Viruses as a potential environmental trigger of type 1 diabetes mellitus (Review)
- Authors:
- Jayra Juliana Paiva Alves Abrantes
- Jenner Chrystian Veríssimo de Azevedo
- Fernando Liberalino Fernandes
- Valéria Duarte Almeida
- Laura Andrade Custódio de Oliveira
- Maryana Thalyta Ferreira De Oliveira
- Josélio Maria Galvão de Araújo
- Daniel Carlos Ferreira Lanza
- Fabiana Lima Bezerra
- Vania Sousa Andrade
- Thales Allyrio Araújo de Medeiros Fernandes
- José Veríssimo Fernandes
-
Affiliations: Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078‑970, Brazil, Department of Biomedical Sciences, Rio Grande do Norte State University, Mossoró, Rio Grande do Norte 59607‑360, Brazil, Laboratory of Applied Molecular Biology, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078‑970, Brazil - Published online on: March 26, 2024 https://doi.org/10.3892/br.2024.1770
- Article Number: 81
-
Copyright: © Alves Abrantes et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, Jacobsen LM, Schatz DA and Lernmark Å: Type 1 diabetes mellitus. Nat Rev Dis Primers. 3(17016)2017.PubMed/NCBI View Article : Google Scholar | |
Roep BO, Thomaidou S, van Tienhoven R and Zaldumbide A: Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nat Rev Endocrinol. 17:150–161. 2021.PubMed/NCBI View Article : Google Scholar | |
Zorena K, Michalska M, Kurpas M, Jaskulak M, Murawska A and Rostami S: Environmental factors and the risk of developing type 1 diabetes-old disease and new data. Biology (Basel). 11(608)2022.PubMed/NCBI View Article : Google Scholar | |
de Azevedo JCV, de Medeiros Fernandes TAA, Cavalcante GA, de Medeiros IACM, Lanza DCF, de Araújo JMG, Bezerra FL and Fernandes JV: Biology and natural history of type 1 diabetes mellitus. Curr Pediatr Rev. 19:253–275. 2023.PubMed/NCBI View Article : Google Scholar | |
Cerna M: Epigenetic regulation in etiology of type 1 diabetes mellitus. Int J Mol Sci. 21(36)2019.PubMed/NCBI View Article : Google Scholar | |
Lucier J, Weinstock RS and Doerr C: Diabetes mellitus type 1 (Nursing). StatPearls Publishing, Treasure Island, FL, 2023. | |
Alamri ZZ: The role of liver in metabolism: An updated review with physiological emphasis. Int J Basic Clin Pharmacol. 7:2271–2276. 2018. | |
Han HS, Kang G, Kim JS, Choi BH and Koo SH: Regulation of glucose metabolism from a liver-centric perspective. Exp Mol Med. 48(e218)2016.PubMed/NCBI View Article : Google Scholar | |
Röder PV, Wu B, Liu Y and Han W: Pancreatic regulation of glucose homeostasis. Exp Mol Med. 48(e219)2016.PubMed/NCBI View Article : Google Scholar | |
Chadt A and Al-Hasani H: Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflugers Arch. 472:1273–1298. 2020.PubMed/NCBI View Article : Google Scholar | |
Zheng P, Li Z and Zhou Z: Gut microbiome in type 1 diabetes: A comprehensive review. Diabetes Metab Res Rev. 34(e3043)2018.PubMed/NCBI View Article : Google Scholar | |
Cohn A, Sofia AM and Kupfer SS: Type 1 diabetes and celiac disease: Clinical overlap and new insights into disease pathogenesis. Curr Diab Rep. 14(517)2014.PubMed/NCBI View Article : Google Scholar | |
Pociot F and Lernmark Å: Genetic risk factors for type 1 diabetes. Lancet. 387:2331–2339. 2016.PubMed/NCBI View Article : Google Scholar | |
Abela AG and Fava S: Why is the incidence of type 1 diabetes increasing? Curr Diabetes Rev. 17(e030521193110)2021.PubMed/NCBI View Article : Google Scholar | |
Zajec A, Trebušak Podkrajšek K, Tesovnik T, Šket R, Čugalj Kern B, Jenko Bizjan B, Šmigoc Schweiger D, Battelino T and Kovač J: Pathogenesis of type 1 diabetes: Established facts and new insights. Genes (Basel). 13(706)2022.PubMed/NCBI View Article : Google Scholar | |
Siljander H, Honkanen J and Knip M: Microbiome and type 1 diabetes. EBioMedicine. 46:512–521. 2019.PubMed/NCBI View Article : Google Scholar | |
Lloyd RE, Tamhankar M and Lernmark Å: Enteroviruses and type 1 diabetes: Multiple mechanisms and factors? Annu Rev Med. 73:483–499. 2022.PubMed/NCBI View Article : Google Scholar | |
Hyöty H: Viruses in type 1 diabetes. Pediatr Diabetes. 17 (Suppl 22):S56–S64. 2016.PubMed/NCBI View Article : Google Scholar | |
Alhazmi A, Sane F, Lazrek M, Nekoua MP, Badia-Boungou F, Engelmann I, Alidjinou EK and Hober D: Enteroviruses and type 1 diabetes mellitus: An overlooked relationship in some regions. Microorganisms. 8(1458)2020.PubMed/NCBI View Article : Google Scholar | |
Isaacs SR, Foskett DB, Maxwell AJ, Ward EJ, Faulkner CL, Luo JYX, Rawlinson WD, Craig ME and Kim KW: Viruses and type 1 diabetes: From enteroviruses to the Virome. Microorganisms. 9(1519)2021.PubMed/NCBI View Article : Google Scholar | |
Geravandi S, Richardson S, Pugliese A and Maedler K: Localization of enteroviral RNA within the pancreas in donors with T1D and T1D-associated autoantibodies. Cell Rep Med. 2(100371)2021.PubMed/NCBI View Article : Google Scholar | |
Isaacs SR, Roy A, Dance B, Ward EJ, Foskett DB, Maxwell AJ, Rawlinson WD, Kim KW and Craig ME: Enteroviruses and risk of islet autoimmunity or type 1 diabetes: Systematic review and meta-analysis of controlled observational studies detecting viral nucleic acids and proteins. Lancet Diabetes Endocrinol. 11:578–592. 2023.PubMed/NCBI View Article : Google Scholar | |
Kondrashova A and Hyöty H: Role of viruses and other microbes in the pathogenesis of type 1 diabetes. Int Rev Immunol. 33:284–295. 2014.PubMed/NCBI View Article : Google Scholar | |
Oikarinen S, Krogvold L, Edwin B, Buanes T, Korsgren O, Laiho JE, Oikarinen M, Ludvigsson J, Skog O, Anagandula M, et al: Characterisation of enterovirus RNA detected in the pancreas and other specimens of live patients with newly diagnosed type 1 diabetes in the DiViD study. Diabetologia. 64:2491–2501. 2021.PubMed/NCBI View Article : Google Scholar | |
Geravandi S, Liu H and Maedler K: Enteroviruses and T1D: Is it the virus, the genes or both which cause T1D. Microorganisms. 8(1017)2020.PubMed/NCBI View Article : Google Scholar | |
Nekoua MP, Alidjinou EK and Hober D: Persistent coxsackievirus B infection and pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol. 18:503–516. 2022.PubMed/NCBI View Article : Google Scholar | |
Bluestone JA, Herold K and Eisenbarth G: Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 464:1293–1300. 2010.PubMed/NCBI View Article : Google Scholar | |
Kahaly GJ and Hansen MP: Type 1 diabetes associated autoimmunity. Autoimmun Rev. 15:644–648. 2016.PubMed/NCBI View Article : Google Scholar | |
Li M, Song LJ and Qin XY: Advances in the cellular immunological pathogenesis of type 1 diabetes. J Cell Mol Med. 18:749–758. 2014.PubMed/NCBI View Article : Google Scholar | |
Knip M, Siljander H, Ilonen J, Simell O and Veijola R: Role of humoral beta-cell autoimmunity in type 1 diabetes. Pediatr Diabetes. 17 (Suppl 22):S17–S24. 2016.PubMed/NCBI View Article : Google Scholar | |
Winter WE, Harris N and Schatz D: Type 1 diabetes islet autoantibody markers. Diabetes Technol Ther. 4:817–839. 2002.PubMed/NCBI View Article : Google Scholar | |
Winter WE and Schatz DA: Autoimmune markers in diabetes. Clin Chem. 57:168–175. 2011.PubMed/NCBI View Article : Google Scholar | |
Kwon BC, Anand V, Achenbach P, Dunne JL, Hagopian W, Hu J, Koski E, Lernmark Å, Lundgren M, Ng K, et al: Progression of type 1 diabetes from latency to symptomatic disease is predicted by distinct autoimmune trajectories. Nat Commun. 13(1514)2022.PubMed/NCBI View Article : Google Scholar | |
Insel RA, Dunne JL, Atkinson MA, Chiang JL, Dabelea D, Gottlieb PA, Greenbaum CJ, Herold KC, Krischer JP, Lernmark Å, et al: Staging presymptomatic type 1 diabetes: A scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care. 38:1964–1974. 2015.PubMed/NCBI View Article : Google Scholar | |
Du C, Whiddett RO, Buckle I, Chen C, Forbes JM and Fotheringham AK: Advanced glycation end products and inflammation in the development of type 1 diabetes. Cells. 11(3503)2022.PubMed/NCBI View Article : Google Scholar | |
Bravis V, Kaur A, Walkey HC, Godsland IF, Misra S, Bingley PJ, Williams AJK, Dunger DB, Dayan CM, Peakman M, et al: Relationship between islet autoantibody status and the clinical characteristics of children and adults with incident type 1 diabetes in a UK cohort. BMJ Open. 8(e020904)2018.PubMed/NCBI View Article : Google Scholar | |
Dayan CM, Korah M, Tatovic D, Bundy BN and Herold KC: Changing the landscape for type 1 diabetes: The first step to prevention. Lancet. 394:1286–1296. 2019.PubMed/NCBI View Article : Google Scholar | |
Beik P, Ciesielska M, Kucza M, Kurczewska A, Kuźmińska J, Maćkowiak B and Niechciał E: Prevention of type 1 diabetes: Past experiences and future opportunities. J Clin Med. 9(2805)2020.PubMed/NCBI View Article : Google Scholar | |
American Diabetes Association Professional Practice Committee. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2022. Diabetes Care. 45 (Suppl 1):S17–S38. 2022.PubMed/NCBI View Article : Google Scholar | |
Maruyama K, Chujo D, Watanabe K, Kawabe A, Sugiyama T, Ohsugi M, Tanabe A, Ueki K and Kajio H: Evaluation of cellular and humoral autoimmunity before the development of type 1 diabetes in a patient with idiopathic CD4 lymphocytopenia. J Diabetes Investig. 10:1108–1111. 2019.PubMed/NCBI View Article : Google Scholar | |
Gu Y, Merriman C, Guo Z, Jia X, Wenzlau J, Li H, Li H, Rewers M, Yu L and Fu D: Novel autoantibodies to the β-cell surface epitopes of ZnT8 in patients progressing to type-1 diabetes. J Autoimmun. 122(102677)2021.PubMed/NCBI View Article : Google Scholar | |
Bjørnsen LP, Hadera MG, Zhou Y, Danbolt NC and Sonnewald U: The GLT-1 (EAAT2; slc1a2) glutamate transporter is essential for glutamate homeostasis in the neocortex of the mouse. J Neurochem. 128:641–649. 2014.PubMed/NCBI View Article : Google Scholar | |
Di Cairano ES, Davalli AM, Perego L, Sala S, Sacchi VF, La Rosa S, Finzi G, Placidi C, Capella C, Conti P, et al: The glial glutamate transporter 1 (GLT1) is expressed by pancreatic beta-cells and prevents glutamate-induced beta-cell death. J Biol Chem. 286:14007–14018. 2011.PubMed/NCBI View Article : Google Scholar | |
Zhou Y, Waanders LF, Holmseth S, Guo C, Berger UV, Li Y, Lehre AC, Lehre KP and Danbolt NC: Proteome analysis and conditional deletion of the EAAT2 glutamate transporter provide evidence against a role of EAAT2 in pancreatic insulin secretion in mice. J Biol Chem. 289:1329–1344. 2014.PubMed/NCBI View Article : Google Scholar | |
Perego C, Di Cairano ES, Galli A, Moretti S, Bazzigaluppi E, Centonze VF, Gastaldelli A, Assi E, Fiorina P, Federici M, et al: Autoantibodies against the glial glutamate transporter GLT1/EAAT2 in Type 1 diabetes mellitus-Clues to novel immunological and non-immunological therapies. Pharmacol Res. 177(106130)2022.PubMed/NCBI View Article : Google Scholar | |
Juusola M, Parkkola A, Härkönen T, Siljander H, Ilonen J, Åkerblom HK and Knip M: Childhood Diabetes in Finland Study Group. Positivity for Zinc Transporter 8 Autoantibodies at diagnosis is subsequently associated with reduced β-cell function and higher exogenous insulin requirement in children and adolescents with type 1 diabetes. Diabetes Care. 39:118–121. 2016.PubMed/NCBI View Article : Google Scholar | |
Yohena S, Penas-Steinhardt A, Muller C, Faccinetti NI, Cerrone GE, Lovecchio S, Ridner E, Valdez S and Frechtel G: Immunological and clinical characteristics of latent autoimmune diabetes in the elderly. Diabetes Metab Res Rev. 35(e3137)2019.PubMed/NCBI View Article : Google Scholar | |
Zhang M, Wang X, Wang R, Shu J, Zhi X, Gu C, Pu L, Cai C, Yang W and Lv L: Clinical study of autoantibodies in type 1 diabetes mellitus children with ketoacidosis or microalbuminuria. J Clin Lab Anal. 36(e24164)2022.PubMed/NCBI View Article : Google Scholar | |
Santos AS, Cunha-Neto E, Gonfinetti NV, Bertonha FB, Brochet P, Bergon A, Moreira-Filho CA, Chevillard C and da Silva MER: Prevalence of inflammatory pathways over immuno-tolerance in peripheral blood mononuclear cells of recent-onset type 1 diabetes. Front Immunol. 12(765264)2022.PubMed/NCBI View Article : Google Scholar | |
Zirpel H and Roep BO: Islet-resident dendritic cells and macrophages in type 1 diabetes: In search of Bigfoot's print. Front Endocrinol (Lausanne). 12(666795)2021.PubMed/NCBI View Article : Google Scholar | |
Wong FS and Wen L: A predictive CD8+ T cell phenotype for T1DM progression. Nat Rev Endocrinol. 16:198–199. 2020.PubMed/NCBI View Article : Google Scholar | |
Wiedeman AE, Muir VS, Rosasco MG, DeBerg HA, Presnell S, Haas B, Dufort MJ, Speake C, Greenbaum CJ, Serti E, et al: Autoreactive CD8+ T cell exhaustion distinguishes subjects with slow type 1 diabetes progression. J Clin Invest. 130:480–490. 2020.PubMed/NCBI View Article : Google Scholar | |
Schloss J, Ali R, Racine JJ, Chapman HD, Serreze DV and DiLorenzo TP: HLA-B*39:06 efficiently mediates type 1 diabetes in a mouse model incorporating reduced thymic insulin expression. J Immunol. 200:3353–3363. 2018.PubMed/NCBI View Article : Google Scholar | |
Yeo L, Pujol-Autonell I, Baptista R, Eichmann M, Kronenberg-Versteeg D, Heck S, Dolton G, Sewell AK, Härkönen T, Mikk ML, et al: Circulating β cell-specific CD8+ T cells restricted by high-risk HLA class I molecules show antigen experience in children with and at risk of type 1 diabetes. Clin Exp Immunol. 199:263–277. 2020.PubMed/NCBI View Article : Google Scholar | |
Abdelsamed HA, Zebley CC, Nguyen H, Rutishauser RL, Fan Y, Ghoneim HE, Crawford JC, Alfei F, Alli S, Ribeiro SP, et al: Beta cell-specific CD8+ T cells maintain stem cell memory-associated epigenetic programs during type 1 diabetes. Nat Immunol. 21:578–587. 2020.PubMed/NCBI View Article : Google Scholar | |
Bediaga NG, Garnham AL, Naselli G, Bandala-Sanchez E, Stone NL, Cobb J, Harbison JE, Wentworth JM, Ziegler AG, Couper JJ, et al: Cytotoxicity-related gene expression and chromatin accessibility define a subset of CD4+ T cells that mark progression to type 1 diabetes. Diabetes. 71:566–577. 2022.PubMed/NCBI View Article : Google Scholar | |
Ramos-Rodríguez M, Raurell-Vila H, Colli ML, Alvelos MI, Subirana-Granés M, Juan-Mateu J, Norris R, Turatsinze JV, Nakayasu ES, Webb-Robertson BM, et al: The impact of proinflammatory cytokines on the β-cell regulatory landscape provides insights into the genetics of type 1 diabetes. Nat Genet. 51:1588–1595. 2019.PubMed/NCBI View Article : Google Scholar | |
Burrack AL, Martinov T and Fife BTT: T Cell-mediated beta cell destruction: Autoimmunity and Alloimmunity in the context of type 1 diabetes. Front Endocrinol (Lausanne). 8(343)2017.PubMed/NCBI View Article : Google Scholar | |
Rathod S: Novel Insights into the immunotherapy-based treatment strategy for autoimmune type 1 diabetes. Diabetology. 3:79–96. 2022. | |
Gearty SV, Dündar F, Zumbo P, Espinosa-Carrasco G, Shakiba M, Sanchez-Rivera FJ, Socci ND, Trivedi P, Lowe SW, Lauer P, et al: An autoimmune stem-like CD8 T cell population drives type 1 diabetes. Nature. 602:156–161. 2022.PubMed/NCBI View Article : Google Scholar | |
Forsberg LA, Gisselsson D and Dumanski JP: Mosaicism in health and disease-clones picking up speed. Nat Rev Genet. 18:128–142. 2017.PubMed/NCBI View Article : Google Scholar | |
Foda BM, Ciecko AE, Serreze DV, Ridgway WM, Geurts AM and Chen YG: The CD137 ligand is important for type 1 diabetes development but dispensable for the homeostasis of disease-suppressive CD137+ FOXP3+ regulatory CD4 T cells. J Immunol. 204:2887–2899. 2020.PubMed/NCBI View Article : Google Scholar | |
Mitchell AM and Michels AW: Self-Antigens targeted by regulatory T cells in type 1 diabetes. Int J Mol Sci. 23(3155)2022.PubMed/NCBI View Article : Google Scholar | |
Jacobsen LM, Newby BN, Perry DJ, Posgai AL, Haller MJ and Brusko TM: Immune mechanisms and pathways targeted in type 1 diabetes. Curr Diab Rep. 18(90)2018.PubMed/NCBI View Article : Google Scholar | |
Bach JF: Revisiting the hygiene hypothesis in the context of autoimmunity. Front Immunol. 11(615192)2021.PubMed/NCBI View Article : Google Scholar | |
Rewers M and Ludvigsson J: Environmental risk factors for type 1 diabetes. Lancet. 387:2340–2348. 2016.PubMed/NCBI View Article : Google Scholar | |
Richardson SJ and Morgan NG: Enteroviral infections in the pathogenesis of type 1 diabetes: New insights for therapeutic intervention. Curr Opin Pharmacol. 43:11–19. 2018.PubMed/NCBI View Article : Google Scholar | |
Wang K, Ye F, Chen Y, Xu J, Zhao Y, Wang Y and Lan T: Association between enterovirus infection and type 1 diabetes risk: A meta-analysis of 38 case-control studies. Front Endocrinol (Lausanne). 12(706964)2021.PubMed/NCBI View Article : Google Scholar | |
Vehik K, Lynch KF, Wong MC, Tian X, Ross MC, Gibbs RA, Ajami NJ, Petrosino JF, Rewers M, Toppari J, et al: Prospective virome analyses in young children at increased genetic risk for type 1 diabetes. Nat Med. 25:1865–1872. 2019.PubMed/NCBI View Article : Google Scholar | |
Pacheco Y, Acosta-Ampudia Y, Monsalve DM, Chang C, Gershwin ME and Anaya JM: Bystander activation and autoimmunity. J Autoimmun. 103(102301)2019.PubMed/NCBI View Article : Google Scholar | |
Op de Beeck A and Eizirik DL: Viral infections in type 1 diabetes mellitus-why the β cells? Nat Rev Endocrinol. 12:263–273. 2016.PubMed/NCBI View Article : Google Scholar | |
Begum S, Aiman S, Ahmad S, Samad A, Almehmadi M, Allahyani M, Aljuaid A, Afridi SG and Khan A: Molecular mimicry analyses unveiled the human herpes simplex and poxvirus epitopes as possible candidates to incite autoimmunity. Pathogens. 11(1362)2022.PubMed/NCBI View Article : Google Scholar | |
Smatti MK, Cyprian FS, Nasrallah GK, Al Thani AA, Almishal RO and Yassine HM: Viruses and autoimmunity: A review on the potential interaction and molecular mechanisms. Viruses. 11(762)2019.PubMed/NCBI View Article : Google Scholar | |
Dias Junior AG, Sampaio NG and Rehwinkel J: A Balancing Act: MDA5 in antiviral immunity and autoinflammation. Trends Microbiol. 27:75–85. 2019.PubMed/NCBI View Article : Google Scholar | |
Dou Y, Yim HC, Kirkwood CD, Williams BR and Sadler AJ: The innate immune receptor MDA5 limits rotavirus infection but promotes cell death and pancreatic inflammation. EMBO J. 36:2742–2757. 2017.PubMed/NCBI View Article : Google Scholar | |
Looney BM, Xia CQ, Concannon P, Ostrov DA and Clare-Salzler MJ: Effects of type 1 diabetes-associated IFIH1 polymorphisms on MDA5 function and expression. Curr Diab Rep. 15(96)2015.PubMed/NCBI View Article : Google Scholar | |
Nigi L, Brusco N, Grieco GE, Fignani D, Licata G, Formichi C, Aiello E, Marselli L, Marchetti P, Krogvold L, et al: Increased expression of viral sensor MDA5 in pancreatic islets and in hormone-negative endocrine cells in recent onset type 1 diabetic donors. Front Immunol. 13(833141)2022.PubMed/NCBI View Article : Google Scholar | |
Mishto M, Mansurkhodzhaev A, Rodriguez-Calvo T and Liepe J: Potential mimicry of viral and pancreatic β cell antigens through non-spliced and cis-Spliced Zwitter Epitope candidates in type 1 diabetes. Front Immunol. 12(656451)2021.PubMed/NCBI View Article : Google Scholar | |
Jadeja SD and Tobin DJ: Autoantigen discovery in the hair loss disorder, alopecia Areata: Implication of post-translational modifications. Front Immunol. 13(890027)2022.PubMed/NCBI View Article : Google Scholar | |
Cusick MF, Libbey JE and Fujinami RS: Molecular mimicry as a mechanism of autoimmune disease. Clin Rev Allergy Immunol. 42:102–111. 2012.PubMed/NCBI View Article : Google Scholar | |
Fujinami RS, von Herrath MG, Christen U and Whitton JL: Molecular mimicry, bystander activation, or viral persistence: Infections and autoimmune disease. Clin Microbiol Rev. 19:80–94. 2006.PubMed/NCBI View Article : Google Scholar | |
Theil DJ, Tsunoda I, Rodriguez F, Whitton JL and Fujinami RS: Viruses can silently prime for and trigger central nervous system autoimmune disease. J Neurovirol. 7:220–227. 2001.PubMed/NCBI View Article : Google Scholar | |
Tsunoda I, Terry EJ, Marble BJ, Lazarides E, Woods C and Fujinami RS: Modulation of experimental autoimmune encephalomyelitis by VLA-2 blockade. Brain Pathol. 17:45–55. 2007.PubMed/NCBI View Article : Google Scholar | |
Kim TS and Shin EC: The activation of bystander CD8+ T cells and their roles in viral infection. Exp Mol Med. 51:1–9. 2019.PubMed/NCBI View Article : Google Scholar | |
Björkström NK, Strunz B and Ljunggren HG: Natural killer cells in antiviral immunity. Nat Rev Immunol. 22:112–123. 2022.PubMed/NCBI View Article : Google Scholar | |
Lee HG, Cho MZ and Choi JM: Bystander CD4+ T cells: Crossroads between innate and adaptive immunity. Exp Mol Med. 52:1255–1263. 2020.PubMed/NCBI View Article : Google Scholar | |
Shim CH, Cho S, Shin YM and Choi JM: Emerging role of bystander T cell activation in autoimmune diseases. BMB Rep. 55:57–64. 2022.PubMed/NCBI View Article : Google Scholar | |
Tapparel C, Siegrist F, Petty TJ and Kaiser L: Picornavirus and enterovirus diversity with associated human diseases. Infect Genet Evol. 14:282–293. 2013.PubMed/NCBI View Article : Google Scholar | |
Zell R: Picornaviridae-the ever-growing virus family. Arch Virol. 163:299–317. 2018.PubMed/NCBI View Article : Google Scholar | |
Alidjinou EK, Sané F, Engelmann I, Geenen V and Hober D: Enterovirus persistence as a mechanism in the pathogenesis of type 1 diabetes. Discov Med. 18:273–282. 2014.PubMed/NCBI | |
Christoffersson G and Flodström-Tullberg M: Mouse models of virus-induced type 1 diabetes. Methods Mol Biol. 2128:93–105. 2020.PubMed/NCBI View Article : Google Scholar | |
Rodriguez-Calvo T: Enterovirus infection and type 1 diabetes: Unraveling the crime scene. Clin Exp Immunol. 195:15–24. 2019.PubMed/NCBI View Article : Google Scholar | |
Geenen V, Bodart G, Henry S, Michaux H, Dardenne O, Charlet-Renard C, Martens H and Hober D: Programming of neuroendocrine self in the thymus and its defect in the development of neuroendocrine autoimmunity. Front Neurosci. 7(187)2013.PubMed/NCBI View Article : Google Scholar | |
Jaïdane H, Sané F, Hiar R, Goffard A, Gharbi J, Geenen V and Hober D: Immunology in the clinic review series; focus on type 1 diabetes and viruses: Enterovirus, thymus and type 1 diabetes pathogenesis. Clin Exp Immunol. 168:39–46. 2012.PubMed/NCBI View Article : Google Scholar | |
Alhazmi A, Nekoua MP, Michaux H, Sane F, Halouani A, Engelmann I, Alidjinou EK, Martens H, Jaidane H, Geenen V, et al: Effect of Coxsackievirus B4 infection on the thymus: Elucidating its role in the pathogenesis of type 1 diabetes. Microorganisms. 9(1177)2021.PubMed/NCBI View Article : Google Scholar | |
Michaux H, Martens H, Jaïdane H, Halouani A, Hober D and Geenen V: How does thymus infection by coxsackievirus contribute to the pathogenesis of type 1 diabetes? Front Immunol. 6(338)2015.PubMed/NCBI View Article : Google Scholar | |
Luo M, Xu L, Qian Z and Sun X: Infection-associated thymic atrophy. Front Immunol. 12(652538)2021.PubMed/NCBI View Article : Google Scholar | |
Dunne JL, Richardson SJ, Atkinson MA, Craig ME, Dahl-Jørgensen K, Flodström-Tullberg M, Hyöty H, Insel RA, Lernmark Å, Lloyd RE, et al: Rationale for enteroviral vaccination and antiviral therapies in human type 1 diabetes. Diabetologia. 62:744–753. 2019.PubMed/NCBI View Article : Google Scholar | |
TEDDY Study Group. The environmental determinants of diabetes in the Young (TEDDY) Study. Ann N Y Acad Sci. 1150:1–13. 2008.PubMed/NCBI View Article : Google Scholar | |
Karaoglan M and Eksi F: The coincidence of newly diagnosed type 1 diabetes mellitus with IgM antibody positivity to Enteroviruses and respiratory tract viruses. J Diabetes Res. 2018(8475341)2018.PubMed/NCBI View Article : Google Scholar | |
Stone VM, Butrym M, Hankaniemi MM, Sioofy-Khojine AB, Hytönen VP, Hyöty H and Flodström-Tullberg M: Coxsackievirus B vaccines prevent infection-accelerated diabetes in NOD mice and have no disease-inducing effect. Diabetes. 70:2871–2878. 2021.PubMed/NCBI View Article : Google Scholar | |
Alidjinou EK, Engelmann I, Bossu J, Villenet C, Figeac M, Romond MB, Sané F and Hober D: Persistence of Coxsackievirus B4 in pancreatic ductal-like cells results in cellular and viral changes. Virulence. 8:1229–1244. 2017.PubMed/NCBI View Article : Google Scholar | |
Buchacher T, Honkimaa A, Välikangas T, Lietzén N, Hirvonen MK, Laiho JE, Sioofy-Khojine AB, Eskelinen EL, Hyöty H, Elo LL, et al: Persistent coxsackievirus B1 infection triggers extensive changes in the transcriptome of human pancreatic ductal cells. iScience. 25(103653)2021.PubMed/NCBI View Article : Google Scholar | |
Shih WL, Tung YC, Chang LY, Fang CT and Tsai WY: Increased incidence of pediatric type 1 diabetes with novel association with coxsackievirus a species in young children but declined incidence in adolescents in Taiwan. Diabetes Care. 44:1579–1585. 2021.PubMed/NCBI View Article : Google Scholar | |
Benner SE, Walter DL, Thuma JR, Courreges M, James CBL, Schwartz FL and McCall KD: Toll-like receptor 3 is critical to the pancreatic islet milieu that is required for Coxsackievirus B4-induced type 1 diabetes in female nonobese diabetic mice. Pancreas. 51:48–55. 2022.PubMed/NCBI View Article : Google Scholar | |
Honeyman MC, Brusic V, Stone NL and Harrison LC: Neural network-based prediction of candidate T-cell epitopes. Nat Biotechnol. 16:966–969. 1998.PubMed/NCBI View Article : Google Scholar | |
Pane JA, Fleming FE, Graham KL, Thomas HE, Kay TW and Coulson BS: Rotavirus acceleration of type 1 diabetes in non-obese diabetic mice depends on type I interferon signalling. Sci Rep. 6(29697)2016.PubMed/NCBI View Article : Google Scholar | |
Gómez-Rial J, Rivero-Calle I, Salas A and Martinón-Torres F: Rotavirus and autoimmunity. J Infect. 81:183–189. 2020.PubMed/NCBI View Article : Google Scholar | |
Honeyman MC, Stone NL, Falk BA, Nepom G and Harrison LC: Evidence for molecular mimicry between human T cell epitopes in rotavirus and pancreatic islet autoantigens. J Immunol. 184:2204–2210. 2010.PubMed/NCBI View Article : Google Scholar | |
Burke RM, Tate JE, Jiang B and Parashar UD: Rotavirus and type 1 diabetes-is there a connection? A synthesis of the evidence. J Infect Dis. 222:1076–1083. 2020.PubMed/NCBI View Article : Google Scholar | |
Harrison LC, Perrett KP, Jachno K, Nolan TM and Honeyman MC: Does rotavirus turn on type 1 diabetes? PLoS Pathog. 15(e1007965)2019.PubMed/NCBI View Article : Google Scholar | |
Perrett KP, Jachno K and Nolan TM: Role of rotavirus vaccination in decline in incidence of type 1 diabetes-reply. JAMA Pediatr. 173(895)2019.PubMed/NCBI View Article : Google Scholar | |
Rogers MAM, Basu T and Kim C: Lower incidence rate of type 1 diabetes after receipt of the rotavirus vaccine in the United States, 2001-2017. Sci Rep. 9(7727)2019.PubMed/NCBI View Article : Google Scholar | |
Inns T, Fleming KM, Iturriza-Gomara M and Hungerford D: Paediatric rotavirus vaccination, coeliac disease and type 1 diabetes in children: A population-based cohort study. BMC Med. 19(147)2021.PubMed/NCBI View Article : Google Scholar |