KHM, Shen J, Wang W, Wu J, Li J, Lin Z, Chen Z, Matinlinna JP, Zheng Y, et al: TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration. Nat Commun. 12(2885)2021.PubMed/NCBI View Article : Google Scholar | |
Tang N, Wang L, Esko J, Giordano FJ, Huang Y, Gerber HP, Ferrara N and Johnson RS: Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell. 6:485–495. 2004.PubMed/NCBI View Article : Google Scholar | |
Han X, Sun M, Chen B, Saiding Q, Zhang J, Song H, Deng L, Wang P, Gong W and Cui W: Lotus seedpod-inspired internal vascularized 3D printed scaffold for bone tissue repair. Bioact Mater. 6:1639–1652. 2020.PubMed/NCBI View Article : Google Scholar | |
Li S, Song C, Yang S, Yu W, Zhang W, Zhang G, Xi Z and Lu E: Supercritical CO2 foamed composite scaffolds incorporating bioactive lipids promote vascularized bone regeneration via Hif-1α upregulation and enhanced type H vessel formation. Acta Biomater. 94:253–267. 2019.PubMed/NCBI View Article : Google Scholar | |
Ha Y, Ma X, Li S, Li T, Li Z, Qian Y, Shafiq M, Wang J, Zhou X and He C: Bone microenvironment-mimetic scaffolds with hierarchical microstructure for enhanced vascularization and bone regeneration. Adv Funct Mater. 32(2200011)2022. | |
Mapp PI, McWilliams DF, Turley MJ, Hargin E and Walsh DA: A role for the sensory neuropeptide calcitonin gene-related peptide in endothelial cell proliferation in vivo. Br J Pharmacol. 166:1261–1271. 2012.PubMed/NCBI View Article : Google Scholar | |
Zheng S, Li W, Xu M, Bai X, Zhou Z, Han J, Shyy JY and Wang X: Calcitonin gene-related peptide promotes angiogenesis via AMP-activated protein kinase. Am J Physiol Cell Physiol. 299:C1485–C1492. 2010.PubMed/NCBI View Article : Google Scholar | |
Wang L, Shi X, Zhao R, Halloran BP, Clark DJ, Jacobs CR and Kingery WS: Calcitonin-gene-related peptide stimulates stromal cell osteogenic differentiation and inhibits RANKL induced NF-kappaB activation, osteoclastogenesis and bone resorption. Bone. 46:1369–1379. 2010.PubMed/NCBI View Article : Google Scholar | |
He H, Chai J, Zhang S, Ding L, Yan P, Du W and Yang Z: CGRP may regulate bone metabolism through stimulating osteoblast differentiation and inhibiting osteoclast formation. Mol Med Rep. 13:3977–3984. 2016.PubMed/NCBI View Article : Google Scholar | |
Brain SD and Grant AD: Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol Rev. 84:903–934. 2004.PubMed/NCBI View Article : Google Scholar | |
Xu J, Wang J, Chen X, Li Y, Mi J and Qin L: The effects of calcitonin gene-related peptide on bone homeostasis and regeneration. Curr Osteoporos Rep. 18:621–632. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Xu J, Ruan YC, Yu MK, O'Laughlin M, Wise H, Chen D, Tian L, Shi D, Wang J, et al: Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med. 22:1160–1169. 2016.PubMed/NCBI View Article : Google Scholar | |
Mi J, Xu JK, Yao Z, Yao H, Li Y, He X, Dai BY, Zou L, Tong WX, Zhang XT, et al: Implantable electrical stimulation at dorsal root ganglions accelerates osteoporotic fracture healing via calcitonin gene-related peptide. Adv Sci (Weinh). 9(e2103005)2022.PubMed/NCBI View Article : Google Scholar | |
Chen J, Liu W, Zhao J, Sun C, Chen J, Hu K, Zhang L and Ding Y: Gelatin microspheres containing calcitonin gene-related peptide or substance P repair bone defects in osteoporotic rabbits. Biotechnol Lett. 39:465–472. 2017.PubMed/NCBI View Article : Google Scholar | |
Li Y, Yang L, Zheng Z, Li Z, Deng T, Ren W, Wu C and Guo L: Bio-Oss® modified by calcitonin gene-related peptide promotes osteogenesis in vitro. Exp Ther Med. 14:4001–4008. 2017.PubMed/NCBI View Article : Google Scholar | |
Moreira DC, Sá CN, Andrade MG, Bório dos Santos Calmon de Bittencourt TC, de Almeida Reis SR, Pithon MM and Sadigursky M: Angiogenesis and osteogenesis at incorporation process of onlay bone graft. J Oral Maxillofac Surg. 71:2048–2057. 2013.PubMed/NCBI View Article : Google Scholar | |
Jeon YR, Kim MJ, Kim YO, Roh TS, Lee WJ, Kang EH and Yun IS: Scaffold free bone regeneration using platelet-rich fibrin in calvarial defect model. J Craniofac Surg. 29:251–254. 2018.PubMed/NCBI View Article : Google Scholar | |
Kim YH, Furuya H and Tabata Y: Enhancement of bone regeneration by dual release of a macrophage recruitment agent and platelet-rich plasma from gelatin hydrogels. Biomaterials. 35:214–224. 2014.PubMed/NCBI View Article : Google Scholar | |
Qiu P, Li M, Chen K, Fang B, Chen P, Tang Z, Lin X and Fan S: Periosteal matrix-derived hydrogel promotes bone repair through an early immune regulation coupled with enhanced angio- and osteogenesis. Biomaterials. 227(119552)2020.PubMed/NCBI View Article : Google Scholar | |
Narayanan R, Huang CC and Ravindran S: Hijacking the cellular mail: exosome mediated differentiation of mesenchymal stem cells. Stem Cells Int. 2016(3808674)2016.PubMed/NCBI View Article : Google Scholar | |
Qin Y, Sun R, Wu C, Wang L and Zhang C: Exosome: A novel approach to stimulate bone regeneration through regulation of osteogenesis and angiogenesis. Int J Mol Sci. 17(712)2016.PubMed/NCBI View Article : Google Scholar | |
Zhang L, Jiao G, Ren S, Zhang X, Li C, Wu W, Wang H, Liu H, Zhou H and Chen Y: Exosomes from bone marrow mesenchymal stem cells enhance fracture healing through the promotion of osteogenesis and angiogenesis in a rat model of nonunion. Stem Cell Res Ther. 11(38)2020.PubMed/NCBI View Article : Google Scholar | |
Fan L, Guan P, Xiao C, Wen H, Wang Q, Liu C, Luo Y, Ma L, Tan G, Yu P, et al: Exosome-functionalized polyetheretherketone-based implant with immunomodulatory property for enhancing osseointegration. Bioact Mater. 6:2754–2766. 2021.PubMed/NCBI View Article : Google Scholar | |
Lin S, Cui L, Chen G, Huang J, Yang Y, Zou K, Lai Y, Wang X, Zou L, Wu T, et al: PLGA/β-TCP composite scaffold incorporating salvianolic acid B promotes bone fusion by angiogenesis and osteogenesis in a rat spinal fusion model. Biomaterials. 196:109–121. 2019.PubMed/NCBI View Article : Google Scholar | |
Wu Y, Xia L, Zhou Y, Ma W, Zhang N, Chang J, Lin K, Xu Y and Jiang X: Evaluation of osteogenesis and angiogenesis of icariin loaded on micro/nano hybrid structured hydroxyapatite granules as a local drug delivery system for femoral defect repair. J Mater Chem B. 3:4871–4883. 2015.PubMed/NCBI View Article : Google Scholar | |
Pang WY, Wang XL, Mok SK, Lai WP, Chow HK, Leung PC, Yao XS and Wong MS: Naringin improves bone properties in ovariectomized mice and exerts oestrogen-like activities in rat osteoblast-like (UMR-106) cells. Br J Pharmacol. 159:1693–1703. 2010.PubMed/NCBI View Article : Google Scholar | |
Shangguan WJ, Zhang YH, Li ZC, Tang LM, Shao J and Li H: Naringin inhibits vascular endothelial cell apoptosis via endoplasmic reticulum stress- and mitochondrial-mediated pathways and promotes intraosseous angiogenesis in ovariectomized rats. Int J Mol Med. 40:1741–1749. 2017.PubMed/NCBI View Article : Google Scholar | |
Wang Z, Jiang R, Wang L, Chen X, Xiang Y, Chen L, Xiao M, Ling L and Wang Y: Ginsenoside Rg1 improves differentiation by inhibiting senescence of human bone marrow mesenchymal stem cell via GSK-3β and β-catenin. Stem Cells Int. 2020(2365814)2020.PubMed/NCBI View Article : Google Scholar | |
Salarian M, Samimi R, Xu WZ, Wang Z, Sham TK, Lui EMK and Charpentier PA: Microfluidic synthesis and angiogenic activity of ginsenoside Rg1-loaded PPF microspheres. Acs Biomater Sci Eng. 2:1872–1882. 2016.PubMed/NCBI View Article : Google Scholar | |
García JR and García AJ: Biomaterial-mediated strategies targeting vascularization for bone repair. Drug Deliv Transl Re. 6:77–95. 2016.PubMed/NCBI View Article : Google Scholar | |
Kessler PD, Podsakoff GM, Chen X, McQuiston SA, Colosi PC, Matelis LA, Kurtzman GJ and Byrne BJ: Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci USA. 93:14082–14087. 1996.PubMed/NCBI View Article : Google Scholar | |
Atluri K, Seabold D, Hong L, Elangovan S and Salem AK: Nanoplex-mediated codelivery of fibroblast growth factor and bone morphogenetic protein genes promotes osteogenesis in human adipocyte-derived mesenchymal stem cells. Mol Pharm. 12:3032–3042. 2015.PubMed/NCBI View Article : Google Scholar | |
Sun K, Lin H, Tang Y, Xiang S, Xue J, Yin W, Tan J, Peng H, Alexander PG, Tuan RS and Wang B: Injectable BMP-2 gene-activated scaffold for the repair of cranial bone defect in mice. Stem Cell Transl Med. 9:1631–1642. 2020.PubMed/NCBI View Article : Google Scholar | |
Raftery RM, Mencía-Castaño I, Sperger S, Chen G, Cavanagh B, Feichtinger GA, Redl H, Hacobian A and O'Brien FJ: Delivery of the improved BMP-2-advanced plasmid DNA within a gene-activated scaffold accelerates mesenchymal stem cell osteogenesis and critical size defect repair. J Control Release. 283:20–31. 2018.PubMed/NCBI View Article : Google Scholar | |
Geiger F, Bertram H, Berger I, Lorenz H, Wall O, Eckhardt C, Simank HG and Richter W: Vascular endothelial growth factor gene-activated matrix (VEGF165-GAM) enhances osteogenesis and angiogenesis in large segmental bone defects. J Bone Miner Res. 20:2028–2035. 2005.PubMed/NCBI View Article : Google Scholar | |
Curtin CM, Tierney EG, McSorley K, Cryan SA, Duffy GP and O'Brien FJ: Combinatorial gene therapy accelerates bone regeneration: Non-viral dual delivery of VEGF and BMP2 in a collagen-nanohydroxyapatite Scaffold. Adv Healthc Mater. 4:223–227. 2015.PubMed/NCBI View Article : Google Scholar | |
Zu H and Gao D: Non-viral vectors in gene therapy: Recent development, challenges, and prospects. AAPS J. 23(78)2021.PubMed/NCBI View Article : Google Scholar | |
Kalidasan V, Ng WH, Ishola OA, Ravichantar N, Tan JJ and Das KT: A guide in lentiviral vector production for hard-to-transfect cells, using cardiac-derived c-kit expressing cells as a model system. Sci Rep. 11(19265)2021.PubMed/NCBI View Article : Google Scholar | |
Bonadio J, Smiley E, Patil P and Goldstein S: Localized, direct plasmid gene delivery in vivo: Prolonged therapy results in reproducible tissue regeneration. Nat Med. 5:753–759. 1999.PubMed/NCBI View Article : Google Scholar | |
Bonadio J: Review: Local gene delivery for tissue regeneration. E-Biomed J Regen Med. 1:25–29. 2000. | |
Bozo IY, Drobyshev AY, Redko NA, Komlev VS, Isaev AA and Deev RV: Bringing a gene-activated bone substitute into clinical practice: From bench to bedside. Front Bioeng Biotechnol. 9(599300)2021.PubMed/NCBI View Article : Google Scholar | |
Qin Y, Wang L, Gao Z, Chen G and Zhang C: Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Sci Rep. 6(21961)2016.PubMed/NCBI View Article : Google Scholar | |
Salomon C, Ryan J, Sobrevia L, Kobayashi M, Ashman K, Mitchell M and Rice GE: Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS One. 8(e68451)2013.PubMed/NCBI View Article : Google Scholar | |
Zha Y, Li Y, Lin T, Chen J, Zhang S and Wang J: Progenitor cell-derived exosomes endowed with VEGF plasmids enhance osteogenic induction and vascular remodeling in large segmental bone defects. Theranostics. 11:397–409. 2021.PubMed/NCBI View Article : Google Scholar | |
Zha Y, Lin T, Li Y, Zhang X, Wang Z, Li Z, Ye Y, Wang B, Zhang S and Wang J: Exosome-mimetics as an engineered gene-activated matrix induces in-situ vascularized osteogenesis. Biomaterials. 247(119985)2020.PubMed/NCBI View Article : Google Scholar |