Regulation of cancer stem cells and immunotherapy of glioblastoma (Review)
- Authors:
- Аleksandra Kosianova
- Oleg Pak
- Igor Bryukhovetskiy
-
Affiliations: Medical Center, School of Medicine and Life Science, Far Eastern Federal University, Vladivostok 690091, Russian Federation - Published online on: December 19, 2023 https://doi.org/10.3892/br.2023.1712
- Article Number: 24
-
Copyright: © Kosianova et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Herrlinger U: News on the horizon in glioblastoma therapy. ESMO Open. 5(e000601)2020.PubMed/NCBI View Article : Google Scholar | |
Schaff LR and Mellinghoff IK: Glioblastoma and other primary brain malignancies in adults: A review. JAMA. 329:574–587. 2023.PubMed/NCBI View Article : Google Scholar | |
Delavar A, Wali AR, Santiago-Dieppa DR, Al Jammal OM, Kidwell RL and Khalessi AA: Racial and ethnic disparities in brain tumor survival by age group and tumor type. Br J Neurosurg. 36:705–711. 2022.PubMed/NCBI View Article : Google Scholar | |
Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, et al: Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-Year analysis of the EORTC-NCIC trial. Lancet Oncol. 10:459–466. 2009.PubMed/NCBI View Article : Google Scholar | |
Luo C, Song K, Wu S, Hameed NUF, Kudulaiti N, Xu H, Qin ZY and Wu JS: The prognosis of glioblastoma: A large, multifactorial study. Br J Neurosurg. 35:555–561. 2021.PubMed/NCBI View Article : Google Scholar | |
Yabo YA, Niclou SP and Golebiewska A: Cancer cell heterogeneity and plasticity: A paradigm shift in glioblastoma. Neuro Oncol. 24:669–682. 2022.PubMed/NCBI View Article : Google Scholar | |
Bikfalvi A, da Costa CA, Avril T, Barnier JV, Bauchet L, Brisson L, Cartron PF, Castel H, Chevet E, Chneiweiss H, et al: Challenges in glioblastoma research: Focus on the tumor microenvironment. Trends Cancer. 9:9–27. 2023.PubMed/NCBI View Article : Google Scholar | |
Huang M, Zhang D, Wu JY, Xing K, Yeo E, Li C, Zhang L, Holland E, Yao L, Qin L, et al: Wnt-mediated endothelial transformation into mesenchymal stem cell-like cells induces chemoresistance in glioblastoma. Sci Transl Med. 12(eaay7522)2020.PubMed/NCBI View Article : Google Scholar | |
Barzegar Behrooz A, Talaie Z, Jusheghani F, Łos MJ, Klonisch T and Ghavami S: Wnt and PI3K/Akt/mTOR survival pathways as therapeutic targets in glioblastoma. Int J Mol Sci. 23(1353)2022.PubMed/NCBI View Article : Google Scholar | |
Behrooz AB and Syahir A: Could we address the interplay between CD133, Wnt/β-catenin, and TERT signaling pathways as a potential target for glioblastoma therapy? Front Oncol. 11(642719)2021.PubMed/NCBI View Article : Google Scholar | |
Crunkhorn S: Targeting drug-resistant glioblastoma. Nat Rev Drug Discov. 21(711)2022.PubMed/NCBI View Article : Google Scholar | |
Precilla DS, Kuduvalli SS, Purushothaman M, Marimuthu P, Muralidharan AR and Anitha TS: Wnt/β-catenin antagonists: Exploring new avenues to trigger old drugs in alleviating glioblastoma multiforme. Curr Mol Pharmacol. 15:338–360. 2022.PubMed/NCBI View Article : Google Scholar | |
Yuan B, Wang G, Tang X, Tong A and Zhou L: Immunotherapy of glioblastoma: Recent advances and future prospects. Hum Vaccin Immunother. 18(2055417)2022.PubMed/NCBI View Article : Google Scholar | |
Youngblood MW, Stupp R and Sonabend AM: Role of Resection in glioblastoma management. Neurosurg Clin N Am. 32:9–22. 2021.PubMed/NCBI View Article : Google Scholar | |
De Biase G, Garcia DP, Bohnen A and Quiñones-Hinojosa A: Perioperative management of patients with glioblastoma. Neurosurg Clin N Am. 32:1–8. 2021.PubMed/NCBI View Article : Google Scholar | |
Lu VM, Goyal A, Graffeo CS, Perry A, Burns TC, Parney IF, Quinones-Hinojosa A and Chaichana KL: Survival benefit of maximal resection for glioblastoma reoperation in the temozolomide era: A meta-analysis. World Neurosurg. 127:31–37. 2019.PubMed/NCBI View Article : Google Scholar | |
Robin AM, Lee I and Kalkanis SN: Reoperation for recurrent glioblastoma multiforme. Neurosurg Clin N Am. 28:407–428. 2017.PubMed/NCBI View Article : Google Scholar | |
Liang C, Gong J, Zhang B, Meng Z, Li M and Guo Y: Multiple subtentorial metastasis in diffuse midline glioma receiving tumor treating fields: A case report and literature review. Ann Transl Med. 9(1604)2021.PubMed/NCBI View Article : Google Scholar | |
Chen J, Shi Q, Li S, Zhao Y and Huang H: Clinical characteristics of glioblastoma with metastatic spinal dissemination. Ann Palliat Med. 11:506–512. 2022.PubMed/NCBI View Article : Google Scholar | |
Shah AH, Mahavadi A, Di L, Sanjurjo A, Eichberg DG, Borowy V, Figueroa J, Luther E, de la Fuente MI, Semonche A, et al: Survival benefit of lobectomy for glioblastoma: Moving towards radical supramaximal resection. J Neurooncol. 148:501–508. 2020.PubMed/NCBI View Article : Google Scholar | |
Ryan JT, Nakayama M, Gleeson I, Mannion L, Geso M, Kelly J, Ng SP and Hardcastle N: Functional brain imaging interventions for radiation therapy planning in patients with glioblastoma: A systematic review. Radiat Oncol. 17(178)2022.PubMed/NCBI View Article : Google Scholar | |
Ylanan AMD, Pascual JSG, Cruz-Lim EMD, Ignacio KHD, Cañal JPA and Khu KJO: Intraoperative radiotherapy for glioblastoma: A systematic review of techniques and outcomes. J Clin Neurosci. 93:36–41. 2021.PubMed/NCBI View Article : Google Scholar | |
Khan L, Soliman H, Sahgal A, Perry J, Xu W and Tsao MN: External beam radiation dose escalation for high grade glioma. Cochrane Database Syst Rev. 5(CD011475)2020.PubMed/NCBI View Article : Google Scholar | |
Barbarite E, Sick JT, Berchmans E, Bregy A, Shah AH, Elsayyad N and Komotar RJ: The role of brachytherapy in the treatment of glioblastoma multiforme. Neurosurg Rev. 40:195–211. 2017.PubMed/NCBI View Article : Google Scholar | |
Vogelius IR and Bentzen SM: Proton vs photon radiation therapy for glioblastoma: Maximizing information from trial. Neuro Oncol. 24:849–850. 2022.PubMed/NCBI View Article : Google Scholar | |
Malouff TD, Seneviratne DS, Ebner DK, Stross WC, Waddle MR, Trifiletti DM and Krishnan S: Boron Neutron capture therapy: A review of clinical applications. Front Oncol. 11(601820)2021.PubMed/NCBI View Article : Google Scholar | |
Laprie A, Tensaouti F and Cohen-Jonathan Moyal E: Radiation dose intensification for glioblastoma. Cancer Radiother. 26:894–898. 2022.PubMed/NCBI View Article : Google Scholar : (In French). | |
Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS and Khasraw M: Management of glioblastoma: State of the art and future directions. CA Cancer J Clin. 70:299–312. 2020.PubMed/NCBI View Article : Google Scholar | |
Woodroffe RW, Zanaty M, Soni N, Mott SL, Helland LC, Pasha A, Maley J, Dhungana N, Jones KA, Monga V and Greenlee JDW: Survival after reoperation for recurrent glioblastoma. J Clin Neurosci. 73:118–124. 2020.PubMed/NCBI View Article : Google Scholar | |
Zakaria R and Weinberg JS: Challenges associated with reoperation in patients with glioma. Neurosurg Clin N Am. 32:129–135. 2021.PubMed/NCBI View Article : Google Scholar | |
Mathen P, Rowe L, Mackey M, Smart D, Tofilon P and Camphausen K: Radiosensitizers in the temozolomide era for newly diagnosed glioblastoma. Neurooncol Pract. 7:268–276. 2020.PubMed/NCBI View Article : Google Scholar | |
Herrlinger U, Tzaridis T, Mack F, Steinbach JP, Schlegel U, Sabel M, Hau P, Kortmann RD, Krex D, Grauer O, et al: Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): A randomised, open-label, phase 3 trial. Lancet. 393:678–688. 2019.PubMed/NCBI View Article : Google Scholar | |
Hwang K, Lee JH, Kim SH, Go KO, Ji SY, Han JH and Kim CY: The combination PARP inhibitor olaparib with temozolomide in an experimental glioblastoma model. In Vivo. 35:2015–2023. 2021.PubMed/NCBI View Article : Google Scholar | |
Nguyen TTT, Zhang Y, Shang E, Shu C, Torrini C, Zhao J, Bianchetti E, Mela A, Humala N, Mahajan A, et al: HDAC inhibitors elicit metabolic reprogramming by targeting super-enhancers in glioblastoma models. J Clin Invest. 130:3699–3716. 2020.PubMed/NCBI View Article : Google Scholar | |
Bindra RS: Penetrating the brain tumor space with DNA damage response inhibitors. Neuro Oncol. 22:1718–1720. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhao J, Yang S, Cui X, Wang Q, Yang E, Tong F, Hong B, Xiao M, Xin L, Xu C, et al: A novel compound EPIC-0412 reverses temozolomide resistance via inhibiting DNA repair/MGMT in glioblastoma. Neuro Oncol. 25:857–870. 2023.PubMed/NCBI View Article : Google Scholar | |
Goel NJ, Bird CE, Hicks WH and Abdullah KG: Economic implications of the modern treatment paradigm of glioblastoma: An analysis of global cost estimates and their utility for cost assessment. J Med Econ. 24:1018–1024. 2021.PubMed/NCBI View Article : Google Scholar | |
Lauko A, Lo A, Ahluwalia MS and Lathia JD: Cancer cell heterogeneity & plasticity in glioblastoma and brain tumors. Semin Cancer Biol. 82:162–175. 2022.PubMed/NCBI View Article : Google Scholar | |
Oliver L, Lalier L, Salaud C, Heymann D, Cartron PF and Vallette FM: Drug resistance in glioblastoma: Are persisters the key to therapy? Cancer Drug Resist. 3:287–301. 2020.PubMed/NCBI View Article : Google Scholar | |
Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, et al: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 17:98–110. 2010.PubMed/NCBI View Article : Google Scholar | |
Steponaitis G and Tamasauskas A: Mesenchymal and proneural subtypes of glioblastoma disclose branching based on GSC associated signature. Int J Mol Sci. 22(4964)2021.PubMed/NCBI View Article : Google Scholar | |
Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, et al: The somatic genomic landscape of glioblastoma. Cell. 155:462–477. 2013.PubMed/NCBI View Article : Google Scholar | |
Melhem JM, Detsky J, Lim-Fat MJ and Perry JR: Updates in IDH-wildtype glioblastoma. Neurotherapeutics. 19:1705–1723. 2022.PubMed/NCBI View Article : Google Scholar | |
French R and Pauklin S: Epigenetic regulation of cancer stem cell formation and maintenance. Int J Cancer. 148:2884–2897. 2021.PubMed/NCBI View Article : Google Scholar | |
Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P and Ellison DW: The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 131:803–820. 2016.PubMed/NCBI View Article : Google Scholar | |
Capper D, Stichel D, Sahm F, Jones DTW, Schrimpf D, Sill M, Schmid S, Hovestadt V, Reuss DE, Koelsche C, et al: Practical implementation of DNA methylation and copy-number-based CNS tumor diagnostics: The Heidelberg experience. Acta Neuropathol. 136:181–210. 2018.PubMed/NCBI View Article : Google Scholar | |
Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, Richman AR, Silverbush D, Shaw ML, Hebert CM, et al: An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell. 178:835–849.e21. 2019.PubMed/NCBI View Article : Google Scholar | |
Garofano L, Migliozzi S, Oh YT, D'Angelo F, Najac RD, Ko A, Frangaj B, Caruso FP, Yu K, Yuan J, et al: Pathway-based classification of glioblastoma uncovers a mitochondrial subtype with therapeutic vulnerabilities. Nat Cancer. 2:141–156. 2021.PubMed/NCBI View Article : Google Scholar | |
Hubert CG and Lathia JD: Seeing the GBM diversity spectrum. Nat Cancer. 2:135–137. 2021.PubMed/NCBI View Article : Google Scholar | |
Richards LM, Whitley OKN, MacLeod G, Cavalli FMG, Coutinho FJ, Jaramillo JE, Svergun N, Riverin M, Croucher DC, Kushida M, et al: Gradient of developmental and injury response transcriptional states defines functional vulnerabilities underpinning glioblastoma heterogeneity. Nat Cancer. 2:157–173. 2021.PubMed/NCBI View Article : Google Scholar | |
Ensenyat-Mendez M, Íñiguez-Muñoz S, Sesé B and Marzese DM: iGlioSub: An integrative transcriptomic and epigenomic classifier for glioblastoma molecular subtypes. BioData Min. 14(42)2021.PubMed/NCBI View Article : Google Scholar | |
Wang LB, Karpova A, Gritsenko MA, Kyle JE, Cao S, Li Y, Rykunov D, Colaprico A, Rothstein JH, Hong R, et al: Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell. 39:509–528.e20. 2021.PubMed/NCBI View Article : Google Scholar | |
Drakulic D, Schwirtlich M, Petrovic I, Mojsin M, Milivojevic M, Kovacevic-Grujicic N and Stevanovic M: Current opportunities for targeting dysregulated neurodevelopmental signaling pathways in glioblastoma. Cells. 11(2530)2022.PubMed/NCBI View Article : Google Scholar | |
Bonnet D and Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 3:730–737. 1997.PubMed/NCBI View Article : Google Scholar | |
Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauß A, Blaudszun AR, Yevsa T, Fricke S and Kossatz-Boehlert U: Cancer stem cells-origins and biomarkers: Perspectives for targeted personalized therapies. Front Immunol. 11(1280)2020.PubMed/NCBI View Article : Google Scholar | |
Bryukhovetskiy A, Shevchenko V, Kovalev S, Chekhonin V, Baklaushev V, Bryukhovetskiy I and Zhukova M: To the novel paradigm of proteome-based cell therapy of tumors: Through comparative proteome mapping of tumor stem cells and tissue-specific stem cells of humans. Cell Transplant. 23 (Suppl 1):S151–S170. 2014.PubMed/NCBI View Article : Google Scholar | |
Bryukhovetskiy IS, Dyuizen IV, Shevchenko VE, Bryukhovetskiy AS, Mischenko PV, Milkina EV and Khotimchenko YS: Hematopoietic stem cells as a tool for the treatment of glioblastoma multiforme. Mol Med Rep. 14:4511–4520. 2016.PubMed/NCBI View Article : Google Scholar | |
Couturier CP, Nadaf J, Li Z, Baig S, Riva G, Le P, Kloosterman DJ, Monlong J, Nkili Meyong A, Allache R, et al: Glioblastoma scRNA-seq shows treatment-induced, immune-dependent increase in mesenchymal cancer cells and structural variants in distal neural stem cells. Neuro Oncol. 24:1494–1508. 2022.PubMed/NCBI View Article : Google Scholar | |
Wang X, Zhou R, Xiong Y, Zhou L, Yan X, Wang M, Li F, Xie C, Zhang Y, Huang Z, et al: Sequential fate-switches in stem-like cells drive the tumorigenic trajectory from human neural stem cells to malignant glioma. Cell Res. 31:684–702. 2021.PubMed/NCBI View Article : Google Scholar | |
Mizrak D, Brittan M and Alison M: CD133: Molecule of the moment. J Pathol. 214:3–9. 2008.PubMed/NCBI View Article : Google Scholar | |
Zheng Y, Wang L, Yin L, Yao Z, Tong R, Xue J and Lu Y: Lung cancer stem cell markers as therapeutic targets: An update on signaling pathways and therapies. Front Oncol. 12(873994)2022.PubMed/NCBI View Article : Google Scholar | |
Park J, Kim SK, Hallis SP, Choi BH and Kwak MK: Role of CD133/NRF2 axis in the development of colon cancer stem cell-like properties. Front Oncol. 11(808300)2022.PubMed/NCBI View Article : Google Scholar | |
Hefni AM, Sayed AM, Hussien MT, Abdalla AZ and Gabr AG: CD133 is an independent predictive and prognostic marker in metastatic breast cancer. Cancer Biomark. 35:207–215. 2022.PubMed/NCBI View Article : Google Scholar | |
Gimple RC, Bhargava S, Dixit D and Rich JN: Glioblastoma stem cells: Lessons from the tumor hierarchy in a lethal cancer. Genes Dev. 33:591–609. 2019.PubMed/NCBI View Article : Google Scholar | |
Beier CP and Beier D: CD133 negative cancer stem cells in glioblastoma. Front Biosci (Elite Ed). 3:701–710. 2011.PubMed/NCBI View Article : Google Scholar | |
Wang Z, Zhang H, Xu S, Liu Z and Cheng Q: The adaptive transition of glioblastoma stem cells and its implications on treatments. Signal Transduct Target Ther. 6(124)2021.PubMed/NCBI View Article : Google Scholar | |
Xie XP, Laks DR, Sun D, Ganbold M, Wang Z, Pedraza AM, Bale T, Tabar V, Brennan C, Zhou X and Parada LF: Quiescent human glioblastoma cancer stem cells drive tumor initiation, expansion, and recurrence following chemotherapy. Dev Cell. 57:32–46.e8. 2022.PubMed/NCBI View Article : Google Scholar | |
Liu J, Gao L, Zhan N, Xu P, Yang J, Yuan F, Xu Y, Cai Q, Geng R and Chen Q: Hypoxia induced ferritin light chain (FTL) promoted epithelia mesenchymal transition and chemoresistance of glioma. J Exp Clin Cancer Res. 39(137)2020.PubMed/NCBI View Article : Google Scholar | |
Gao L, Tong S, Liu J, Cai J, Ye Z, Zhou L, Song P, Li Z, Lei P, Wei H, et al: TMEM2 induces epithelial-mesenchymal transition and promotes resistance to temozolomide in GBM cells. Heliyon. 9(e16559)2023.PubMed/NCBI View Article : Google Scholar | |
Zhang X, Wang X, Xu R, Ji J, Xu Y, Han M, Wei Y, Huang B, Chen A, Zhang Q, et al: YM155 decreases radiation-induced invasion and reverses epithelial-mesenchymal transition by targeting STAT3 in glioblastoma. J Transl Med. 16(79)2018.PubMed/NCBI View Article : Google Scholar | |
Zhang X, Wang X, Xu R, Ji J, Xu Y, Han M, Wei Y, Huang B, Chen A, Zhang Q, et al: Correction to: YM155 decreases radiation-induced invasion and reverses epithelial-mesenchymal transition by targeting STAT3 in glioblastoma. J Transl Med. 19(407)2021.PubMed/NCBI View Article : Google Scholar | |
Huang W, Zhang C, Cui M, Niu J and Ding W: Inhibition of bevacizumab-induced epithelial-mesenchymal transition by BATF2 overexpression involves the suppression of Wnt/β-catenin signaling in glioblastoma cells. Anticancer Res. 37:4285–4294. 2017.PubMed/NCBI View Article : Google Scholar | |
Coelho BP, Fernandes CFL, Boccacino JM, Souza MCDS, Melo-Escobar MI, Alves RN, Prado MB, Iglesia RP, Cangiano G, Mazzaro GR and Lopes MH: Multifaceted WNT signaling at the crossroads between epithelial-mesenchymal transition and autophagy in glioblastoma. Front Oncol. 10(597743)2020.PubMed/NCBI View Article : Google Scholar | |
Alkailani MI, Aittaleb M and Tissir F: WNT signaling at the intersection between neurogenesis and brain tumorigenesis. Front Mol Neurosci. 15(1017568)2022.PubMed/NCBI View Article : Google Scholar | |
Rajakulendran N, Rowland KJ, Selvadurai HJ, Ahmadi M, Park NI, Naumenko S, Dolma S, Ward RJ, So M, Lee L, et al: Wnt and Notch signaling govern self-renewal and differentiation in a subset of human glioblastoma stem cells. Genes Dev. 33:498–510. 2019.PubMed/NCBI View Article : Google Scholar | |
Rim EY, Clevers H and Nusse R: The Wnt pathway: From signaling mechanisms to synthetic modulators. Annu Rev Biochem. 91:571–598. 2022.PubMed/NCBI View Article : Google Scholar | |
Sareddy GR, Pratap UP, Viswanadhapalli S, Venkata PP, Nair BC, Krishnan SR, Zheng S, Gilbert AR, Brenner AJ, Brann DW and Vadlamudi RK: PELP1 promotes glioblastoma progression by enhancing Wnt/β-catenin signaling. Neurooncol Adv. 1(vdz042)2019.PubMed/NCBI View Article : Google Scholar | |
Latour M, Her NG, Kesari S and Nurmemmedov E: WNT signaling as a therapeutic target for glioblastoma. Int J Mol Sci. 22(8428)2021.PubMed/NCBI View Article : Google Scholar | |
Tang C, Guo J, Chen H, Yao CJ, Zhuang DX, Wang Y, Tang WJ, Ren G, Yao Y, Wu JS, et al: Gene mutation profiling of primary glioblastoma through multiple tumor biopsy guided by 1H-magnetic resonance spectroscopy. Int J Clin Exp Pathol. 8:5327–5335. 2015.PubMed/NCBI | |
Morris LG, Ramaswami D and Chan TA: The FAT epidemic: A gene family frequently mutated across multiple human cancer types. Cell Cycle. 12:1011–1012. 2013.PubMed/NCBI View Article : Google Scholar | |
Fargeas CA, Lorico A and Corbeil D: Commentary: Could we address the interplay between CD133, Wnt/β-catenin, and TERT signaling pathways as a potential target for glioblastoma therapy? Front Oncol. 11(712358)2021.PubMed/NCBI View Article : Google Scholar | |
Shevchenko V, Arnotskaya N, Zaitsev S, Sharma A, Sharma HS, Bryukhovetskiy A, Pak O, Khotimchenko Y and Bryukhovetskiy I: Proteins of Wnt signaling pathway in cancer stem cells of human glioblastoma. Int Rev Neurobiol. 151:185–200. 2020.PubMed/NCBI View Article : Google Scholar | |
Manoranjan B, Chokshi C, Venugopal C, Subapanditha M, Savage N, Tatari N, Provias JP, Murty NK, Moffat J, Doble BW and Singh SK: A CD133-AKT-Wnt signaling axis drives glioblastoma brain tumor-initiating cells. Oncogene. 39:1590–1599. 2020.PubMed/NCBI View Article : Google Scholar | |
Jhanwar-Uniyal M, Wainwright JV, Mohan AL, Tobias ME, Murali R, Gandhi CD and Schmidt MH: Diverse signaling mechanisms of mTOR complexes: mTORC1 and mTORC2 in forming a formidable relationship. Adv Biol Regul. 72:51–62. 2019.PubMed/NCBI View Article : Google Scholar | |
Shahcheraghi SH, Tchokonte-Nana V, Lotfi M, Lotfi M, Ghorbani A and Sadeghnia HR: Wnt/beta-catenin and PI3K/Akt/mTOR signaling pathways in glioblastoma: Two main targets for drug design: A review. Curr Pharm Des. 26:1729–1741. 2020.PubMed/NCBI View Article : Google Scholar | |
Liu N, Guo XH, Liu JP and Cong YS: Role of telomerase in the tumor microenvironment. Clin Exp Pharmacol Physiol. 47:357–364. 2020.PubMed/NCBI View Article : Google Scholar | |
Abad E, Graifer D and Lyakhovich A: DNA damage response and resistance of cancer stem cells. Сancer Lett. 474:106–117. 2020.PubMed/NCBI View Article : Google Scholar | |
Fan D, Yue Q, Chen J, Wang C, Yu R, Jin Z, Yin S, Wang Q, Chen L, Liao X, et al: Reprogramming the immunosuppressive microenvironment of IDH1 wild-type glioblastoma by blocking Wnt signaling between microglia and cancer cells. Oncoimmunology. 10(1932061)2021.PubMed/NCBI View Article : Google Scholar | |
Hao J, Han X, Huang H, Yu X, Fang J, Zhao J, Prayson RA, Bao S and Yu JS: Sema3C signaling is an alternative activator of the canonical WNT pathway in glioblastoma. Nat Commun. 14(2262)2023.PubMed/NCBI View Article : Google Scholar | |
Montemurro N, Pahwa B, Tayal A, Shukla A, De Jesus Encarnacion M, Ramirez I, Nurmukhametov R, Chavda V and De Carlo A: Macrophages in recurrent glioblastoma as a prognostic factor in the synergistic system of the tumor microenvironment. Neurol Int. 15:595–608. 2023.PubMed/NCBI View Article : Google Scholar | |
Chan MK, Chung JY, Tang PC, Chan AS, Ho JY, Lin TP, Chen J, Leung KT, To KF, Lan HY and Tang PM: TGF-β signaling networks in the tumor microenvironment. Cancer Lett. 550(215925)2022.PubMed/NCBI View Article : Google Scholar | |
Yun EJ, Kim S, Hsieh JT and Baek ST: Wnt/β-catenin signaling pathway induces autophagy-mediated temozolomide-resistance in human glioblastoma. Cell Death Dis. 11(771)2020.PubMed/NCBI View Article : Google Scholar | |
Matias D, Predes D, Niemeyer Filho P, Lopes MC, Abreu JG, Lima FRS and Moura Neto V: Microglia-glioblastoma interactions: New role for Wnt signaling. Biochim Biophys Acta Rev Cancer. 1868:333–340. 2017.PubMed/NCBI View Article : Google Scholar | |
Tao W, Chu C, Zhou W, Huang Z, Zhai K, Fang X, Huang Q, Zhang A, Wang X, Yu X, et al: Dual role of WISP1 in maintaining glioma stem cells and tumor-supportive macrophages in glioblastoma. Nat Commun. 11(3015)2020.PubMed/NCBI View Article : Google Scholar | |
Bayik D and Lathia JD: Cancer stem cell-immune cell crosstalk in tumor progression. Nat Rev Cancer. 21:526–536. 2021.PubMed/NCBI View Article : Google Scholar | |
Omuro A: Immune-checkpoint inhibitors for glioblastoma: What have we learned? Arq Neuropsiquiatr. 80 (5 Suppl 1):S266–S269. 2022.PubMed/NCBI View Article : Google Scholar | |
Verdugo E, Puerto I and Medina MÁ: An update on the molecular biology of glioblastoma, with clinical implications and progress in its treatment. Cancer Commun (Lond). 42:1083–1111. 2022.PubMed/NCBI View Article : Google Scholar | |
Sautter L, Hofheinz R, Tuettenberg J, Grimm M, Vajkoczy P, Groden C, Schmieder K, Hochhaus A, Wenz F and Giordano FA: Open-label phase II evaluation of imatinib in primary inoperable or incompletely resected and recurrent glioblastoma. Oncology. 98:16–22. 2020.PubMed/NCBI View Article : Google Scholar | |
Kim JY, Jo Y, Oh HK and Kim EH: Sorafenib increases tumor treating fields-induced cell death in glioblastoma by inhibiting STAT3. Am J Cancer Res. 10:3475–3486. 2020.PubMed/NCBI | |
Alamón C, Dávila B, García MF, Sánchez C, Kovacs M, Trias E, Barbeito L, Gabay M, Zeineh N, Gavish M, et al: Sunitinib-containing carborane pharmacophore with the ability to inhibit tyrosine kinases receptors FLT3, KIT and PDGFR-β, exhibits powerful in vivo anti-glioblastoma activity. Cancers (Basel). 12(3423)2020.PubMed/NCBI View Article : Google Scholar | |
Reardon DA, Desjardins A, Vredenburgh JJ, O'Rourke DM, Tran DD, Fink KL, Nabors LB, Li G, Bota DA, Lukas RV, et al: Rindopepimut with bevacizumab for patients with relapsed EGFRvIII-expressing glioblastoma (ReACT): Results of a double-blind randomized phase II trial. Clin Cancer Res. 26:1586–1594. 2020.PubMed/NCBI View Article : Google Scholar | |
Padovan M, Eoli M, Pellerino A, Rizzato S, Caserta C, Simonelli M, Michiara M, Caccese M, Anghileri E, Cerretti G, et al: Depatuxizumab mafodotin (Depatux-M) plus temozolomide in recurrent glioblastoma patients: Real-world experience from a multicenter study of italian association of neuro-oncology (AINO). Cancers (Basel). 13(2773)2021.PubMed/NCBI View Article : Google Scholar | |
Lassman AB, Pugh SL, Wang TJC, Aldape K, Gan HK, Preusser M, Vogelbaum MA, Sulman EP, Won M, Zhang P, et al: Depatuxizumab mafodotin in EGFR-amplified newly diagnosed glioblastoma: A phase III randomized clinical trial. Neuro Oncol. 25:339–350. 2023.PubMed/NCBI View Article : Google Scholar | |
Cloughesy T, Finocchiaro G, Belda-Iniesta C, Recht L, Brandes AA, Pineda E, Mikkelsen T, Chinot OL, Balana C, Macdonald DR, et al: Randomized, double-blind, placebo-controlled, multicenter phase II study of onartuzumab plus bevacizumab versus placebo plus bevacizumab in patients with recurrent glioblastoma: efficacy, safety, and hepatocyte growth factor and O6-methylguanine-DNA methyltransferase biomarker analyses. J Clin Oncol. 35:343–351. 2017.PubMed/NCBI View Article : Google Scholar | |
Cloughesy TF, Drappatz J, de Groot J, Prados MD, Reardon DA, Schiff D, Chamberlain M, Mikkelsen T, Desjardins A, Ping J, et al: Phase II study of cabozantinib in patients with progressive glioblastoma: Subset analysis of patients with prior antiangiogenic therapy. Neuro Oncol. 20:259–267. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhang T, Xin Q and Kang JM: Bevacizumab for recurrent glioblastoma: A systematic review and meta-analysis. Eur Rev Med Pharmacol Sci. 25:6480–6491. 2021.PubMed/NCBI View Article : Google Scholar | |
Wen PY, Rodon JA, Mason W, Beck JT, DeGroot J, Donnet V, Mills D, El-Hashimy M and Rosenthal M: Phase I, open-label, multicentre study of buparlisib in combination with temozolomide or with concomitant radiation therapy and temozolomide in patients with newly diagnosed glioblastoma. ESMO Open. 5(e000673)2020.PubMed/NCBI View Article : Google Scholar | |
Rosenthal M, Clement PM, Campone M, Gil-Gil MJ, DeGroot J, Chinot O, Idbaih A, Gan H, Raizer J, Wen PY, et al: Buparlisib plus carboplatin or lomustine in patients with recurrent glioblastoma: A phase Ib/II, open-label, multicentre, randomised study. ESMO Open. 5(e000672)2020.PubMed/NCBI View Article : Google Scholar | |
Kaley TJ, Panageas KS, Pentsova EI, Mellinghoff IK, Nolan C, Gavrilovic I, DeAngelis LM, Abrey LE, Holland EC, Omuro A, et al: Phase I clinical trial of temsirolimus and perifosine for recurrent glioblastoma. Ann Clin Transl Neurol. 7:429–436. 2020.PubMed/NCBI View Article : Google Scholar | |
Schiff D, Jaeckle KA, Anderson SK, Galanis E, Giannini C, Buckner JC, Stella P, Flynn PJ, Erickson BJ, Schwerkoske JF, et al: Phase 1/2 trial of temsirolimus and sorafenib in the treatment of patients with recurrent glioblastoma: North central cancer treatment group study/alliance N0572. Cancer. 124:1455–1463. 2018.PubMed/NCBI View Article : Google Scholar | |
Lin Z, Xu H, Yang R, Li Z, Zheng H, Zhang Z, Peng J, Zhang X, Qi S, Liu Y and Huang G: Effective treatment of a BRAF V600E-mutant epithelioid glioblastoma patient by vemurafenib: a case report. Anticancer Drugs. 33:100–104. 2022.PubMed/NCBI View Article : Google Scholar | |
Herrera-Rios D, Li G, Khan D, Tsiampali J, Nickel AC, Aretz P, Hewera M, Suwala AK, Jiang T, Steiger HJ, et al: A computational guided, functional validation of a novel therapeutic antibody proposes Notch signaling as a clinical relevant and druggable target in glioma. Sci Rep. 10(16218)2020.PubMed/NCBI View Article : Google Scholar | |
Bogdahn U, Hau P, Stockhammer G, Venkataramana NK, Mahapatra AK, Suri A, Balasubramaniam A, Nair S, Oliushine V, Parfenov V, et al: Targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: Results of a randomized and controlled phase IIb study. Neuro Oncol. 13:132–142. 2011.PubMed/NCBI View Article : Google Scholar | |
Hadizadeh M, AminJafari A, Parvizpour S and Ghasemi S: Novel targets to overcome antiangiogenesis therapy resistance in glioblastoma multiforme: Systems biology approach and suggestion of therapy by galunisertib. Cell Biol Int. 46:1649–1660. 2022.PubMed/NCBI View Article : Google Scholar | |
Wick A, Desjardins A, Suarez C, Forsyth P, Gueorguieva I, Burkholder T, Cleverly AL, Estrem ST, Wang S, Lahn MM, et al: Phase 1b/2a study of galunisertib, a small molecule inhibitor of transforming growth factor-beta receptor I, in combination with standard temozolomide-based radiochemotherapy in patients with newly diagnosed malignant glioma. Invest New Drugs. 38:1570–1579. 2020.PubMed/NCBI View Article : Google Scholar | |
Hsu SY, Lee SC, Liu HC, Peng SF, Chueh FS, Lu TJ, Lee HT and Chou YC: Phenethyl isothiocyanate suppresses the proinflammatory cytokines in human glioblastoma cells through the PI3K/Akt/NF-κB signaling pathway in vitro. Oxid Med Cell Longev. 2022(2108289)2022.PubMed/NCBI View Article : Google Scholar | |
Li S, He Y, Chen K, Sun J, Zhang L, He Y, Yu H and Li Q: RSL3 drives ferroptosis through NF-κB pathway activation and GPX4 depletion in glioblastoma. Oxid Med Cell Longev. 2021(2915019)2021.PubMed/NCBI View Article : Google Scholar | |
Volmar MNM, Cheng J, Alenezi H, Richter S, Haug A, Hassan Z, Goldberg M, Li Y, Hou M, Herold-Mende C, et al: Cannabidiol converts NF-κB into a tumor suppressor in glioblastoma with defined antioxidative properties. Neuro Oncol. 23:1898–1910. 2021.PubMed/NCBI View Article : Google Scholar | |
Navone SE, Guarnaccia L, Cordiglieri C, Crisà FM, Caroli M, Locatelli M, Schisano L, Rampini P, Miozzo M, La Verde N, et al: Aspirin affects tumor angiogenesis and sensitizes human glioblastoma endothelial cells to temozolomide, bevacizumab, and sunitinib, impairing vascular endothelial growth factor-related signaling. World Neurosurg. 120:e380–e391. 2018.PubMed/NCBI View Article : Google Scholar | |
Kast RE: Adding high-dose celecoxib to increase effectiveness of standard glioblastoma chemoirradiation. Ann Pharm Fr. 79:481–488. 2021.PubMed/NCBI View Article : Google Scholar | |
Yin D, Jin G, He H, Zhou W, Fan Z, Gong C, Zhao J and Xiong H: Celecoxib reverses the glioblastoma chemo-resistance to temozolomide through mitochondrial metabolism. Aging (Albany NY). 13:21268–21282. 2021.PubMed/NCBI View Article : Google Scholar | |
Pantovic A, Bosnjak M, Arsikin K, Kosic M, Mandic M, Ristic B, Tosic J, Grujicic D, Isakovic A, Micic N, et al: In vitro antiglioma action of indomethacin is mediated via AMP-activated protein kinase/mTOR complex 1 signalling pathway. Int J Biochem Cell Biol. 83:84–96. 2017.PubMed/NCBI View Article : Google Scholar | |
Allani SK, Weissbach H and Lopez Toledano MA: Sulindac induces differentiation of glioblastoma stem cells making them more sensitive to oxidative stress. Neoplasma. 65:376–388. 2018.PubMed/NCBI View Article : Google Scholar | |
Qiu J, Shi Z and Jiang J: Cyclooxygenase-2 in glioblastoma multiforme. Drug Discov Today. 22:148–156. 2017.PubMed/NCBI View Article : Google Scholar | |
Li H, Jiao S, Li X, Banu H, Hamal S and Wang X: Therapeutic effects of antibiotic drug tigecycline against cervical squamous cell carcinoma by inhibiting Wnt/β-catenin signaling. Biochem Biophys Res Commun. 467:14–20. 2015.PubMed/NCBI View Article : Google Scholar | |
Wieland A, Trageser D, Gogolok S, Reinartz R, Höfer H, Keller M, Leinhaas A, Schelle R, Normann S, Klaas L, et al: Anticancer effects of niclosamide in human glioblastoma. Clin Cancer Res. 19:4124–4136. 2013.PubMed/NCBI View Article : Google Scholar | |
Li H, Liu S, Jin R, Xu H, Li Y, Chen Y and Zhao G: Pyrvinium pamoate regulates MGMT expression through suppressing the Wnt/β-catenin signaling pathway to enhance the glioblastoma sensitivity to temozolomide. Cell Death Discov. 7(288)2021.PubMed/NCBI View Article : Google Scholar | |
Liu Y, Fang S, Sun Q and Liu B: Anthelmintic drug ivermectin inhibits angiogenesis, growth and survival of glioblastoma through inducing mitochondrial dysfunction and oxidative stress. Biochem Biophys Res Commun. 480:415–421. 2016.PubMed/NCBI View Article : Google Scholar | |
Hajikhani B, Nasiri MJ, Hosseini SS, Khalili F, Karimi-Yazdi M, Hematian A, Nojookambari NY, Goudarzi M, Dadashi M and Mirsaeidi M: Clofazimine susceptibility testing of Mycobacterium avium complex and Mycobacterium abscessus: A meta-analysis study. J Glob Antimicrob Resist. 26:188–193. 2021.PubMed/NCBI View Article : Google Scholar | |
Park L, Wallace CE, Vasile G and Buckley C: A case of lepromatous leprosy with erythema nodosum leprosum. Cureus. 15(e33846)2023.PubMed/NCBI View Article : Google Scholar | |
Ahmed K, Koval A, Xu J, Bodmer A and Katanaev VL: Towards the first targeted therapy for triple-negative breast cancer: Repositioning of clofazimine as a chemotherapy-compatible selective Wnt pathway inhibitor. Cancer Lett. 449:45–55. 2019.PubMed/NCBI View Article : Google Scholar | |
Xu J, Koval A and Katanaev VL: Beyond TNBC: Repositioning of clofazimine against a broad range of Wnt-dependent cancers. Front Oncol. 10(602817)2020.PubMed/NCBI View Article : Google Scholar | |
Keswani RK, Tian C, Peryea T, Girish G, Wang X and Rosania GR: Repositioning clofazimine as a macrophage-targeting photoacoustic contrast agent. Sci Rep. 6(23528)2016.PubMed/NCBI View Article : Google Scholar | |
Trexel J, Yoon GS, Keswani RK, McHugh C, Yeomans L, Vitvitsky V, Banerjee R, Sud S, Sun Y, Rosania GR and Stringer KA: Macrophage-mediated clofazimine sequestration is accompanied by a shift in host energy metabolism. J Pharm Sci. 106:1162–1174. 2017.PubMed/NCBI View Article : Google Scholar | |
Yoon GS, Sud S, Keswani RK, Baik J, Standiford TJ, Stringer KA and Rosania GR: Phagocytosed clofazimine biocrystals can modulate innate immune signaling by inhibiting TNFα and boosting IL-1RA secretion. Mol Pharm. 12:2517–2527. 2015.PubMed/NCBI View Article : Google Scholar | |
Geribaldi-Doldán N, Fernández-Ponce C, Quiroz RN, Sánchez-Gomar I, Escorcia LG, Velásquez EP and Quiroz EN: The role of microglia in glioblastoma. Front Oncol. 10(603495)2021.PubMed/NCBI View Article : Google Scholar | |
Castellani G, Croese T, Peralta Ramos JM and Schwartz M: Transforming the understanding of brain immunity. Science. 380(eabo7649)2023.PubMed/NCBI View Article : Google Scholar | |
Rustenhoven J and Kipnis J: Brain borders at the central stage of neuroimmunology. Nature. 612:417–429. 2022.PubMed/NCBI View Article : Google Scholar : De Leo A, Ugolini A and Veglia F: Myeloid cells in glioblastoma microenvironment. Cells 10: 18, 2020. | |
Lewellis SW and Knaut H: Attractive guidance: How the chemokine SDF1/CXCL12 guides different cells to different locations. Semin Cell Dev Biol. 23:333–340. 2012.PubMed/NCBI View Article : Google Scholar | |
Giordano FA, Link B, Glas M, Herrlinger U, Wenz F, Umansky V, Brown JM and Herskind C: Targeting the post-irradiation tumor microenvironment in glioblastoma via inhibition of CXCL12. Cancers (Basel). 11(272)2019.PubMed/NCBI View Article : Google Scholar | |
Wang S, Chen C, Li J, Xu X, Chen W and Li F: The CXCL12/CXCR4 axis confers temozolomide resistance to human glioblastoma cells via up-regulation of FOXM1. J Neurol Sci. 414(116837)2020.PubMed/NCBI View Article : Google Scholar | |
Dolina JS, Van Braeckel-Budimir N, Thomas GD and Salek-Ardakani S: CD8+ T cell exhaustion in cancer. Front Immunol. 12(715234)2021.PubMed/NCBI View Article : Google Scholar | |
Belk JA, Daniel B and Satpathy AT: Epigenetic regulation of T cell exhaustion. Nat Immunol. 23:848–860. 2022.PubMed/NCBI View Article : Google Scholar | |
Yang T, Kong Z and Ma W: PD-1/PD-L1 immune checkpoint inhibitors in glioblastoma: Clinical studies, challenges and potential. Hum Vaccin Immunother. 17:546–553. 2021.PubMed/NCBI View Article : Google Scholar | |
Arrieta VA, Dmello C, McGrail DJ, Brat DJ, Lee-Chang C, Heimberger AB, Chand D, Stupp R and Sonabend AM: Immune checkpoint blockade in glioblastoma: From tumor heterogeneity to personalized treatment. J Clin Invest. 133(e163447)2023.PubMed/NCBI View Article : Google Scholar | |
Caramanna I, de Kort JM, Brandes AA, Taal W, Platten M, Idbaih A, Frenel JS, Wick W, Preetha CJ, Bendszus M, et al: Corticosteroids use and neurocognitive functioning in patients with recurrent glioblastoma: Evidence from European organization for research and treatment of cancer (EORTC) trial 26101. Neurooncol Pract. 9:310–316. 2022.PubMed/NCBI View Article : Google Scholar | |
Pitter KL, Tamagno I, Alikhanyan K, Hosni-Ahmed A, Pattwell SS, Donnola S, Dai C, Ozawa T, Chang M, Chan TA, et al: Corticosteroids compromise survival in glioblastoma. Brain. 139:1458–1471. 2016.PubMed/NCBI View Article : Google Scholar | |
Klement RJ and Champ CE: Corticosteroids compromise survival in glioblastoma in part through their elevation of blood glucose levels. Brain. 140(e16)2017.PubMed/NCBI View Article : Google Scholar | |
Yovino S, Kleinberg L, Grossman SA, Narayanan M and Ford E: The etiology of treatment-related lymphopenia in patients with malignant gliomas: Modeling radiation dose to circulating lymphocytes explains clinical observations and suggests methods of modifying the impact of radiation on immune cells. Cancer Invest. 31:140–144. 2013.PubMed/NCBI View Article : Google Scholar | |
Kut C and Kleinberg L: Radiotherapy, lymphopenia and improving the outcome for glioblastoma: A narrative review. Chin Clin Oncol. 12(4)2023.PubMed/NCBI View Article : Google Scholar | |
Saito T, Sugiyama K, Hama S, Yamasaki F, Takayasu T, Nosaka R, Muragaki Y, Kawamata T and Kurisu K: Prognostic importance of temozolomide-induced neutropenia in glioblastoma, IDH-wildtype patients. Neurosurg Rev. 41:621–628. 2018.PubMed/NCBI View Article : Google Scholar | |
Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM, et al: Neural stem cells display extensive tropism for pathology in adult brain: Evidence from intracranial gliomas. Proc Natl Acad Sci USA. 97:12846–12851. 2000.PubMed/NCBI View Article : Google Scholar | |
Snyder EY, Park KI, Flax JD, Liu S, Rosario CM, Yandava BD and Aurora S: Potential of neural ‘stem-like’ cells for gene therapy and repair of the degenerating central nervous system. Adv Neurol. 72:121–132. 1997.PubMed/NCBI | |
Bryukhovetskiy IS, Mischenko PV, Tolok EV, Zaitcev SV, Khotimchenko YS and Bryukhovetskiy AS: Directional migration of adult hematopoeitic progenitors to C6 glioma in vitro. Oncol Lett. 9:1839–1844. 2015.PubMed/NCBI View Article : Google Scholar | |
Hass R, von der Ohe J and Dittmar T: Hybrid formation and fusion of cancer cells in vitro and in vivo. Cancers (Basel). 13(4496)2021.PubMed/NCBI View Article : Google Scholar | |
Goldenberg DM: Horizontal transmission of malignancy by cell-cell fusion. Expert Opin Biol Ther. 12 (Suppl 1):S133–S139. 2012.PubMed/NCBI View Article : Google Scholar | |
Sun Z, Wang L, Zhou Y, Dong L, Ma W, Lv L, Zhang J and Wang X: Glioblastoma stem cell-derived exosomes enhance stemness and tumorigenicity of glioma cells by transferring Notch1 protein. Cell Mol Neurobiol. 40:767–784. 2020.PubMed/NCBI View Article : Google Scholar | |
Khan F, Pang L, Dunterman M, Lesniak MS, Heimberger AB and Chen P: Macrophages and microglia in glioblastoma: Heterogeneity, plasticity, and therapy. J Clin Invest. 133(e163446)2023.PubMed/NCBI View Article : Google Scholar | |
Wang G, Zhong K, Wang Z, Zhang Z, Tang X, Tong A and Zhou L: Tumor-associated microglia and macrophages in glioblastoma: From basic insights to therapeutic opportunities. Front Immunol. 13(964898)2022.PubMed/NCBI View Article : Google Scholar | |
Bryukhovetskiy IS, Mischenko PV, Tolok EV, Zaitcev SV, Khotimchenko YS and Bryukhovetskiy AS: Directional migration of adult hematopoeitic progenitors to C6 glioma in vitro. Oncol Lett. 9:1839–1844. 2015.PubMed/NCBI View Article : Google Scholar | |
Lee-Six H, Øbro NF, Shepherd MS, Grossmann S, Dawson K, Belmonte M, Osborne RJ, Huntly BJP, Martincorena I, Anderson E, et al: Population dynamics of normal human blood inferred from somatic mutations. Nature. 561:473–478. 2018.PubMed/NCBI View Article : Google Scholar | |
Jaiswal S: Clonal hematopoiesis and nonhematologic disorders. Blood. 136:1606–1614. 2020.PubMed/NCBI View Article : Google Scholar | |
Kast RE, Hill QA, Wion D, Mellstedt H, Focosi D, Karpel-Massler G, Heiland T and Halatsch ME: Glioblastoma-synthesized G-CSF and GM-CSF contribute to growth and immunosuppression: Potential therapeutic benefit from dapsone, fenofibrate, and ribavirin. Tumour Biol. 39(1010428317699797)2017.PubMed/NCBI View Article : Google Scholar | |
Bryukhovetskiy I, Manzhulo I, Mischenko P, Milkina E, Dyuizen I, Bryukhovetskiy A and Khotimchenko Y: Cancer stem cells and microglia in the processes of glioblastoma multiforme invasive growth. Oncol Lett. 12:1721–1728. 2016.PubMed/NCBI View Article : Google Scholar | |
Zaitsev S, Sharma HS, Sharma A, Manzhulo I, Polevshchikov A, Kudriavtsev I, Khotimchenko Y, Pak O, Bryukhovetskiy A and Bryukhovetskiy I: Pro-inflammatory modification of cancer cells microsurroundings increases the survival rates for rats with low differentiated malignant glioma of brain. Int Rev Neurobiol. 151:253–279. 2020.PubMed/NCBI View Article : Google Scholar | |
Choe JH, Watchmaker PB, Simic MS, Gilbert RD, Li AW, Krasnow NA, Downey KM, Yu W, Carrera DA, Celli A, et al: SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Sci Transl Med. 13(eabe7378)2021.PubMed/NCBI View Article : Google Scholar | |
Meister H, Look T, Roth P, Pascolo S, Sahin U, Lee S, Hale BD, Snijder B, Regli L, Ravi VM, et al: Multifunctional mRNA-based CAR T cells display promising antitumor activity against glioblastoma. Clin Cancer Res. 28:4747–4756. 2022.PubMed/NCBI View Article : Google Scholar | |
Maggs L, Cattaneo G, Dal AE, Moghaddam AS and Ferrone S: CAR T cell-based immunotherapy for the treatment of glioblastoma. Front Neurosci. 15(662064)2021.PubMed/NCBI View Article : Google Scholar | |
Wang D, Starr R, Chang WC, Aguilar B, Alizadeh D, Wright SL, Yang X, Brito A, Sarkissian A, Ostberg JR, et al: Chlorotoxin-directed CAR T cells for specific and effective targeting of glioblastoma. Sci Transl Med. 12(eaaw2672)2020.PubMed/NCBI View Article : Google Scholar | |
Agliardi G, Liuzzi AR, Hotblack A, De Feo D, Núñez N, Stowe CL, Friebel E, Nannini F, Rindlisbacher L, Roberts TA, et al: Intratumoral IL-12 delivery empowers CAR-T cell immunotherapy in a pre-clinical model of glioblastoma. Nat Commun. 12(444)2021.PubMed/NCBI View Article : Google Scholar | |
Brown CE, Rodriguez A, Palmer J, Ostberg JR, Naranjo A, Wagner JR, Aguilar B, Starr R, Weng L, Synold TW, et al: Off-the-shelf, steroid-resistant, IL13Rα2-specific CAR T cells for treatment of glioblastoma. Neuro Oncol. 24:1318–1330. 2022.PubMed/NCBI View Article : Google Scholar | |
Wang G, Zhang Z, Zhong K, Wang Z, Yang N, Tang X, Li H, Lu Q, Wu Z, Yuan B, et al: CXCL11-armed oncolytic adenoviruses enhance CAR-T cell therapeutic efficacy and reprogram tumor microenvironment in glioblastoma. Mol Ther. 31:134–153. 2023.PubMed/NCBI View Article : Google Scholar | |
Ghouzlani A, Kandoussi S, Tall M, Reddy KP, Rafii S and Badou A: Immune checkpoint inhibitors in human glioma microenvironment. Front Immunol. 12(679425)2021.PubMed/NCBI View Article : Google Scholar | |
Gatto L, Franceschi E, Di Nunno V, Maggio I, Lodi R and Brandes AA: Engineered CAR-T and novel CAR-based therapies to fight the immune evasion of glioblastoma: Gutta cavat lapidem. Expert Rev Anticancer Ther. 21:1333–1353. 2021.PubMed/NCBI View Article : Google Scholar | |
Bryukhovetskiy I: Cell-based immunotherapy of glioblastoma multiforme. Oncol Lett. 23(133)2022.PubMed/NCBI View Article : Google Scholar | |
Baharom F, Ramirez-Valdez RA, Khalilnezhad A, Khalilnezhad S, Dillon M, Hermans D, Fussell S, Tobin KKS, Dutertre CA, Lynn GM, et al: Systemic vaccination induces CD8+ T cells and remodels the tumor microenvironment. Cell. 185:4317–4332.e15. 2022.PubMed/NCBI View Article : Google Scholar | |
Liau LM, Ashkan K, Brem S, Campian JL, Trusheim JE, Iwamoto FM, Tran DD, Ansstas G, Cobbs CS, Heth JA, et al: Association of autologous tumor lysate-loaded dendritic cell vaccination with extension of survival among patients with newly diagnosed and recurrent glioblastoma: A phase 3 prospective externally controlled cohort trial. JAMA Oncol. 9:112–121. 2023.PubMed/NCBI View Article : Google Scholar | |
Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, Oliveira G, Giobbie-Hurder A, Felt K, Gjini E, et al: Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 565:234–239. 2019.PubMed/NCBI View Article : Google Scholar | |
Chen KS, Reinshagen C, Van Schaik TA, Rossignoli F, Borges P, Mendonca NC, Abdi R, Simon B, Reardon DA, Wakimoto H and Shah K: Bifunctional cancer cell-based vaccine concomitantly drives direct tumor killing and antitumor immunity. Sci Transl Med. 15(eabo4778)2023.PubMed/NCBI View Article : Google Scholar | |
Wang J, Weiss T, Neidert MC, Toussaint NC, Naghavian R, Sellés Moreno C, Foege M, Tomas Ojer P, Medici G, Jelcic I, et al: Vaccination with designed neopeptides induces intratumoral, cross-reactive CD4+ T-cell responses in glioblastoma. Clin Cancer Res. 28:5368–5382. 2022.PubMed/NCBI View Article : Google Scholar | |
Yu TW, Chueh HY, Tsai CC, Lin CT and Qiu JT: Novel GM-CSF-based vaccines: One small step in GM-CSF gene optimization, one giant leap for human vaccines. Hum Vaccin Immunother. 12:3020–3028. 2016.PubMed/NCBI View Article : Google Scholar | |
Li L, Zhou J, Dong X, Liao Q, Zhou D and Zhou Y: Dendritic cell vaccines for glioblastoma fail to complete clinical translation: Bottlenecks and potential countermeasures. Int Immunopharmacol. 109(108929)2022.PubMed/NCBI View Article : Google Scholar | |
Liau LM, Ashkan K, Tran DD, Campian JL, Trusheim JE, Cobbs CS, Heth JA, Salacz M, Taylor S, D'Andre SD, et al: First results on survival from a large phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med. 16(142)2018.PubMed/NCBI View Article : Google Scholar | |
Zhu P, Li SY, Ding J, Fei Z, Sun SN, Zheng ZH, Wei D, Jiang J, Miao JL, Li SZ, et al: Combination immunotherapy of glioblastoma with dendritic cell cancer vaccines, anti-PD-1 and poly I:C. J Pharm Anal. 13:616–624. 2023.PubMed/NCBI View Article : Google Scholar | |
Medikonda R, Dunn G, Rahman M, Fecci P and Lim M: A review of glioblastoma immunotherapy. J Neurooncol. 151:41–53. 2021.PubMed/NCBI View Article : Google Scholar |