1
|
Lemmerman LR, Balch MHH, Moore JT,
Alzate-Correa D, Rincon-Benavides MA, Salazar-Puerta A, Gnyawali S,
Harris HN, Lawrence W, Ortega-Pineda L, et al:
Nanotransfection-based vasculogenic cell reprogramming drives
functional recovery in a mouse model of ischemic stroke. Sci Adv.
7(eabd4735)2021.PubMed/NCBI View Article : Google Scholar
|
2
|
Mahmood A and Muir KW: Tenecteplase or
alteplase: What is the thrombolytic agent of the future? Curr Treat
Options Neurol. 24:503–513. 2022.PubMed/NCBI View Article : Google Scholar
|
3
|
Bayraktutan U: Endothelial progenitor
cells: Potential novel therapeutics for ischaemic stroke. Pharmacol
Res. 144:181–191. 2019.PubMed/NCBI View Article : Google Scholar
|
4
|
Mokin M, Ansari SA, McTaggart RA, Bulsara
KR, Goyal M, Chen M and Fraser JF: Society of NeuroInterventional
Surgery. Indications for thrombectomy in acute ischemic stroke from
emergent large vessel occlusion (ELVO): Report of the SNIS
standards and guidelines committee. J Neurointerv Surg. 11:215–220.
2019.PubMed/NCBI View Article : Google Scholar
|
5
|
Banjara M and Ghosh C: Sterile
neuroinflammation and strategies for therapeutic intervention. Int
J Inflam. 2017(8385961)2017.PubMed/NCBI View Article : Google Scholar
|
6
|
Gülke E, Gelderblom M and Magnus T: Danger
signals in stroke and their role on microglia activation after
ischemia. Ther Adv Neurol Disord.
11(1756286418774254)2018.PubMed/NCBI View Article : Google Scholar
|
7
|
Jurcau A and Ardelean IA: Molecular
pathophysiological mechanisms of ischemia/reperfusion injuries
after recanalization therapy for acute ischemic stroke. J Integr
Neurosci. 20:727–744. 2021.PubMed/NCBI View Article : Google Scholar
|
8
|
Xu JY, Liu FY, Liu SX, Xie LZ, Li J, Ma YT
and Han FJ: Plant-derived Chinese medicine monomers on ovarian
cancer via the Wnt/β-catenin signaling pathway: Review of
mechanisms and prospects. J Oncol. 2021(6852867)2021.PubMed/NCBI View Article : Google Scholar
|
9
|
Yi S, Lin Q, Zhang X, Wang J, Miao Y and
Tan N: Selection and validation of appropriate reference genes for
quantitative RT-PCR analysis in Rubia yunnanensis diels
based on transcriptome data. Biomed Res Int.
2020(5824841)2020.PubMed/NCBI View Article : Google Scholar
|
10
|
Zhang R, Miao Y, Chen L, Yi S and Tan N:
De novo transcriptome analysis reveals putative genes involved in
anthraquinone biosynthesis in Rubia yunnanensis. Genes
(Basel). 13(521)2022.PubMed/NCBI View Article : Google Scholar
|
11
|
Luo L, Lü L, Lu Y, Zhang L, Li B, Guo K,
Chen L, Wang Y, Shao Y and Xu J: Effects of hypoxia on progranulin
expression in HT22 mouse hippocampal cells. Mol Med Rep.
9:1675–1680. 2014.PubMed/NCBI View Article : Google Scholar
|
12
|
Zelena E, Dunn WB, Broadhurst D,
Francis-McIntyre S, Carroll KM, Begley P, O'Hagan S, Knowles JD and
Halsall A: HUSERMET Consortium. Wilson ID and Kell DB: Development
of a robust and repeatable UPLC-MS method for the long-term
metabolomic study of human serum. Anal Chem. 81:1357–1364.
2009.PubMed/NCBI View Article : Google Scholar
|
13
|
Want EJ, Masson P, Michopoulos F, Wilson
ID, Theodoridis G, Plumb RS, Shockcor J, Loftus N, Holmes E and
Nicholson JK: Global metabolic profiling of animal and human
tissues via UPLC-MS. Nat Protoc. 8:17–32. 2013.PubMed/NCBI View Article : Google Scholar
|
14
|
Rasmussen JA, Villumsen KR, Ernst M,
Hansen M, Forberg T, Gopalakrishnan S, Gilbert MTP, Bojesen AM,
Kristiansen K and Limborg MT: A multi-omics approach unravels
metagenomic and metabolic alterations of a probiotic and synbiotic
additive in rainbow trout (Oncorhynchus mykiss). Microbiome.
10(21)2022.PubMed/NCBI View Article : Google Scholar
|
15
|
Navarro-Reig M, Jaumot J, Garcia-Reiriz A
and Tauler R: Evaluation of changes induced in rice metabolome by
Cd and Cu exposure using LC-MS with XCMS and MCR-ALS data analysis
strategies. Anal Bioanal Chem. 407:8835–8847. 2015.PubMed/NCBI View Article : Google Scholar
|
16
|
Wishart DS, Tzur D, Knox C, Eisner R, Guo
AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, et al: HMDB:
The human metabolome database. Nucleic Acids Res. 35 (Database
Issue):D521–D526. 2007.PubMed/NCBI View Article : Google Scholar
|
17
|
Horai H, Arita M, Kanaya S, Nihei Y, Ikeda
T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, et al: MassBank:
A public repository for sharing mass spectral data for life
sciences. J Mass Spectrom. 45:703–714. 2010.PubMed/NCBI View Article : Google Scholar
|
18
|
Sud M, Fahy E, Cotter D, Brown A, Dennis
EA, Glass CK, Merrill AH Jr, Murphy RC, Raetz CR, Russell DW and
Subramaniam S: LMSD: LIPID MAPS structure database. Nucleic Acids
Res. 35 (Database Issue):D527–D532. 2007.PubMed/NCBI View Article : Google Scholar
|
19
|
Abdelrazig S, Safo L, Rance GA, Fay MW,
Theodosiou E, Topham PD, Kim DH and Fernández-Castané A: Metabolic
characterisation of Magnetospirillum gryphiswaldense MSR-1 using
LC-MS-based metabolite profiling. RSC Adv. 10:32548–32560.
2020.PubMed/NCBI View Article : Google Scholar
|
20
|
Ogata H, Goto S, Sato K, Fujibuchi W, Bono
H and Kanehisa M: KEGG: Kyoto encyclopedia of genes and genomes.
Nucleic Acids Res. 27:29–34. 1999.PubMed/NCBI View Article : Google Scholar
|
21
|
Thévenot EA, Roux A, Xu Y, Ezan E and
Junot C: Analysis of the human adult urinary metabolome variations
with age, body mass index, and gender by implementing a
comprehensive workflow for univariate and OPLS statistical
analyses. J Proteome Res. 14:3322–3335. 2015.PubMed/NCBI View Article : Google Scholar
|
22
|
Xia J and Wishart DS: Web-based inference
of biological patterns, functions and pathways from metabolomic
data using MetaboAnalyst. Nat Protoc. 6:743–760. 2011.PubMed/NCBI View Article : Google Scholar
|
23
|
Park JH, Kim DW, Shin MJ, Park J, Han KH,
Lee KW, Park JK, Choi YJ, Yeo HJ, Yeo EJ, et al: Tat-indoleamine
2,3-dioxygenase 1 elicits neuroprotective effects on ischemic
injury. BMB Rep. 53:582–587. 2020.PubMed/NCBI View Article : Google Scholar
|
24
|
Jia L, Chen Y, Tian YH and Zhang G: MAPK
pathway mediates the anti-oxidative effect of chicoric acid against
cerebral ischemia-reperfusion injury in vivo. Exp Ther Med.
15:1640–1646. 2018.PubMed/NCBI View Article : Google Scholar
|
25
|
Kwon SH, Hong SI, Kim JA, Jung YH, Kim SY,
Kim HC, Lee SY and Jang CG: The neuroprotective effects of Lonicera
japonica THUNB. Against hydrogen peroxide-induced apoptosis via
phosphorylation of MAPKs and PI3K/Akt in SH-SY5Y cells. Food Chem
Toxicol. 49:1011–1019. 2011.PubMed/NCBI View Article : Google Scholar
|
26
|
Zhu N, Cai C, Zhou A, Zhao X, Xiang Y and
Zeng C: Schisandrin B prevents hind limb from
ischemia-reperfusion-induced oxidative stress and inflammation via
MAPK/NF-κB pathways in rats. Biomed Res Int.
2017(4237973)2017.PubMed/NCBI View Article : Google Scholar
|
27
|
Mallik SB, Mudgal J, Kinra M, Hall S,
Grant GD, Anoopkumar-Dukie S, Nampoothiri M, Zhang Y and Arora D:
Involvement of indoleamine 2,3-dioxygenase (IDO) and brain-derived
neurotrophic factor (BDNF) in the neuroprotective mechanisms of
ferulic acid against depressive-like behaviour. Metab Brain Dis.
38:2243–2254. 2023.PubMed/NCBI View Article : Google Scholar
|
28
|
Li G, Cheng J, Yang L, Chen P and Duan X:
Ethanol extract of Rubia yunnanensis inhibits carotid
atherosclerosis via the PI3K/AKT signaling pathway. Biomed Rep.
20(19)2023.PubMed/NCBI View Article : Google Scholar
|
29
|
Zhao J, Liu L, Zhang L, Lv J, Guo X, Li X
and Zhao T: Sodium ferulate attenuates high-glucose-induced
oxidative injury in HT22 hippocampal cells. Exp Ther Med.
18:2015–2020. 2019.PubMed/NCBI View Article : Google Scholar
|
30
|
Li S, Jiang D, Ehlerding EB, Rosenkrans
ZT, Engle JW, Wang Y, Liu H, Ni D and Cai W: Intrathecal
administration of nanoclusters for protecting neurons against
oxidative stress in cerebral ischemia/reperfusion injury. ACS Nano.
13:13382–13389. 2019.PubMed/NCBI View Article : Google Scholar
|
31
|
Pathakoti K, Goodla L, Manubolu M and
Tencomnao T: Metabolic alterations and the protective effect of
punicalagin against glutamate-induced oxidative toxicity in HT22
cells. Neurotox Res. 31:521–531. 2017.PubMed/NCBI View Article : Google Scholar
|
32
|
Kincses ZT, Toldi J and Vécsei L:
Kynurenines, neurodegeneration and Alzheimer's disease. J Cell Mol
Med. 14:2045–2054. 2010.PubMed/NCBI View Article : Google Scholar
|
33
|
Campesan S, Green EW, Breda C,
Sathyasaikumar KV, Muchowski PJ, Schwarcz R, Kyriacou CP and
Giorgini F: The kynurenine pathway modulates neurodegeneration in a
Drosophila model of Huntington's disease. Curr Biol. 21:961–966.
2011.PubMed/NCBI View Article : Google Scholar
|
34
|
Meier-Stephenson FS, Meier-Stephenson VC,
Carter MD, Meek AR, Wang Y, Pan L, Chen Q, Jacobo S, Wu F, Lu E, et
al: Alzheimer's disease as an autoimmune disorder of innate
immunity endogenously modulated by tryptophan metabolites.
Alzheimers Dement (N Y). 8(e12283)2022.PubMed/NCBI View Article : Google Scholar
|
35
|
Roth W, Zadeh K, Vekariya R, Ge Y and
Mohamadzadeh M: Tryptophan metabolism and gut-brain homeostasis.
Int J Mol Sci. 22(2973)2021.PubMed/NCBI View Article : Google Scholar
|
36
|
Carhart-Harris RL and Nutt DJ: Serotonin
and brain function: A tale of two receptors. J Psychopharmacol.
31:1091–1120. 2017.PubMed/NCBI View Article : Google Scholar
|
37
|
Cowen P and Sherwood AC: The role of
serotonin in cognitive function: Evidence from recent studies and
implications for understanding depression. J Psychopharmacol.
27:575–583. 2013.PubMed/NCBI View Article : Google Scholar
|
38
|
Wang D, Wu J, Zhu P, Xie H, Lu L, Bai W,
Pan W, Shi R, Ye J, Xia B, et al: Tryptophan-rich diet ameliorates
chronic unpredictable mild stress induced depression- and
anxiety-like behavior in mice: The potential involvement of
gut-brain axis. Food Res Int. 157(111289)2022.PubMed/NCBI View Article : Google Scholar
|
39
|
Oğuz S, Aşgün HF and Büyük B:
Effectiveness of brain protection with
histidine-tryptophan-ketoglutarate solutions. Heart Surg Forum.
23:E510–E516. 2020.PubMed/NCBI View Article : Google Scholar
|
40
|
Deng WW and Ashihara H: Profiles of purine
metabolism in leaves and roots of Camellia sinensis seedlings.
Plant Cell Physiol. 51:2105–2118. 2010.PubMed/NCBI View Article : Google Scholar
|
41
|
Kawasaki H, Shimaoka M, Usuda Y and
Utagawa T: End-product regulation and kinetic mechanism of
guanosine-inosine kinase from Escherichia coli. Biosci Biotechnol
Biochem. 64:972–979. 2000.PubMed/NCBI View Article : Google Scholar
|
42
|
Glorieux GL, Dhondt AW, Jacobs P, Van
Langeraert J, Lameire NH, De Deyn PP and Vanholder RC: In vitro
study of the potential role of guanidines in leukocyte functions
related to atherogenesis and infection. Kidney Int. 65:2184–2192.
2004.PubMed/NCBI View Article : Google Scholar
|
43
|
Price CF, Burgess DJ and Kastellorizios M:
l-DOPA as a small molecule surrogate to promote angiogenesis and
prevent dexamethasone-induced ischemia. J Control Release.
235:176–181. 2016.PubMed/NCBI View Article : Google Scholar
|
44
|
Talhada D, Marklund N, Wieloch T, Kuric E
and Ruscher K: Plasticity-enhancing effects of levodopa treatment
after stroke. Int J Mol Sci. 22(10226)2021.PubMed/NCBI View Article : Google Scholar
|
45
|
Lotsios NS, Arvanitis N, Charonitakis AG,
Mpekoulis G, Frakolaki E, Vassilaki N, Sideris DC and
Vassilacopoulou D: Expression of human L-dopa decarboxylase (DDC)
under conditions of oxidative stress. Curr Issues Mol Biol.
45:10179–10192. 2023.PubMed/NCBI View Article : Google Scholar
|
46
|
Zanatta A, Rodrigues MDN, Amaral AU, Souza
DG, Quincozes-Santos A and Wajner M: Ornithine and homocitrulline
impair mitochondrial function, decrease antioxidant defenses and
induce cell death in menadione-stressed rat cortical astrocytes:
Potential mechanisms of neurological dysfunction in HHH syndrome.
Neurochem Res. 41:2190–2198. 2016.PubMed/NCBI View Article : Google Scholar
|
47
|
Fonteh AN, Harrington RJ, Tsai A, Liao P
and Harrington MG: Free amino acid and dipeptide changes in the
body fluids from Alzheimer's disease subjects. Amino Acids.
32:213–224. 2007.PubMed/NCBI View Article : Google Scholar
|
48
|
No authors listed. Overall evaluations of
carcinogenicity: An updating of IARC Monographs volumes 1 to 42.
IARC Monogr Eval Carcinog Risks Hum Suppl. 7:1–440. 1987.PubMed/NCBI
|
49
|
Zschocke S, Heidrich V and Kuhlmann E:
Mapping the spontaneous EEG in focal disorders. EEG EMG Z
Elektroenzephalogr Elektromyogr Verwandte Geb. 21:233–242.
1990.PubMed/NCBI(In German).
|
50
|
Jacobs B, Schlögl S, Strobl CD, Völkl S,
Stoll A, Mougiakakos D, Malmberg KJ, Mackensen A and Aigner M: The
Oncometabolite 5'-deoxy-5'-methylthioadenosine blocks multiple
signaling pathways of nk cell activation. Front Immunol.
11(2128)2020.PubMed/NCBI View Article : Google Scholar
|
51
|
Zhang C, Gu H, Ren Y and Lu L:
GlcA-mediated glycerol-3-phosphate synthesis contributes to the
oxidation resistance of Aspergillus fumigatus via decreasing the
cellular ROS. Fungal Genet Biol. 149(103531)2021.PubMed/NCBI View Article : Google Scholar
|
52
|
Chen Y, Yao Q, Zhang L and Zeng P: HPLC
for simultaneous quantification of free mannose and glucose
concentrations in serum: Use in detection of ovarian cancer. Front
Chem. 11(1289211)2023.PubMed/NCBI View Article : Google Scholar
|
53
|
Guan X, Du Y, Ma R, Teng N, Ou S, Zhao H
and Li X: Construction of the XGBoost model for early lung cancer
prediction based on metabolic indices. BMC Med Inform Decis Mak.
23(107)2023.PubMed/NCBI View Article : Google Scholar
|
54
|
Turnbull PC, Dehghani AC, Theriau CF,
Connor MK and Perry CGR: Synergistic activation of mitochondrial
metabolism and the glutathione redox couple protects HepG2
hepatocarcinoma cells from palmitoylcarnitine-induced stress. Am J
Physiol Cell Physiol. 317:C1324–C1329. 2019.PubMed/NCBI View Article : Google Scholar
|
55
|
Brown AC: Cancer related to herbs and
dietary supplements: Online table of case reports. Part 5 of 5. J
Diet Suppl. 15:556–581. 2018.PubMed/NCBI View Article : Google Scholar
|
56
|
Jones RS, Ali M, Ioannides C, Styles JA,
Ashby J, Sulej J and Parke DV: The mutagenic and cell transforming
properties of shikimic acid and some of its bacterial and mammalian
metabolites. Toxicol Lett. 19:43–50. 1983.PubMed/NCBI View Article : Google Scholar
|
57
|
Stavric B and Stoltz DR: Shikimic acid.
Food Cosmet Toxicol. 14:141–145. 1976.PubMed/NCBI View Article : Google Scholar
|
58
|
Ma X and Ning S: Shikimic acid promotes
estrogen receptor(ER)-positive breast cancer cells proliferation
via activation of NF-κB signaling. Toxicol Lett. 312:65–71.
2019.PubMed/NCBI View Article : Google Scholar
|
59
|
Fine JM, Vrieze LA and Sorensen PW:
Evidence that petromyzontid lampreys employ a common migratory
pheromone that is partially comprised of bile acids. J Chem Ecol.
30:2091–2110. 2004.PubMed/NCBI View Article : Google Scholar
|
60
|
Ohdoi C, Nyhan WL and Kuhara T: Chemical
diagnosis of Lesch-Nyhan syndrome using gas chromatography-mass
spectrometry detection. J Chromatogr B Analyt Technol Biomed Life
Sci. 792:123–130. 2003.PubMed/NCBI View Article : Google Scholar
|
61
|
Palmatier RD, McCroskey RP and Abbott MT:
The enzymatic conversion of uracil 5-carboxylic acid to uracil and
carbon dioxide. J Biol Chem. 245:6706–6710. 1970.PubMed/NCBI
|
62
|
Liu H, Liu L and Visner GA: Nonviral gene
delivery with indoleamine 2,3-dioxygenase targeting pulmonary
endothelium protects against ischemia-reperfusion injury. Am J
Transplant. 7:2291–2300. 2007.PubMed/NCBI View Article : Google Scholar
|
63
|
Taguchi A, Hara A, Saito K, Hoshi M, Niwa
M, Seishima M and Mori H: Localization and spatiotemporal
expression of IDO following transient forebrain ischemia in
gerbils. Brain Res. 1217:78–85. 2008.PubMed/NCBI View Article : Google Scholar
|
64
|
Freewan M, Rees MD, Plaza TSS, Glaros E,
Lim YJ, Wang XS, Yeung AW, Witting PK, Terentis AC and Thomas SR:
Human indoleamine 2,3-dioxygenase is a catalyst of physiological
heme peroxidase reactions: Implications for the inhibition of
dioxygenase activity by hydrogen peroxide. J Biol Chem.
288:1548–1567. 2013.PubMed/NCBI View Article : Google Scholar
|
65
|
Taniguchi T, Sono M, Hirata F, Hayaishi O,
Tamura M, Hayashi K, Iizuka T and Ishimura Y: Indoleamine
2,3-dioxygenase. Kinetic studies on the binding of superoxide anion
and molecular oxygen to enzyme. J Biol Chem. 254:3288–3294.
1979.PubMed/NCBI
|
66
|
Grant RS, Naif H, Espinosa M and Kapoor V:
IDO induction in IFN-gamma activated astroglia: A role in improving
cell viability during oxidative stress. Redox Rep. 5:101–104.
2000.PubMed/NCBI View Article : Google Scholar
|
67
|
Guillemin GJ, Smythe G, Takikawa O and
Brew BJ: Expression of indoleamine 2,3-dioxygenase and production
of quinolinic acid by human microglia, astrocytes, and neurons.
Glia. 49:15–23. 2005.PubMed/NCBI View Article : Google Scholar
|
68
|
Hashimoto K, Mori S, Oda Y, Nakano A,
Sawamura T and Akagi M: Lectin-like oxidized low density
lipoprotein receptor 1-deficient mice show resistance to
instability-induced osteoarthritis. Scand J Rheumatol. 45:412–422.
2016.PubMed/NCBI View Article : Google Scholar
|
69
|
Akagi M, Kanata S, Mori S, Itabe H,
Sawamura T and Hamanishi C: Possible involvement of the oxidized
low-density lipoprotein/lectin-like oxidized low-density
lipoprotein receptor-1 system in pathogenesis and progression of
human osteoarthritis. Osteoarthritis Cartilage. 15:281–290.
2007.PubMed/NCBI View Article : Google Scholar
|
70
|
Hashimoto K, Oda Y, Nakamura F, Kakinoki R
and Akagi M: Lectin-like, oxidized low-density lipoprotein
receptor-1-deficient mice show resistance to age-related knee
osteoarthritis. Eur J Histochem. 61(2762)2017.PubMed/NCBI View Article : Google Scholar
|
71
|
Kattoor AJ, Pothineni NVK, Palagiri D and
Mehta JL: Oxidative stress in atherosclerosis. Curr Atheroscler
Rep. 19(42)2017.PubMed/NCBI View Article : Google Scholar
|
72
|
Mitra S, Deshmukh A, Sachdeva R, Lu J and
Mehta JL: Oxidized low-density lipoprotein and atherosclerosis
implications in antioxidant therapy. Am J Med Sci. 342:135–142.
2011.PubMed/NCBI View Article : Google Scholar
|
73
|
Li X, Tang X, Liu B, Zhang J, Zhang Y, Lv
H, Liu D, Mehta JL and Wang X: LOX-1 deletion attenuates myocardial
fibrosis in the aged mice, particularly those with hypertension.
Front Cardiovasc Med. 8(736215)2021.PubMed/NCBI View Article : Google Scholar
|
74
|
Qiu J, Liu J, Tian L, Yu J, Duan Q, Liu Y,
Zhao W, Si H, Lu X and Zhang Q: Knockdown of LOX-1 ameliorates bone
quality and generation of type H blood vessels in diabetic mice.
Arch Biochem Biophys. 752(109870)2024.PubMed/NCBI View Article : Google Scholar
|
75
|
Paradies G, Paradies V, Ruggiero FM and
Petrosillo G: Oxidative stress, cardiolipin and mitochondrial
dysfunction in nonalcoholic fatty liver disease. World J
Gastroenterol. 20:14205–14218. 2014.PubMed/NCBI View Article : Google Scholar
|
76
|
Valavanidis A, Vlachogianni T, Fiotakis K
and Loridas S: Pulmonary oxidative stress, inflammation and cancer:
Respirable particulate matter, fibrous dusts and ozone as major
causes of lung carcinogenesis through reactive oxygen species
mechanisms. Int J Environ Res Public Health. 10:3886–3907.
2013.PubMed/NCBI View Article : Google Scholar
|
77
|
Songbo M, Lang H, Xinyong C, Bin X, Ping Z
and Liang S: Oxidative stress injury in doxorubicin-induced
cardiotoxicity. Toxicol Lett. 307:41–48. 2019.PubMed/NCBI View Article : Google Scholar
|
78
|
Chen X, Zhao Y, Luo W, Chen S, Lin F,
Zhang X, Fan S, Shen X, Wang Y and Liang G: Celastrol induces
ROS-mediated apoptosis via directly targeting peroxiredoxin-2 in
gastric cancer cells. Theranostics. 10:10290–10308. 2020.PubMed/NCBI View Article : Google Scholar
|
79
|
Jimenez-Blasco D, Almeida A and Bolaños
JP: Brightness and shadows of mitochondrial ROS in the brain.
Neurobiol Dis. 184(106199)2023.PubMed/NCBI View Article : Google Scholar
|
80
|
Braga VA, Colombari E and Jovita MG:
Angiotensin II-derived reactive oxygen species underpinning the
processing of the cardiovascular reflexes in the medulla oblongata.
Neurosci Bull. 27:269–274. 2011.PubMed/NCBI View Article : Google Scholar
|
81
|
Majrashi M, Altukri M, Ramesh S,
Govindarajulu M, Schwartz J, Almaghrabi M, Smith F, Thomas T,
Suppiramaniam V, Moore T, et al: β-hydroxybutyric acid attenuates
oxidative stress and improves markers of mitochondrial function in
the HT-22 hippocampal cell line. J Integr Neurosci. 20:321–329.
2021.PubMed/NCBI View Article : Google Scholar
|
82
|
Yan W, Guo T, Liu N, Cui X, Wei X, Sun Y,
Hu H and Chen L: Erythropoietin ameliorates cognitive deficits by
improving hippocampal and synaptic damage in streptozotocin-induced
diabetic mice. Cell Signal. 106(110614)2023.PubMed/NCBI View Article : Google Scholar
|