1
|
Soreq H and Seidman S:
Acetylcholinesterase-new roles for an old actor. Nat Rev Neurosci.
2:294–302. 2001.PubMed/NCBI View Article : Google Scholar
|
2
|
Grisaru D, Pick M, Perry C, Sklan EH,
Almog R, Goldberg I, Naparstek E, Lessing JB, Soreq H and Deutsch
V: Hydrolytic and nonenzymatic functions of acetylcholinesterase
comodulate hemopoietic stress responses. J Immunol. 176:27–35.
2006.PubMed/NCBI View Article : Google Scholar
|
3
|
Fujii T, Mashimo M, Moriwaki Y, Misawa H,
Ono S, Horiguchi K and Kawashima K: Expression and function of the
cholinergic system in immune cells. Front Immunol.
8(1085)2017.PubMed/NCBI View Article : Google Scholar
|
4
|
Onganer PU, Djamgoz MBA, Whyte K and
Greenfield SA: An acetylcholinesterase-derived peptide inhibits
endocytic membrane activity in a human metastatic breast cancer
cell line. Biochim Biophys Acta. 1760:415–420. 2006.PubMed/NCBI View Article : Google Scholar
|
5
|
Pérez-Aguilar B, Vidal CJ, Palomec G,
García-Dolores F, Gutiérrez-Ruiz MC, Bucio L, Gómez-Olivares JL and
Gómez-Quiroz LE: Acetylcholinesterase is associated with a decrease
in cell proliferation of hepatocellular carcinoma cells. Biochim
Biophys Acta. 1852:1380–1387. 2015.PubMed/NCBI View Article : Google Scholar
|
6
|
Villeda-González JD, Gómez-Olivares JL,
Baiza-Gutman LA, Manuel-Apolinar L, Damasio-Santana L,
Millán-Pacheco C, Ángeles-Mejía S, Cortés-Ginez MC, Cruz-López M,
Vidal-Moreno CJ and Díaz-Flores M: Nicotinamide reduces
inflammation and oxidative stress via the cholinergic system in
fructose-induced metabolic syndrome in rats. Life Sci.
250(117585)2020.PubMed/NCBI View Article : Google Scholar
|
7
|
Zhang JY, Jiang H, Gao W, Wu J, Peng K,
Shi YF and Zhang XJ: The JNK/AP1/ATF2 pathway is involved in
H2O2-induced acetylcholinesterase expression during apoptosis. Cell
Mol Life Sci. 65:1435–1445. 2008.PubMed/NCBI View Article : Google Scholar
|
8
|
Zhang XJ, Yang L, Zhao Q, Caen JP, He HY,
Jin QH, Guo LH, Alemany M, Zhang LY and Shi YF: Induction of
acetylcholinesterase expression during apoptosis in various cell
types. Cell Death Differ. 9:790–800. 2002.PubMed/NCBI View Article : Google Scholar
|
9
|
Getman DK, Eubanks JH, Camp S, Evans GA
and Taylor P: The human gene encoding acetylcholinesterase is
located on the long arm of chromosome 7. Am J Hum Genet.
51:170–177. 1992.PubMed/NCBI
|
10
|
Taylor P and Radić Z: The cholinesterases:
From genes to proteins. Annu Rev Pharmacol Toxicol. 34:281–320.
1994.PubMed/NCBI View Article : Google Scholar
|
11
|
Soreq H, Ben-Aziz R, Prody CA, Seidman S,
Gnatt A, Neville L, Lieman-Hurwitz J, Lev-Lehman E, Ginzberg D,
Lipidot-Lifson Y, et al: Molecular cloning and construction of the
coding region for human acetylcholinesterase reveals a G + C-rich
attenuating structure. Proc Natl Acad Sci USA. 87:9688–9692.
1990.PubMed/NCBI View Article : Google Scholar
|
12
|
Massoulié J, Pezzementi L, Bon S, Krejci E
and Vallette FM: Molecular and cellular biology of cholinesterases.
Prog Neurobiol. 41:31–91. 1993.PubMed/NCBI View Article : Google Scholar
|
13
|
Massoulié J, Anselmet A, Bon S, Krejci E,
Legay C, Morel N and Simon S: Acetylcholinesterase: C-terminal
domains, molecular forms and functional localization. J Physiol
Paris. 92:183–190. 1998.PubMed/NCBI View Article : Google Scholar
|
14
|
Dori A and Soreq H: ARP, the cleavable
C-terminal peptide of ‘readthrough’ acetylcholinesterase, promotes
neuronal development and plasticity. J Mol Neurosci. 28:247–255.
2006.PubMed/NCBI View Article : Google Scholar
|
15
|
Perrier NA, Salani M, Falasca C, Bon S,
Augusti-Tocco G and Massoulié J: The readthrough variant of
acetylcholinesterase remains very minor after heat shock,
organophosphate inhibition and stress, in cell culture and in vivo.
J Neurochem. 94:629–638. 2005.PubMed/NCBI View Article : Google Scholar
|
16
|
Deutsch VR, Pick M, Perry C, Grisaru D,
Hemo Y, Golan-Hadari D, Grant A, Eldor A and Soreq H: The
stress-associated acetylcholinesterase variant AChE-R is expressed
in human CD34(+) hematopoietic progenitors and its C-terminal
peptide ARP promotes their proliferation. Exp Hematol.
30:1153–1161. 2002.PubMed/NCBI View Article : Google Scholar
|
17
|
Pick M, Flores-Flores C, Grisaru D,
Shochat S, Deutsch V and Soreq H: Blood-cell-specific
acetylcholinesterase splice variations under changing stimuli. Int
J Dev Neurosci. 22:523–531. 2004.PubMed/NCBI View Article : Google Scholar
|
18
|
Grisaru D, Sternfeld M, Eldor A, Glick D
and Soreq H: Structural roles of acetylcholinesterase variants in
biology and pathology. Eur J Biochem. 264:672–686. 1999.PubMed/NCBI View Article : Google Scholar
|
19
|
Sternfeld M, Shoham S, Klein O,
Flores-Flores C, Evron T, Idelson GH, Kitsberg D, Patrick JW and
Soreq H: Excess ‘read-through’ acetylcholinesterase attenuates but
the ‘synaptic’ variant intensifies neurodeterioration correlates.
Proc Natl Acad Sci USA. 97:8647–8652. 2000.PubMed/NCBI View Article : Google Scholar
|
20
|
Fischer K, Brown J, Scherer SW, Schramm P,
Stewart J, Fugazza G, Pascheberg U, Peter W, Tsui LC, Lichter P and
Döhner H: Delineation of genomic regions in chromosome band 7q22
commonly deleted in myeloid leukemias. Recent Results Cancer Res.
144:46–52. 1998.PubMed/NCBI View Article : Google Scholar
|
21
|
Zeng WR, Watson P, Lin J, Jothy S,
Lidereau R, Park M and Nepveu A: Refined mapping of the region of
loss of heterozygosity on the long arm of chromosome 7 in human
breast cancer defines the location of a second tumor suppressor
gene at 7q22 in the region of the CUTL1 gene. Oncogene.
18:2015–2021. 1999.PubMed/NCBI View Article : Google Scholar
|
22
|
Neville PJ, Thomas N and Campbell IG: Loss
of heterozygosity at 7q22 and mutation analysis of the CDP gene in
human epithelial ovarian tumors. Int J Cancer. 91:345–349.
2001.PubMed/NCBI View Article : Google Scholar
|
23
|
Sáez-Valero J and Vidal CJ: Biochemical
properties of acetyl- and butyrylcholinesterase in human
meningioma. Biochim Biophys Acta. 1317:210–218. 1996.PubMed/NCBI View Article : Google Scholar
|
24
|
Vidal CJ: Expression of cholinesterases in
brain and non-brain tumours. Chem Biol Interact. 157-158:227–232.
2005.PubMed/NCBI View Article : Google Scholar
|
25
|
Martínez-Moreno P, Nieto-Cerón S,
Torres-Lanzas J, Ruiz-Espejo F, Tovar-Zapata I, Martínez-Hernández
P, Rodríguez-López JN, Vidal CJ and Cabezas-Herrera J:
Cholinesterase activity of human lung tumours varies according to
their histological classification. Carcinogenesis. 27:429–436.
2006.PubMed/NCBI View Article : Google Scholar
|
26
|
Montenegro MF, Nieto-Cerón S, Ruiz-Espejo
F, Páez de la Cadena M, Rodríguez-Berrocal FJ and Vidal CJ:
Cholinesterase activity and enzyme components in healthy and
cancerous human colorectal sections. Chem Biol Interact.
157-158:429–430. 2005.PubMed/NCBI View Article : Google Scholar
|
27
|
Montenegro MF, Ruiz-Espejo F, Campoy FJ,
Muñoz-Delgado E, de la Cadena MP, Rodríguez-Berrocal FJ and Vidal
CJ: Cholinesterases are down-expressed in human colorectal
carcinoma. Cell Mol Life Sci. 63:2175–2182. 2006.PubMed/NCBI View Article : Google Scholar
|
28
|
Martínez-López de Castro A, Nieto-Cerón S,
Aurelio PC, Galbis-Martínez L, Latour-Pérez J, Torres-Lanzas J,
Tovar-Zapata I, Martínez-Hernández P, RodríRodríguez-López JN and
Cabezas-Herrera J: Cancer-associated differences in
acetylcholinesterase activity in bronchial aspirates from patients
with lung cancer. Clin Sci (Lond). 115:245–253. 2008.PubMed/NCBI View Article : Google Scholar
|
29
|
Ruiz-Espejo F, Cabezas-Herrera J, Illana
J, Campoy FJ, Muñoz-Delgado E and Vidal CJ: Breast cancer
metastasis alters acetylcholinesterase activity and the composition
of enzyme forms in axillary lymph nodes. Breast Cancer Res Treat.
80:105–114. 2003.PubMed/NCBI View Article : Google Scholar
|
30
|
García-Ayllón MS, Sáez-Valero J,
Muñoz-Delgado E and Vidal CJ: Identification of hybrid
cholinesterase forms consisting of acetyl- and
butyrylcholinesterase subunits in human glioma. Neuroscience.
107:199–208. 2001.PubMed/NCBI View Article : Google Scholar
|
31
|
Zhao Y, Wang X, Wang T, Hu X, Hui X, Yan
M, Gao Q, Chen T, Li J, Yao M, et al: Acetylcholinesterase, a key
prognostic predictor for hepatocellular carcinoma, suppresses cell
growth and induces chemosensitization. Hepatology. 53:493–503.
2011.PubMed/NCBI View Article : Google Scholar
|
32
|
Xu H, Shen Z, Xiao J, Yang Y, Huang W,
Zhou Z, Shen J, Zhu Y, Liu XY and Chu L: Acetylcholinesterase
overexpression mediated by oncolytic adenovirus exhibited potent
anti-tumor effect. BMC Cancer. 14(668)2014.PubMed/NCBI View Article : Google Scholar
|
33
|
Castillo-González AC, Nieto-Cerón S,
Pelegrín-Hernández JP, Montenegro MF, Noguera JA, López-Moreno MF,
Rodríguez-López JN, Vidal CJ, Hellín-Meseguer D and Cabezas-Herrera
J: Dysregulated cholinergic network as a novel biomarker of poor
prognostic in patients with head and neck squamous cell carcinoma.
BMC Cancer. 15(385)2015.PubMed/NCBI View Article : Google Scholar
|
34
|
Castillo-González AC, Pelegrín-Hernández
JP, Nieto-Cerón S, Madrona AP, Noguera JA, López-Moreno MF,
Rodríguez-López JN, Vidal CJ, Hellín-Meseguer D and Cabezas-Herrera
J: Unbalanced acetylcholinesterase activity in larynx squamous cell
carcinoma. Int Immunopharmacol. 29:81–86. 2015.PubMed/NCBI View Article : Google Scholar
|
35
|
Battisti V, Bagatini MD, Maders LDK,
Chiesa J, Santos KF, Gonçalves JF, Abdalla FH, Battisti IE,
Schetinger MR and Morsch VM: Cholinesterase activities and
biochemical determinations in patients with prostate cancer:
Influence of Gleason score, treatment and bone metastasis. Biomed
Pharmacother. 66:249–255. 2012.PubMed/NCBI View Article : Google Scholar
|
36
|
Yu H, Xia H, Tang Q, Xu H, Wei G, Chen Y,
Dai X, Gong Q and Bi F: Acetylcholine acts through M3 muscarinic
receptor to activate the EGFR signaling and promotes gastric cancer
cell proliferation. Sci Rep. 7(40802)2017.PubMed/NCBI View Article : Google Scholar
|
37
|
Resende RR, Alves AS, Britto LRG and
Ulrich H: Role of acetylcholine receptors in proliferation and
differentiation of P19 embryonal carcinoma cells. Exp Cell Res.
314:1429–1443. 2008.PubMed/NCBI View Article : Google Scholar
|
38
|
Cheng K, Samimi R, Xie G, Shant J,
Drachenberg C, Wade M, Davis RJ, Nomikos G and Raufman JP:
Acetylcholine release by human colon cancer cells mediates
autocrine stimulation of cell proliferation. Am J Physiol
Gastrointest Liver Physiol. 295:G591–G597. 2008.PubMed/NCBI View Article : Google Scholar
|
39
|
Pettersson A, Nilsson L, Nylund G,
Khorram-Manesh A, Nordgren S and Delbro DS: Is acetylcholine an
autocrine/paracrine growth factor via the nicotinic alpha7-receptor
subtype in the human colon cancer cell line HT-29? Eur J Pharmacol.
609:27–33. 2009.PubMed/NCBI View Article : Google Scholar
|
40
|
Song P, Sekhon HS, Jia Y, Keller JA,
Blusztajn JK, Mark GP and Spindel ER: Acetylcholine is synthesized
by and acts as an autocrine growth factor for small cell lung
carcinoma. Cancer Res. 63:214–221. 2003.PubMed/NCBI
|
41
|
Lev-Lehman E, Ginzberg D, Hornreich G,
Ehrlich G, Meshorer A, Eckstein F, Soreq H and Zakut H: Antisense
inhibition of acetylcholinesterase gene expression causes transient
hematopoietic alterations in vivo. Gene Ther. 1:127–135.
1994.PubMed/NCBI
|
42
|
Soreq H, Patinkin D, Lev-Lehman E, Grifman
M, Ginzberg D, Eckstein F and Zakut H: Antisense oligonucleotide
inhibition of acetylcholinesterase gene expression induces
progenitor cell expansion and suppresses hematopoietic apoptosis ex
vivo. Proc Natl Acad Sci USA. 91:7907–7911. 1994.PubMed/NCBI View Article : Google Scholar
|
43
|
Brown LM, Blair A, Gibson R, Everett GD,
Cantor KP, Schuman LM, Burmeister LF, Van Lier SF and Dick F:
Pesticide exposures and other agricultural risk factors for
leukemia among men in Iowa and Minnesota. Cancer Res. 50:6585–6591.
1990.PubMed/NCBI
|
44
|
Cantor KP, Blair A, Everett G, Gibson R,
Burmeister LF, Brown LM, Schuman L and Dick FR: Pesticides and
other agricultural risk factors for non-Hodgkin's lymphoma among
men in Iowa and Minnesota. Cancer Res. 52:2447–2455.
1992.PubMed/NCBI
|
45
|
Cabello G, Valenzuela M, Vilaxa A, Durán
V, Rudolph I, Hrepic N and Calaf G: A rat mammary tumor model
induced by the organophosphorous pesticides parathion and
malathion, possibly through acetylcholinesterase inhibition.
Environ Health Perspect. 109:471–479. 2001.PubMed/NCBI View Article : Google Scholar
|
46
|
Nasterlack M: Pesticides and childhood
cancer: An update. Int J Hyg Environ Health. 210:645–657.
2007.PubMed/NCBI View Article : Google Scholar
|
47
|
Calaf GM, Parra E and Garrido F: Cell
proliferation and tumor formation induced by eserine, an
acetylcholinesterase inhibitor, in rat mammary gland. Oncol Rep.
17:25–33. 2007.PubMed/NCBI View Article : Google Scholar
|
48
|
Kawashima K and Fujii T: Extraneuronal
cholinergic system in lymphocytes. Pharmacol Ther. 86:29–48.
2000.PubMed/NCBI View Article : Google Scholar
|
49
|
Kawashima K and Fujii T: The lymphocytic
cholinergic system and its biological function. Life Sci.
72:2101–2109. 2003.PubMed/NCBI View Article : Google Scholar
|
50
|
Kawashima K and Fujii T: Expression of
non-neuronal acetylcholine in lymphocytes and its contribution to
the regulation of immune function. Front Biosci. 9:2063–2085.
2004.PubMed/NCBI View
Article : Google Scholar
|
51
|
Ellman GL, Courtney KD, Andres V Jr and
Feather-Stone RM: A new and rapid colorimetric determination of
acetylcholinesterase activity. Biochem Pharmacol. 7:88–95.
1961.PubMed/NCBI View Article : Google Scholar
|
52
|
Bradford MM: A rapid and sensitive method
for the quantitation of microgram quantities of protein utilizing
the principle of protein-dye binding. Anal Biochem. 72:248–254.
1976.PubMed/NCBI View Article : Google Scholar
|
53
|
Martin RG and Ames BN: A method for
determining the sedimentation behavior of enzymes: Application to
protein mixtures. J Biol Chem. 236:1372–1379. 1961.PubMed/NCBI
|
54
|
Bartha E, Rakonczay Z, Kása P, Hollán S
and Gyévai A: Molecular form of human lymphocyte membrane-bound
acetylcholinesterase. Life Sci. 41:1853–1860. 1987.PubMed/NCBI View Article : Google Scholar
|
55
|
Sine JP and Caye-Vaugien C: Properties and
characterization of soluble forms of lymphocyte
acetylcholinesterase from an ox. Biochimie. 66:203–214.
1984.PubMed/NCBI View Article : Google Scholar : (In French).
|
56
|
Toutant JP, Richards MK, Krall JA and
Rosenberry TL: Molecular forms of acetylcholinesterase in two
sublines of human erythroleukemia K562 cells. Sensitivity or
resistance to phosphatidylinositol-specific phospholipase C and
biosynthesis. Eur J Biochem. 187:31–38. 1990.PubMed/NCBI View Article : Google Scholar
|
57
|
Massoulié J, Bon S, Perrier N and Falasca
C: The C-terminal peptides of acetylcholinesterase: Cellular
trafficking, oligomerization and functional anchoring. Chem Biol
Interact. 157-158:3–14. 2005.PubMed/NCBI View Article : Google Scholar
|
58
|
Liao Z, Jaular LM, Soueidi E, Jouve M,
Muth DC, Schøyen TH, Seale T, Haughey NJ, Ostrowski M, Théry C and
Witwer KW: Acetylcholinesterase is not a generic marker of
extracellular vesicles. J Extracell Vesicles.
8(1628592)2019.PubMed/NCBI View Article : Google Scholar
|
59
|
Ben-Ari S, Toiber D, Sas AS, Soreq H and
Ben-Shaul Y: Modulated splicing-associated gene expression in P19
cells expressing distinct acetylcholinesterase splice variants. J
Neurochem. 97 (Suppl 1):S24–S34. 2006.PubMed/NCBI View Article : Google Scholar
|
60
|
Fujii T, Takada-Takatori Y and Kawashima
K: Basic and clinical aspects of non-neuronal acetylcholine:
Expression of an independent, non-neuronal cholinergic system in
lymphocytes and its clinical significance in immunotherapy. J
Pharmacol Sci. 106:186–192. 2008.PubMed/NCBI View Article : Google Scholar
|
61
|
Jin QH, He HY, Shi YF, Lu H and Zhang XJ:
Overexpression of acetylcholinesterase inhibited cell proliferation
and promoted apoptosis in NRK cells. Acta Pharmacol Sin.
25:1013–1021. 2004.PubMed/NCBI
|
62
|
Velan B, Kronman C, Ordentlich A, Flashner
Y, Leitner M, Cohen S and Shafferman A: N-glycosylation of human
acetylcholinesterase: Effects on activity, stability and
biosynthesis. Biochem J. 296:649–656. 1993.PubMed/NCBI View Article : Google Scholar
|
63
|
Doctor BP, Chapman TC, Christner CE, Deal
CD, De La Hoz DM, Gentry MK, Ogert RA, Rush RS, Smyth KK and Wolfe
AD: Complete amino acid sequence of fetal bovine serum
acetylcholinesterase and its comparison in various regions with
other cholinesterases. FEBS Lett. 266:123–127. 1990.PubMed/NCBI View Article : Google Scholar
|
64
|
Campoy FJ, Cabezas-Herrera J and Vidal CJ:
Interaction of AChE with Lens culinaris agglutinin reveals
differences in glycosylation of molecular forms in sarcoplasmic
reticulum membrane subfractions. J Neurosci Res. 33:568–578.
1992.PubMed/NCBI View Article : Google Scholar
|
65
|
Cabezas-Herrera J, Moral-Naranjo MT,
Campoy FJ and Vidal CJ: G4 forms of acetylcholinesterase and
butyrylcholinesterase in normal and dystrophic mouse muscle differ
in their interaction with Ricinus communis agglutinin.
Biochim Biophys Acta. 1225:283–288. 1994.PubMed/NCBI View Article : Google Scholar
|
66
|
Nalivaeva NN and Turner AJ:
Post-translational modifications of proteins: Acetylcholinesterase
as a model system. Proteomics. 1:735–747. 2001.PubMed/NCBI View Article : Google Scholar
|
67
|
Patinkin D, Seidman S, Eckstein F,
Benseler F, Zakut H and Soreq H: Manipulations of cholinesterase
gene expression modulate murine megakaryocytopoiesis in vitro. Mol
Cell Biol. 10:6046–6050. 1990.PubMed/NCBI View Article : Google Scholar
|
68
|
Morell AG, Irvine RA, Sternlieb I,
Scheinberg IH and Ashwell G: Physical and chemical studies on
ceruloplasmin. V. Metabolic studies on sialic acid-free
ceruloplasmin in vivo. J Biol Chem. 243:155–159. 1968.PubMed/NCBI
|
69
|
Ashwell G and Harford J:
Carbohydrate-specific receptors of the liver. Annu Rev Biochem.
51:531–554. 1982.PubMed/NCBI View Article : Google Scholar
|
70
|
Bon C, Hofer T, Bousquet-Mélou A, Davies
MR and Krippendorff BF: Capacity limits of asialoglycoprotein
receptor-mediated liver targeting. MAbs. 9:1360–1369.
2017.PubMed/NCBI View Article : Google Scholar
|
71
|
Chia S, Tay SJ, Song Z, Yang Y, Walsh I
and Pang KT: Enhancing pharmacokinetic and pharmacodynamic
properties of recombinant therapeutic proteins by manipulation of
sialic acid content. Biomed Pharmacother.
163(114757)2023.PubMed/NCBI View Article : Google Scholar
|
72
|
Kronman C, Velan B, Marcus D, Ordentlich
A, Reuveny S and Shafferman A: Involvement of oligomerization,
N-glycosylation and sialylation in the clearance of cholinesterases
from the circulation. Biochem J. 311:959–967. 1995.PubMed/NCBI View Article : Google Scholar
|