1
|
Worldometers.info: COVID-19 Coronavirus Pandemic
[Internet], 2022 [cited 2022 Mar 27]. Available from: https://www.worldometers.info/coronavirus/.
|
2
|
Mehta OP, Bhandari P, Raut A, Kacimi SEO
and Huy NT: Coronavirus disease (COVID-19): Comprehensive review of
clinical presentation. Front Public Health.
8(582932)2021.PubMed/NCBI View Article : Google Scholar
|
3
|
Leal Â, Carvalho M, Rocha I and
Mota-Filipe H: Inflammation and Autonomic. Function. In: Svorc P
(ed). Autonomic Nervous System. London, UK: IntechOpen, 2018.
|
4
|
Pavlov VA and Tracey KJ: Neural regulation
of immunity: Molecular mechanisms and clinical translation. Nat
Neurosci. 20:156–166. 2017.PubMed/NCBI View
Article : Google Scholar
|
5
|
Bonaz B, Sinniger V and Pellissier S: The
vagus nerve in the neuro-immune axis: Implications in the pathology
of the gastrointestinal tract. Front Immunol.
8(1452)2017.PubMed/NCBI View Article : Google Scholar
|
6
|
Czura CJ and Tracey KJ: Autonomic neural
regulation of immunity. J Intern Med. 257:156–166. 2005.PubMed/NCBI View Article : Google Scholar
|
7
|
Harris GW: The hypothalamus and endocrine
glands. Br Med Bull. 6:345–350. 1950.PubMed/NCBI View Article : Google Scholar
|
8
|
Tracey KJ: The inflammatory reflex.
Nature. 420:853–859. 2002.PubMed/NCBI View Article : Google Scholar
|
9
|
Bajic JE, Johnston IN, Howarth GS and
Hutchinson MR: From the bottom-up: Chemotherapy and gut-brain axis
dysregulation. Front Behav Neurosci. 12(104)2018.PubMed/NCBI View Article : Google Scholar
|
10
|
Bonaz B, Sinniger V and Pellissier S:
Vagus nerve stimulation: A new promising therapeutic tool in
inflammatory bowel disease. J Intern Med. 282:46–63.
2017.PubMed/NCBI View Article : Google Scholar
|
11
|
Qin Z, Xiang K, Su DF, Sun Y and Liu X:
Activation of the cholinergic anti-inflammatory pathway as a novel
therapeutic strategy for COVID-19. Front Immunol.
11(595342)2021.PubMed/NCBI View Article : Google Scholar
|
12
|
Pavlov VA, Wang H, Czura CJ, Friedman SG
and Tracey KJ: The cholinergic anti-inflammatory pathway: A missing
link in neuroimmunomodulation. Mol Med. 9:125–134. 2003.PubMed/NCBI
|
13
|
Pavlov VA, Chavan SS and Tracey KJ:
Molecular and functional neuroscience in immunity. Annu Rev
Immunol. 36:783–812. 2018.PubMed/NCBI View Article : Google Scholar
|
14
|
Rosas-Ballina M, Olofsson PS, Ochani M,
Valdés-Ferrer SI, Levine YA, Reardon C, Tusche MW, Pavlov VA,
Andersson U, Chavan S, et al: Acetylcholine-synthesizing T cells
relay neural signals in a vagus nerve circuit. Science. 334:98–101.
2011.PubMed/NCBI View Article : Google Scholar
|
15
|
McAllen RM, McKinley MJ and Martelli D:
Reflex regulation of systemic inflammation by the autonomic nervous
system. Auton Neurosci. 237(102926)2022.PubMed/NCBI View Article : Google Scholar
|
16
|
No authors listed. Heart rate variability:
Standards of measurement, physiological interpretation and clinical
use. Task force of the European society of cardiology and the North
American society of pacing and electrophysiology. Circulation.
93:1043–1065. 1996.PubMed/NCBI
|
17
|
Kuo TB, Lai CJ, Huang YT and Yang CC:
Regression analysis between heart rate variability and
baroreflex-related vagus nerve activity in rats. J Cardiovasc
Electrophysiol. 16:864–869. 2005.PubMed/NCBI View Article : Google Scholar
|
18
|
Hasty F, García G, Dávila CH, Wittels SH,
Hendricks S and Chong S: Heart rate variability as a possible
predictive marker for acute inflammatory response in COVID-19
patients. Mil Med. 186:e34–e38. 2021.PubMed/NCBI View Article : Google Scholar
|
19
|
Aragón-Benedí C, Oliver-Forniés P,
Galluccio F, Yamak Altinpulluk E, Ergonenc T, El Sayed Allam A,
Salazar C and Fajardo-Pérez M: Is the heart rate variability
monitoring using the analgesia nociception index a predictor of
illness severity and mortality in critically ill patients with
COVID-19? A pilot study. PLoS One. 16(e0249128)2021.PubMed/NCBI View Article : Google Scholar
|
20
|
Mol MBA, Strous MTA, van Osch FHM,
Vogelaar FJ, Barten DG, Farchi M, Foudraine NA and Gidron Y:
Heart-rate-variability (HRV), predicts outcomes in COVID-19. PLoS
One. 16(e0258841)2021.PubMed/NCBI View Article : Google Scholar
|
21
|
Abate BB, Kassie AM, Kassaw MW, Aragie TG
and Masresha SA: Sex difference in coronavirus disease (COVID-19):
A systematic review and meta-analysis. BMJ Open.
10(e040129)2020.PubMed/NCBI View Article : Google Scholar
|
22
|
Jin JM, Bai P, He W, Wu F, Liu XF, Han DM,
Liu S and Yang JK: Gender differences in patients with COVID-19:
Focus on severity and mortality. Front Public Health.
8(152)2020.PubMed/NCBI View Article : Google Scholar
|
23
|
Akkurt ES, Sahin Ozdemirel T, Ertan O,
Unal E and Akıncı*Özyürek B: Is there a gender difference in terms
of inflammatory biomarkers in patients with severe Covid-19
pneumonia? Cureus. 14(e32541)2022.PubMed/NCBI View Article : Google Scholar
|
24
|
Porta A, Guzzetti S, Montano N, Furlan R,
Pagani M, Malliani A and Cerutti S: Entropy, entropy rate, and
pattern classification as tools to typify complexity in short heart
period variability series. IEEE Trans Biomed Eng. 48:1282–1291.
2001.PubMed/NCBI View Article : Google Scholar
|
25
|
Tarvainen MP, Ranta-Aho PO and Karjalainen
PA: An advanced detrending method with application to HRV analysis.
IEEE Trans Biomed Eng. 49:172–175. 2002.PubMed/NCBI View Article : Google Scholar
|
26
|
Ferreira FC, Vaz Padilha MCS, Tobadini E,
Carandina A, Montano N, Soares PPDS and Rodrigues GD: The interplay
between heated environment and active standing test on
cardiovascular autonomic control in healthy individuals. Physiol
Meas. 42:2021.PubMed/NCBI View Article : Google Scholar
|
27
|
Choi J, Cha W and Park MG: Declining
trends of heart rate variability according to aging in healthy
Asian adults. Front Aging Neurosci. 12(610626)2020.PubMed/NCBI View Article : Google Scholar
|
28
|
Anka AU, Tahir MI, Abubakar SD, Alsabbagh
M, Zian Z, Hamedifar H, Sabzevari A and Azizi G: Coronavirus
disease 2019 (COVID-19): An overview of the immunopathology,
serological diagnosis and management. Scand J Immunol.
93(e12998)2021.PubMed/NCBI View Article : Google Scholar
|
29
|
Paces J, Strizova Z, Smrz D and Cerny J:
COVID-19 and the immune system. Physiol Res. 69:379–388.
2020.PubMed/NCBI View Article : Google Scholar
|
30
|
Sabaka P, Koščálová A, Straka I, Hodosy J,
Lipták R, Kmotorková B, Kachlíková M and Kušnírová A: Role of
interleukin 6 as a predictive factor for a severe course of
Covid-19: Retrospective data analysis of patients from a long-term
care facility during Covid-19 outbreak. BMC Infect Dis.
21(308)2021.PubMed/NCBI View Article : Google Scholar
|
31
|
Coomes EA and Haghbayan H: Interleukin-6
in Covid-19: A systematic review and meta-analysis. Rev Med Virol.
30:1–9. 2020.PubMed/NCBI View
Article : Google Scholar
|
32
|
Liu F, Li L, Xu M, Wu J, Luo D, Zhu Y, Li
B, Song X and Zhou X: Prognostic value of interleukin-6, C-reactive
protein, and procalcitonin in patients with COVID-19. J Clin Virol.
127(104370)2020.PubMed/NCBI View Article : Google Scholar
|
33
|
Townsend L, Dyer AH, Naughton A,
Imangaliyev S, Dunne J, Kiersey R, Holden D, Mooney A, Leavy D,
Ridge K, et al: Severe COVID-19 is characterised by inflammation
and immature myeloid cells early in disease progression. Heliyon.
8(e09230)2022.PubMed/NCBI View Article : Google Scholar
|
34
|
Elahi S: Hematopoietic responses to
SARS-CoV-2 infection. Cell Mol Life Sci. 79(187)2022.PubMed/NCBI View Article : Google Scholar
|
35
|
Pillai J, Mistry PPK, Le Roux DA, Motaung
KSC, Mokgatle M, Gaylard P, Cengiz N and Basu D: Laboratory
parameters associated with prolonged hospital length of stay in
COVID-19 patients in Johannesburg, South Africa. S Afr Med J.
112:201–208. 2022.PubMed/NCBI
|
36
|
Ma Y, Zhu D, Shi N, Zhang L, Chen G, Ge Y,
Zhang Z, Chen R, Liu S, Fan Y, et al: Diagnostic value of
neutrophil-lymphocyte ratio and platelet-lymphocyte ratio in
patients with severe COVID-19-7 PLADs, China, January 21-February
10, 2020. China CDC Wkly. 4:195–198. 2022.PubMed/NCBI View Article : Google Scholar
|
37
|
Citu C, Gorun F, Motoc A, Sas I, Gorun OM,
Burlea B, Tuta-Sas I, Tomescu L, Neamtu R, Malita D and Citu IM:
The predictive role of NLR, d-NLR, MLR, and SIRI in COVID-19
mortality. Diagnostics (Basel). 12(122)2022.PubMed/NCBI View Article : Google Scholar
|
38
|
Gujar RK, Meena A, Chouhan SS and Likhar
KS: Hematological profiles of COVID-19 patients at the Ratlam
district, Madhya Pradesh State, India. Bioinformation. 17:686–690.
2021.PubMed/NCBI View Article : Google Scholar
|
39
|
Rosas-Ballina M and Tracey KJ: Cholinergic
control of inflammation. J Intern Med. 265:663–679. 2009.PubMed/NCBI View Article : Google Scholar
|
40
|
Hunakova L, Zvarik M, Majerova K, Mestanik
M, Bella V and Tonhajzerova I: Cardiovagal regulation and
transcutaneous pO2 in breast cancer patients-a pilot study.
Neoplasma. 66:281–287. 2019.PubMed/NCBI View Article : Google Scholar
|
41
|
Voss A, Schulz S, Schroeder R, Baumert M
and Caminal P: Methods derived from nonlinear dynamics for
analysing heart rate variability. Philos Trans A Math Phys Eng Sci.
367:277–296. 2009.PubMed/NCBI View Article : Google Scholar
|
42
|
de*Godoy MF: Nonlinear analysis of heart
rate variability: A comprehensive review. J Cardiol Ther.
3:528–533. 2016.
|
43
|
Khodadadi F, Punait S, Kolacz J, Zand F,
Foroutan A and Lewis GF: Use of heart rate variability to predict
hospital length of stay for COVID-19 patients: A prospective
observational study. Int J Crit Illn Inj Sci. 11:134–141.
2021.PubMed/NCBI View Article : Google Scholar
|
44
|
Verbanck P, Clarinval AM, Burton F,
Corazza F, Nagant C and Cheron G: Transcutaneous Auricular Vagus
Nerve Stimulation (tVNS) can Reverse the Manifestations of the
Long-COVID Syndrome: A Pilot Study. Adv Neurol Neurosci Res.
2(100011)2021.
|
45
|
Balint EM, Grüner B, Haase S, Kaw-Geppert
M, Thayer JF, Gündel H and Jarczok MN: A randomized clinical trial
to stimulate the cholinergic anti-inflammatory pathway in patients
with moderate COVID-19-pneumonia using a slow-paced breathing
technique. Front Immunol. 13(928979)2022.PubMed/NCBI View Article : Google Scholar
|