Effect of animal venom toxins on the main links of the homeostasis of mammals (Review)
- Authors:
- Ruzhena Matkivska
- Inha Samborska
- Oleksandr Maievskyi
-
Affiliations: Department of Descriptive and Clinical Anatomy, Bogomolets National Medical University, Kyiv 03680, Ukraine, Department of Biological and General Chemistry, National Pirogov Memorial Medical University, Vinnytsya 21018, Ukraine, Department of Clinical Medicine, Educational and Scientific Center ‘Institute of Biology and Medicine’ of Taras Shevchenko National University of Kyiv, Kyiv 03127, Ukraine - Published online on: December 7, 2023 https://doi.org/10.3892/br.2023.1704
- Article Number: 16
-
Copyright: © Matkivska et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Jakob MO, Murugan S and Klose CSN: Neuro-immune circuits regulate immune responses in tissues and organ homeostasis. Front Immunol. 11(308)2020.PubMed/NCBI View Article : Google Scholar | |
Meizlish ML, Franklin RA, Zhou X and Medzhitov R: Tissue homeostasis and inflammation. Annu Rev Immunol. 39:557–581. 2021.PubMed/NCBI View Article : Google Scholar | |
Mowel WK, Kotzin JJ, McCright SJ, Neal VD and Henao-Mejia J: Control of immune cell homeostasis and function by lncRNAs. Trends Immunol. 39:55–69. 2018.PubMed/NCBI View Article : Google Scholar | |
Vincze J and Vincze-Tiszay G: The Human organism is a biophysical-biopsychological system. Technium. 2:29–35. 2018. | |
Larréché S, Chippaux JP, Chevillard L, Mathé S, Résière D, Siguret V and Mégarbane B: Bleeding and thrombosis: Insights into pathophysiology of Bothrops venom-related hemostasis disorders. Int J Mol Sci. 22(9643)2021.PubMed/NCBI View Article : Google Scholar | |
Walker AA, Robinson SD, Hamilton BF, Undheim EAB and King GF: Deadly proteomes: A practical guide to proteotranscriptomics of animal venoms. Proteomics. 20(e1900324)2020.PubMed/NCBI View Article : Google Scholar | |
Warrell DA: Venomous bites, stings, and poisoning: An update. Infect Dis Clin North Am. 33:17–38. 2019.PubMed/NCBI View Article : Google Scholar | |
Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, Luís A, McCarthy N, Montibeller L, More S, et al: Endoplasmic reticulum stress signalling-from basic mechanisms to clinical applications. FEBS J. 286:241–278. 2019.PubMed/NCBI View Article : Google Scholar | |
Smith M and Wilkinson S: ER homeostasis and autophagy. Essays Biochem. 61:625–635. 2017.PubMed/NCBI View Article : Google Scholar | |
Sanhajariya S, Duffull SB and Isbister GK: Pharmacokinetics of snake venom. Toxins (Basel). 10(73)2018.PubMed/NCBI View Article : Google Scholar | |
Casella-Martins A, Ayres LR, Burin SM, Morais FR, Pereira JC, Faccioli LH, Sampaio SV, Arantes EC, Castro FA and Pereira-Crott LS: Immunomodulatory activity of Tityus serrulatus scorpion venom on human T lymphocytes. J Venom Anim Toxins Incl Trop Dis. 21(46)2015.PubMed/NCBI View Article : Google Scholar | |
Pucca MB, Fry BG, Sartim MA, Peigneur S and Monteiro WM: Editorial: Venoms and toxins: At the crossroads of basic, applied and clinical immunology. Front Immunol. 12(716508)2021.PubMed/NCBI View Article : Google Scholar | |
Avalo Z, Barrera MC, Agudelo-Delgado M, Tobón GJ and Cañas CA: Biological effects of animal venoms on the human immune system. Toxins (Basel). 14(344)2022.PubMed/NCBI View Article : Google Scholar | |
Minutti-Zanella C, Gil-Leyva EJ and Vergara I: Immunomodulatory properties of molecules from animal venoms. Toxicon. 191:54–68. 2021.PubMed/NCBI View Article : Google Scholar | |
Santhosh KN, Pavana D and Thippeswamy NB: Impact of scorpion venom as an acute stressor on the neuroendocrine-immunological network. Toxicon. 122:113–118. 2016.PubMed/NCBI View Article : Google Scholar | |
Strbo N, Yin N and Stojadinovic O: Innate and adaptive immune responses in wound epithelialization. Adv Wound Care (New Rochelle). 3:492–501. 2014.PubMed/NCBI View Article : Google Scholar | |
Lien WC, Zhou XR, Liang YJ, Ching CT, Wang CY, Lu FI, Chang HC, Lin FH and Wang HD: Therapeutic potential of nanoceria pretreatment in preventing the development of urological chronic pelvic pain syndrome: Immunomodulation via reactive oxygen species scavenging and SerpinB2 downregulation. Bioeng Transl Med. 8(e10346)2022.PubMed/NCBI View Article : Google Scholar | |
Zhou Z, Li K, Chu Y, Li C, Zhang T, Liu P, Sun T and Jiang C: ROS-removing nano-medicine for navigating inflammatory microenvironment to enhance Anti-Epileptic therapy. Acta Pharm Sin B. 13:1246–1261. 2023.PubMed/NCBI View Article : Google Scholar | |
Mansfield K and Naik S: Unraveling Immune-Epithelial interactions in skin homeostasis and injury. Yale J Biol Med. 93:133–143. 2020.PubMed/NCBI | |
Piipponen M, Li D and Landén NX: The immune functions of keratinocytes in skin wound healing. Int J Mol Sci. 21(8790)2020.PubMed/NCBI View Article : Google Scholar | |
Pondeljak N and Lugović-Mihić L: Stress-Induced interaction of skin immune cells, hormones, and neurotransmitters. Clin Ther. 42:757–770. 2020.PubMed/NCBI View Article : Google Scholar | |
Eyerich S, Eyerich K, Traidl-Hoffmann C and Biedermann T: Cutaneous barriers and skin immunity: Differentiating a connected network. Trends Immunol. 39:315–327. 2018.PubMed/NCBI View Article : Google Scholar | |
Costal-Oliveira F, Stransky S, Guerra-Duarte C, Naves de Souza DL, Vivas-Ruiz DE, Yarlequé A, Sanchez EF, Chávez-Olórtegui C and Braga VMM: L-amino acid oxidase from Bothrops atrox snake venom triggers autophagy, apoptosis and necrosis in normal human keratinocytes. Sci Rep. 9(781)2019.PubMed/NCBI View Article : Google Scholar | |
Al-Asmari AK, Riyasdeen A and Islam M: Scorpion venom causes apoptosis by increasing reactive oxygen species and cell cycle arrest in MDA-MB-231 and HCT-8 cancer cell lines. J Evid Based Integr Med. 23(2156587217751796)2018.PubMed/NCBI View Article : Google Scholar | |
Gutiérrez JM, Escalante T, Rucavado A, Herrera C and Fox JW: A comprehensive view of the structural and functional alterations of extracellular matrix by snake venom metalloproteinases (SVMPs): Novel perspectives on the pathophysiology of envenoming. Toxins (Basel). 8(304)2016.PubMed/NCBI View Article : Google Scholar | |
Ben Yekhlef R, Felicori L, Santos LH, F B Oliveira C, Fadhloun R, Torabi E, Shahbazzadeh D, Pooshang Bagheri K, Salgado Ferreira R and Borchani L: Antigenic and substrate preference differences between scorpion and spider dermonecrotic toxins, a comparative investigation. Toxins (Basel). 12(631)2020.PubMed/NCBI View Article : Google Scholar | |
Dunbar JP, Sulpice R and Dugon MM: The kiss of (cell) death: Can venom-induced immune response contribute to dermal necrosis following arthropod envenomations? Clin Toxicol (Phila). 57:677–685. 2019.PubMed/NCBI View Article : Google Scholar | |
Morales-Moreno HJ, Carranza-Rodriguez C and Borrego L: Cutaneous loxoscelism due to Loxosceles rufescens. J Eur Acad Dermatol Venereol. 30:1431–1432. 2016.PubMed/NCBI View Article : Google Scholar | |
Nentwig W, Pantini P and Vetter RS: Distribution and medical aspects of Loxosceles rufescens, one of the most invasive spiders of the world (Araneae: Sicariidae). Toxicon. 132:19–28. 2017.PubMed/NCBI View Article : Google Scholar | |
Pober JS, Merola J, Liu R and Manes TD: Antigen presentation by vascular cells. Front Immunol. 8(1907)2017.PubMed/NCBI View Article : Google Scholar | |
Dalal PJ, Muller WA and Sullivan DP: Endothelial cell calcium signaling during barrier function and inflammation. Am J Pathol. 190:535–542. 2020.PubMed/NCBI View Article : Google Scholar | |
De Andrade CM, Rey FM, Cintra ACO, Sampaio SV and Torqueti MR: Effects of crotoxin, a neurotoxin from Crotalus durissus terrificus snake venom, on human endothelial cells. Int J Biol Macromol. 134:613–621. 2019.PubMed/NCBI View Article : Google Scholar | |
Franken L, Schiwon M and Kurts C: Macrophages: Sentinels and regulators of the immune system. Cell Microbiol. 18:475–487. 2016.PubMed/NCBI View Article : Google Scholar | |
Freitas AP, Favoretto BC, Clissa PB, Sampaio SC and Faquim-Mauro EL: Crotoxin isolated from Crotalus durissus terrificus venom modulates the functional activity of dendritic cells via formyl peptide receptors. J Immunol Res. 2018(7873257)2018.PubMed/NCBI View Article : Google Scholar | |
Leiguez E, Giannotti KC, Moreira V, Matsubara MH, Gutiérrez JM, Lomonte B, Rodríguez JP, Balsinde J and Teixeira C: Critical role of TLR2 and MyD88 for functional response of macrophages to a group IIA-secreted phospholipase A2 from snake venom. PLoS One. 9(e93741)2014.PubMed/NCBI View Article : Google Scholar | |
Sieber M, Bosch B, Hanke W and Fernandes de Lima VM: Membrane-modifying properties of crotamine, a small peptide-toxin from Crotalus durissus terifficus venom. Biochim Biophys Acta. 1840:945–950. 2014.PubMed/NCBI View Article : Google Scholar | |
Echeverría S, Leiguez E, Guijas C, do Nascimento NG, Acosta O, Teixeira C, Leiva LC and Rodríguez JP: Evaluation of pro-inflammatory events induced by Bothrops alternatus snake venom. Chem Biol Interact. 281:24–31. 2018.PubMed/NCBI View Article : Google Scholar | |
Setubal SS, Pontes AS, Furtado JL, Kayano AM, Stábeli RG and Zuliani JP: Effect of Bothrops alternatus snake venom on macrophage phagocytosis and superoxide production: Participation of protein kinase C. J Venom Anim Toxins Incl Trop Dis. 17:430–441. 2011. | |
Darkaoui B, Lafnoune A, Chgoury F, Daoudi K, Chakir S, Mounaji K, Karkouri M, Cadi R and Naoual O: Induced pathophysiological alterations by the venoms of the most dangerous Moroccan scorpions Androctonus mauretanicus and Buthus occitanus: A comparative pathophysiological and toxic-symptoms study. Hum Exp Toxicol. 41(9603271211072872)2022.PubMed/NCBI View Article : Google Scholar | |
Saadi S, Assarehzadegan MA, Pipelzadeh MH and Hadaddezfuli R: Induction of IL-12 from human monocytes after stimulation with Androctonus crassicauda scorpion venom. Toxicon. 106:117–121. 2015.PubMed/NCBI View Article : Google Scholar | |
Saidi H, Bérubé J, Laraba-Djebari F and Hammoudi-Triki D: Involvement of alveolar macrophages and neutrophils in acute lung injury after scorpion envenomation: New pharmacological targets. Inflammation. 41:773–783. 2018.PubMed/NCBI View Article : Google Scholar | |
Ait-Lounis A and Laraba-Djebari F: TNF-alpha modulates adipose macrophage polarization to M1 phenotype in response to scorpion venom. Inflamm Res. 64:929–936. 2015.PubMed/NCBI View Article : Google Scholar | |
Corzo G and Espino-Solis GP: Selected scorpion toxin exposures induce cytokine release in human peripheral blood mononuclear cells. Toxicon. 127:56–62. 2017.PubMed/NCBI View Article : Google Scholar | |
Pucca MB, Peigneur S, Cologna CT, Cerni FA, Zoccal KF, Bordon Kde C, Faccioli LH, Tytgat J and Arantes EC: Electrophysiological characterization of the first Tityus serrulatus alpha-like toxin, Ts5: Evidence of a pro-inflammatory toxin on macrophages. Biochimie. 115:8–16. 2015.PubMed/NCBI View Article : Google Scholar | |
Pires WL, Kayano AM, de Castro OB, Paloschi MV, Lopes JA, Boeno CN, Pereira SDS, Antunes MM, Rodrigues MMS, Stábeli RG, et al: Lectin isolated from Bothrops jararacussu venom induces IL-10 release by TCD4+cells and TNF-α release by monocytes and natural killer cells. J Leukoc Biol. 106:595–605. 2019.PubMed/NCBI View Article : Google Scholar | |
Júnior FAN, Jorge ARC, Marinho AD, Silveira JAM, Alves NTQ, Costa PHS, E Silva PLB, Chaves-Filho AJM, Lima DB, Sampaio TL, et al: Bothrops alternatus snake venom induces cytokine expression and oxidative stress on renal function. Curr Top Med Chem. 19:2058–2068. 2019.PubMed/NCBI View Article : Google Scholar | |
Rojas JM, Arán-Sekul T, Cortés E, Jaldín R, Ordenes K, Orrego PR, González J, Araya JE and Catalán A: Phospholipase D from Loxosceles laeta spider venom induces IL-6, IL-8, CXCL1/GRO-α, and CCL2/MCP-1 production in human skin fibroblasts and stimulates monocytes migration. Toxins (Basel). 9(125)2017.PubMed/NCBI View Article : Google Scholar | |
Bahloul M, Regaieg K, Chabchoub I, Kammoun M, Chtara K and Bouaziz M: Severe scorpion envenomation: Pathophysiology and the role of inflammation in multiple organ failure. Med Sante Trop. 27:214–221. 2017.PubMed/NCBI View Article : Google Scholar | |
Khemili D, Valenzuela C, Laraba-Djebari F and Hammoudi-Triki D: Differential effect of Androctonus australis hector venom components on macrophage KV channels: Electrophysiological characterization. Eur Biophys J. 48:1–13. 2019.PubMed/NCBI View Article : Google Scholar | |
Ryan RYM, Seymour J, Loukas A, Lopez JA, Ikonomopoulou MP and Miles JJ: Immunological responses to envenomation. Front Immunol. 12(661082)2021.PubMed/NCBI View Article : Google Scholar | |
Rørvig S, Østergaard O, Heegaard NH and Borregaard N: Proteome profiling of human neutrophil granule subsets, secretory vesicles, and cell membrane: Correlation with transcriptome profiling of neutrophil precursors. J Leukoc Biol. 94:711–721. 2013.PubMed/NCBI View Article : Google Scholar | |
Kruger P, Saffarzadeh M, Weber AN, Rieber N, Radsak M, von Bernuth H, Benarafa C, Roos D, Skokowa J and Hartl D: Neutrophils: Between host defence, immune modulation, and tissue injury. PLoS Pathog. 11(e1004651)2015.PubMed/NCBI View Article : Google Scholar | |
Nourshargh S and Alon R: Leukocyte migration into inflamed tissues. Immunity. 41:694–707. 2014.PubMed/NCBI View Article : Google Scholar | |
Setubal Sda S, Pontes AS, Nery NM, Bastos JS, Castro OB, Pires WL, Zaqueo KD, Calderon Lde A, Stábeli RG, Soares AM and Zuliani JP: Effect of Bothrops bilineata snake venom on neutrophil function. Toxicon. 76:143–149. 2013.PubMed/NCBI View Article : Google Scholar | |
Tecchio C, Micheletti A and Cassatella MA: Neutrophil-derived cytokines: Facts beyond expression. Front Immunol. 5(508)2014.PubMed/NCBI View Article : Google Scholar | |
Zuliani JP, Soares AM and Gutiérrez JM: Polymorphonuclear neutrophil leukocytes in snakebite envenoming. Toxicon. 187:188–197. 2020.PubMed/NCBI View Article : Google Scholar | |
Khemili D, Laraba-Djebari F and Hammoudi-Triki D: Involvement of toll-like receptor 4 in neutrophil-mediated inflammation, oxidative stress and tissue damage induced by scorpion venom. Inflammation. 43:155–167. 2020.PubMed/NCBI View Article : Google Scholar | |
Zoccal KF, Bitencourt Cda S, Paula-Silva FW, Sorgi CA, de Castro Figueiredo Bordon K, Arantes EC and Faccioli LH: TLR2, TLR4 and CD14 recognize venom-associated molecular patterns from Tityus serrulatus to induce Macrophage-Derived inflammatory mediators. PLoS One. 9(e88174)2014.PubMed/NCBI View Article : Google Scholar | |
Moreira V, Teixeira C, Borges da Silva H, D'Império Lima MR and Dos-Santos MC: The role of TLR2 in the acute inflammatory response induced by Bothrops atrox snake venom. Toxicon. 118:121–128. 2016.PubMed/NCBI View Article : Google Scholar | |
Zoccal KF, Ferreira GZ, Prado MKB, Gardinassi LG, Sampaio SV and Faccioli LH: LTB4 and PGE2 modulate the release of MIP-1α and IL-1β by cells stimulated with Bothrops snake venoms. Toxicon. 150:289–296. 2018.PubMed/NCBI View Article : Google Scholar | |
Palm NW and Medzhitov R: Role of the inflammasome in defense against venoms. Proc Natl Acad Sci USA. 110:1809–1814. 2013.PubMed/NCBI View Article : Google Scholar | |
Zoccal KF, Sorgi CA, Hori JI, Paula-Silva FW, Arantes EC, Serezani CH, Zamboni DS and Faccioli LH: Opposing roles of LTB4 and PGE2 in regulating the inflammasome-dependent scorpion venom-induced mortality. Nat Commun. 7(10760)2016.PubMed/NCBI View Article : Google Scholar | |
Thangam EB, Jemima EA, Singh H, Baig MS, Khan M, Mathias CB, Church MK and Saluja R: The Role of histamine and histamine receptors in mast cell-mediated allergy and inflammation: The hunt for new therapeutic targets. Front Immunol. 9(1873)2018.PubMed/NCBI View Article : Google Scholar | |
Galli SJ, Starkl P, Marichal T and Tsai M: Mast cells and IgE in defense against venoms: Possible ‘good side’ of allergy? Allergol Int. 65:3–15. 2016.PubMed/NCBI View Article : Google Scholar | |
Kovacova-Hanuskova E, Buday T, Gavliakova S and Plevkova J: Histamine, histamine intoxication and intolerance. Allergol Immunopathol (Madr). 43:498–506. 2015.PubMed/NCBI View Article : Google Scholar | |
Krystel-Whittemore M, Dileepan KN and Wood JG: Mast cell: A multi-functional master cell. Front Immunol. 6(620)2016.PubMed/NCBI View Article : Google Scholar | |
Menaldo DL, Bernardes CP, Pereira JC, Silveira DS, Mamede CC, Stanziola L, Oliveira FD, Pereira-Crott LS, Faccioli LH and Sampaio SV: Effects of two serine proteases from Bothrops pirajai snake venom on the complement system and the inflammatory response. Int Immunopharmacol. 15:764–771. 2013.PubMed/NCBI View Article : Google Scholar | |
Moon TC, Befus AD and Kulka M: Mast cell mediators: Their differential release and the secretory pathways involved. Front Immunol. 5(569)2014.PubMed/NCBI View Article : Google Scholar | |
Stitt J and Katial R: Venom allergy. J Allergy Clin Immunol Pract. 4:184–185. 2016.PubMed/NCBI View Article : Google Scholar | |
Stone SF, Isbister GK, Shahmy S, Mohamed F, Abeysinghe C, Karunathilake H, Ariaratnam A, Jacoby-Alner TE, Cotterell CL and Brown SG: Immune response to snake envenoming and treatment with antivenom; complement activation, cytokine production and mast cell degranulation. PLoS Negl Trop Dis. 7(e2326)2013.PubMed/NCBI View Article : Google Scholar | |
Tambourgi DV and van den Berg CW: Animal venoms/toxins and the complement system. Mol Immunol. 61:153–162. 2014.PubMed/NCBI View Article : Google Scholar | |
Kumar N and Sastry GN: Study of lipid heterogeneity on bilayer membranes using molecular dynamics simulations. J Mol Graph Model. 108(108000)2021.PubMed/NCBI View Article : Google Scholar | |
Sandvig K, Bergan J, Kavaliauskiene S and Skotland T: Lipid requirements for entry of protein toxins into cells. Prog Lipid Res. 54:1–13. 2014.PubMed/NCBI View Article : Google Scholar | |
Herzig V, Cristofori-Armstrong B, Israel MR, Nixon SA, Vetter I and King GF: Animal toxins-Nature's evolutionary-refined toolkit for basic research and drug discovery. Biochem Pharmacol. 181(114096)2020.PubMed/NCBI View Article : Google Scholar | |
Van Baelen AC, Robin P, Kessler P, Maïga A, Gilles N and Servent D: Structural and functional diversity of animal toxins interacting with GPCRs. Front Mol Biosci. 9(811365)2022.PubMed/NCBI View Article : Google Scholar | |
Bekbossynova A, Zharylgap A and Filchakova O: Venom-derived neurotoxins targeting nicotinic acetylcholine receptors. Molecules. 26(3373)2021.PubMed/NCBI View Article : Google Scholar | |
Hung A, Kuyucak S, Schroeder CI and Kaas Q: Modelling the interactions between animal venom peptides and membrane proteins. Neuropharmacology. 127:20–31. 2017.PubMed/NCBI View Article : Google Scholar | |
Kasheverov IE, Oparin PB, Zhmak MN, Egorova NS, Ivanov IA, Gigolaev AM, Nekrasova OV, Serebryakova MV, Kudryavtsev DS, Prokopev NA, et al: Scorpion toxins interact with nicotinic acetylcholine receptors. FEBS Lett. 593:2779–2789. 2019.PubMed/NCBI View Article : Google Scholar | |
Luiken JJ, Glatz JF and Neumann D: Cardiac contraction-induced GLUT4 translocation requires dual signaling input. Trends Endocrinol Metab. 26:404–410. 2015.PubMed/NCBI View Article : Google Scholar | |
O Collaço RC, Hyslop S, Dorce VAC, Antunes E and Rowan EG: Scorpion venom increases acetylcholine release by prolonging the duration of somatic nerve action potentials. Neuropharmacology. 153:41–52. 2019.PubMed/NCBI View Article : Google Scholar | |
Shrestha A, Kahraman O and Haselwandter CA: Regulation of membrane proteins through local heterogeneity in lipid bilayer thickness. Phys Rev E. 102(060401)2020.PubMed/NCBI View Article : Google Scholar | |
Ernst R, Ballweg S and Levental I: Cellular mechanisms of physicochemical membrane homeostasis. Curr Opin Cell Biol. 53:44–51. 2018.PubMed/NCBI View Article : Google Scholar | |
Gilbert RJ, Dalla Serra M, Froelich CJ, Wallace MI and Anderluh G: Membrane pore formation at protein-lipid interfaces. Trends Biochem Sci. 39:510–516. 2014.PubMed/NCBI View Article : Google Scholar | |
Rádis-Baptista G: Cell-penetrating peptides derived from animal venoms and toxins. Toxins (Basel). 13(147)2021.PubMed/NCBI View Article : Google Scholar | |
Copolovici DM, Langel K, Eriste E and Langel Ü: Cell-penetrating peptides: Design, synthesis, and applications. ACS Nano. 8:1972–1994. 2014.PubMed/NCBI View Article : Google Scholar | |
Dal Peraro M and van der Goot FG: Pore-forming toxins: Ancient, but never really out of fashion. Nat Rev Microbiol. 14:77–92. 2016.PubMed/NCBI View Article : Google Scholar | |
Kalafatovic D and Giralt E: Cell-penetrating peptides: Design strategies beyond primary structure and amphipathicity. Molecules. 22(1929)2017.PubMed/NCBI View Article : Google Scholar | |
Kerkis I, Hayashi MA, Prieto da Silva AR, Pereira A, De Sá Júnior PL, Zaharenko AJ, Rádis-Baptista G, Kerkis A and Yamane T: State of the art in the studies on crotamine, a cell penetrating peptide from South American rattlesnake. Biomed Res Int. 2014(675985)2014.PubMed/NCBI View Article : Google Scholar | |
Lin King JV, Emrick JJ, Kelly MJS, Herzig V, King GF, Medzihradszky KF and Julius D: A cell-penetrating scorpion toxin enables mode-specific modulation of TRPA1 and pain. Cell. 178:1362–1374. 2019.PubMed/NCBI View Article : Google Scholar | |
Burin SM, Menaldo DL, Sampaio SV, Frantz FG and Castro FA: An overview of the immune modulating effects of enzymatic toxins from snake venoms. Int J Biol Macromol. 109:664–671. 2018.PubMed/NCBI View Article : Google Scholar | |
Chan YS, Cheung RCF, Xia L, Wong JH, Ng TB and Chan WY: Snake venom toxins: Toxicity and medicinal applications. Appl Microbiol Biotechnol. 100:6165–6181. 2016.PubMed/NCBI View Article : Google Scholar | |
Xiong S and Huang C: Synergistic strategies of predominant toxins in snake venoms. Toxicol Lett. 287:142–154. 2018.PubMed/NCBI View Article : Google Scholar | |
Ferraz CR, Arrahman A, Xie C, Casewell NR, Lewis RJ, Kool J and Cardoso FC: Multifunctional toxins in snake venoms and therapeutic implications: From pain to hemorrhage and necrosis. Front Ecol Evol. 7(218)2019. | |
Muller SP, Silva VAO, Silvestrini AVP, de Macedo LH, Caetano GF, Reis RM and Mazzi MV: Crotoxin from Crotalus durissus terrificus venom: In vitro cytotoxic activity of a heterodimeric phospholipase A2 on human cancer-derived cell lines. Toxicon. 156:13–22. 2018.PubMed/NCBI View Article : Google Scholar | |
Hong J, Lu X, Deng Z, Xiao S, Yuan B and Yang K: How melittin inserts into cell membrane: Conformational changes, Inter-Peptide cooperation, and disturbance on the membrane. Molecules. 24(1775)2019.PubMed/NCBI View Article : Google Scholar | |
Kachel HS, Buckingham SD and Sattelle DB: Insect toxins-selective pharmacological tools and drug/chemical leads. Curr Opin Insect Sci. 30:93–98. 2018.PubMed/NCBI View Article : Google Scholar | |
Khalil A, Elesawy BH, Ali TM and Ahmed OM: Bee venom: From venom to drug. Molecules. 26(4941)2021.PubMed/NCBI View Article : Google Scholar | |
Khan S: Advances in usage of venom proteins as diagnostics and therapeutic mediators. Protein Pept Lett. 25:610–611. 2018.PubMed/NCBI View Article : Google Scholar | |
Kim W: Bee venom and its sub-components: Characterization, pharmacology, and therapeutics. Toxins (Basel). 13(191)2021.PubMed/NCBI View Article : Google Scholar | |
Rady I, Siddiqui IA, Rady M and Mukhtar H: Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett. 402:16–31. 2017.PubMed/NCBI View Article : Google Scholar | |
Wehbe R, Frangieh J, Rima M, El Obeid D, Sabatier JM and Fajloun Z: Bee venom: Overview of main compounds and bioactivities for therapeutic interests. Molecules. 24(2997)2019.PubMed/NCBI View Article : Google Scholar | |
Ghosh A, Roy R, Nandi M and Mukhopadhyay A: Scorpion venom-toxins that aid in drug development: A review. Int J Pept Res Ther. 25:27–37. 2019.PubMed/NCBI View Article : Google Scholar | |
Gilchrist J, Olivera BM and Bosmans F: Animal toxins influence voltage-gated sodium channel function. Handb Exp Pharmacol. 221:203–229. 2014.PubMed/NCBI View Article : Google Scholar | |
Kuzmenkov AI and Vassilevski AA: Labelled animal toxins as selective molecular markers of ion channels: Applications in neurobiology and beyond. Neurosci Lett. 679:15–23. 2018.PubMed/NCBI View Article : Google Scholar | |
Swartz KJ: Ion channels: The scorpion toxin and the potassium channel. Elife. 2(e00873)2013. | |
Chen N, Xu S, Zhang Y and Wang F: Animal protein toxins: Origins and therapeutic applications. Biophys Rep. 4:233–242. 2018.PubMed/NCBI View Article : Google Scholar | |
Kalia J, Milescu M, Salvatierra J, Wagner J, Klint JK, King GF, Olivera BM and Bosmans F: From foe to friend: Using animal toxins to investigate ion channel function. J Mol Biol. 427:158–175. 2015.PubMed/NCBI View Article : Google Scholar | |
Lahiani A, Yavin E and Lazarovici P: The Molecular basis of toxins' interactions with intracellular signaling via discrete portals. Toxins (Basel). 9(107)2017.PubMed/NCBI View Article : Google Scholar | |
Oliveira IS, Ferreira IG, Alexandre-Silva GM, Cerni FA, Cremonez CM, Arantes EC, Zottich U and Pucca MB: Scorpion toxins targeting Kv1.3 channels: Insights into immunosuppression. J Venom Anim Toxins Incl Trop Dis. 25(e148118)2019.PubMed/NCBI View Article : Google Scholar | |
Ortiz E and Possani LD: Scorpion toxins to unravel the conundrum of ion channel structure and functioning. Toxicon. 150:17–27. 2018.PubMed/NCBI View Article : Google Scholar | |
Quintero-Hernández V, Jiménez-Vargas JM, Gurrola GB, Valdivia HH and Possani LD: Scorpion venom components that affect ion-channels function. Toxicon. 76:328–42. 2013.PubMed/NCBI View Article : Google Scholar | |
Xu Y, Sun J, Liu H, Sun J, Yu Y, Su Y, Cui Y, Zhao M and Zhang J: Scorpion toxins targeting Voltage-Gated sodium channels associated with pain. Curr Pharm Biotechnol. 19:848–855. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhang JZ, Yarov-Yarovoy V, Scheuer T, Karbat I, Cohen L, Gordon D, Gurevitz M and Catterall WA: Mapping the interaction site for a β-scorpion toxin in the pore module of domain III of voltage-gated Na(+) channels. J Biol Chem. 287:30719–30728. 2012.PubMed/NCBI View Article : Google Scholar | |
Adams DJ and Lewis RJ: Neuropharmacology of venom peptides. Neuropharmacology. 127:1–3. 2017.PubMed/NCBI View Article : Google Scholar | |
Gordon D, Chen R and Chung SH: Computational methods of studying the binding of toxins from venomous animals to biological ion channels: Theory and applications. Physiol Rev. 93:767–802. 2013.PubMed/NCBI View Article : Google Scholar | |
Norton RS and Chandy KG: Venom-Derived peptide inhibitors of Voltage-Gated potassium channels. Neuropharmacology. 127:124–138. 2017.PubMed/NCBI View Article : Google Scholar | |
Cologna CT, Peigneur S, Rustiguel JK, Nonato MC, Tytgat J and Arantes EC: Investigation of the relationship between the structure and function of Ts2, a neurotoxin from Tityus serrulatus venom. FEBS J. 279:1495–504. 2012.PubMed/NCBI View Article : Google Scholar | |
Díaz-García A and Varela D: Voltage-gated K+/Na+ channels and scorpion venom toxins in cancer. Front Pharmacol. 11(913)2020.PubMed/NCBI View Article : Google Scholar | |
Shen H, Li Z, Jiang Y, Pan X, Wu J, Cristofori-Armstrong B, Smith JJ, Chin YKY, Lei J, Zhou Q, et al: Structural basis for the modulation of voltage-gated sodium channels by animal toxins. Science. 362(eaau2596)2018.PubMed/NCBI View Article : Google Scholar | |
Wu Y, Ma H, Zhang F, Zhang C, Zou X and Cao Z: Selective Voltage-Gated sodium channel peptide toxins from animal venom: Pharmacological probes and analgesic drug development. ACS Chem Neurosci. 9:187–197. 2018.PubMed/NCBI View Article : Google Scholar | |
Cohen G, Burks SR and Frank JA: Chlorotoxin-a multimodal imaging platform for targeting glioma tumors. Toxins (Basel). 10(496)2018.PubMed/NCBI View Article : Google Scholar | |
Dardevet L, Rani D, Aziz TA, Bazin I, Sabatier JM, Fadl M, Brambilla E and De Waard M: Chlorotoxin: A helpful natural scorpion peptide to diagnose glioma and fight tumor invasion. Toxins (Basel). 7:1079–1101. 2015.PubMed/NCBI View Article : Google Scholar | |
Wang D, Starr R, Chang WC, Aguilar B, Alizadeh D, Wright SL, Yang X, Brito A, Sarkissian A, Ostberg JR, et al: Chlorotoxin-directed CAR T cells for specific and effective targeting of glioblastoma. Sci Transl Med. 12(eaaw2672)2020.PubMed/NCBI View Article : Google Scholar |