Advances in antibacterial activity of zinc oxide nanoparticles against Staphylococcus aureus (Review)
- Authors:
- Yuqing Hao
- Yadong Wang
- Li Zhang
- Fang Liu
- Yuefei Jin
- Jinzhao Long
- Shuaiyin Chen
- Guangcai Duan
- Haiyan Yang
-
Affiliations: Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China, Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, Henan 450016, P.R. China, Department of Infectious diseases, Xinyang Center for Disease Control and Prevention, Xinyang, Henan 464000, P.R. China - Published online on: August 30, 2024 https://doi.org/10.3892/br.2024.1849
- Article Number: 161
-
Copyright: © Hao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Tong SY, Davis JS, Eichenberger E, Holland TL and Fowler VJ: Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 28:603–661. 2015.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Zhang P, Wu J, Chen S, Jin Y, Long J, Duan G and Yang H: Transmission of livestock-associated methicillin-resistant Staphylococcus aureus between animals, environment, and humans in the farm. Environ Sci Pollut Res Int. 30:86521–86539. 2023.PubMed/NCBI View Article : Google Scholar | |
Willyard C: Drug-resistant bacteria ranked. Nature (London). 543(15)2017. | |
Hou H, Li Y, Jin Y, Chen S, Long J, Duan G and Yang H: The crafty opponent: The defense systems of Staphylococcus aureus and response measures. Folia Microbiol (Praha). 67:233–243. 2022.PubMed/NCBI View Article : Google Scholar | |
Lakhundi S and Zhang K: Methicillin-zesistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin Microbiol Rev. 31:e00020–18. 2018.PubMed/NCBI View Article : Google Scholar | |
Gong C, Guan W, Liu X, Zheng Y, Li Z, Zhang Y, Zhu S, Jiang H, Cui Z and Wu S: Biomimetic bacteriophage-like particles formed from probiotic extracts and NO donors for eradicating multidrug-resistant Staphylococcus aureus. Adv Mater. 34(e2206134)2022.PubMed/NCBI View Article : Google Scholar | |
Plumet L, Ahmad-Mansour N, Dunyach-Remy C, Kissa K, Sotto A, Lavigne JP, Costechareyre D and Molle V: Bacteriophage therapy for Staphylococcus aureus infections: A Review of animal models, treatments, and clinical trials. Front Cell Infect Microbiol. 12(907314)2022.PubMed/NCBI View Article : Google Scholar | |
Chand U, Priyambada P and Kushawaha PK: Staphylococcus aureus vaccine strategy: Promise and challenges. Microbiol Res. 271(127362)2023.PubMed/NCBI View Article : Google Scholar | |
Miller LS, Fowler VG, Shukla SK, Rose WE and Proctor RA: Development of a vaccine against Staphylococcus aureus invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiol Rev. 44:123–153. 2020.PubMed/NCBI View Article : Google Scholar | |
Super M, Doherty EJ, Cartwright MJ, Seiler BT, Langellotto F, Dimitrakakis N, White DA, Stafford AG, Karkada M, Graveline AR, et al: Biomaterial vaccines capturing pathogen-associated molecular patterns protect against bacterial infections and septic shock. Nat Biomed Eng. 6:8–18. 2022.PubMed/NCBI View Article : Google Scholar | |
de Vor L, van Dijk B, van Kessel K, Kavanaugh JS, de Haas C, Aerts PC, Viveen MC, Boel EC, Fluit AC, Kwiecinski JM, et al: Human monoclonal antibodies against Staphylococcus aureus surface antigens recognize in vitro and in vivo biofilm. Elife. 11(e67301)2022.PubMed/NCBI View Article : Google Scholar | |
Raafat D, Otto M, Reppschlager K, Iqbal J and Holtfreter S: Fighting Staphylococcus aureus biofilms with monoclonal antibodies. Trends Microbiol. 27:303–322. 2019.PubMed/NCBI View Article : Google Scholar | |
Haddad Kashani H, Schmelcher M, Sabzalipoor H, Seyed Hosseini E and Moniri R: Recombinant endolysins as potential therapeutics against antibiotic-resistant Staphylococcus aureus: Current status of research and novel delivery strategies. Clin Microbiol Rev. 31:e00071–17. 2017.PubMed/NCBI View Article : Google Scholar | |
Defraine V, Fauvart M and Michiels J: Fighting bacterial persistence: Current and emerging anti-persister strategies and therapeutics. Drug Resist Updat. 38:12–26. 2018.PubMed/NCBI View Article : Google Scholar | |
Ganesan N, Mishra B, Felix L and Mylonakis E: Antimicrobial peptides and small molecules targeting the cell membrane of Staphylococcus aureus. Microbiol Mol Biol Rev. 87(e0003722)2023.PubMed/NCBI View Article : Google Scholar | |
Hou X, Li J, Tang H, Li Q, Shen G, Li S, Chen A, Peng Z, Zhang Y, Li C and Zhang Z: Antibacterial peptide NP-6 affects Staphylococcus aureus by multiple modes of action. Int J Mol Sci. 23(7812)2022.PubMed/NCBI View Article : Google Scholar | |
Li J, Liu D, Tian X, Koseki S, Chen S, Ye X and Ding T: Novel antibacterial modalities against methicillin resistant Staphylococcus aureus derived from plants. Crit Rev Food Sci Nutr. 59 (Suppl 1):S153–S161. 2019.PubMed/NCBI View Article : Google Scholar | |
Pirzadeh M, Caporaso N, Rauf A, Shariati MA, Yessimbekov Z, Khan MU, Imran M and Mubarak MS: Pomegranate as a source of bioactive constituents: A review on their characterization, properties and applications. Crit Rev Food Sci Nutr. 61:982–999. 2021.PubMed/NCBI View Article : Google Scholar | |
Vestergaard M and Ingmer H: Antibacterial and antifungal properties of resveratrol. Int J Antimicrob Agents. 53:716–723. 2019.PubMed/NCBI View Article : Google Scholar | |
Rai M, Ingle AP, Pandit R, Paralikar P, Gupta I, Chaud MV and Dos Santos CA: Broadening the spectrum of small-molecule antibacterials by metallic nanoparticles to overcome microbial resistance. Int J Pharm. 532:139–148. 2017.PubMed/NCBI View Article : Google Scholar | |
Zahran M and Marei AH: Innovative natural polymer metal nanocomposites and their antimicrobial activity. Int J Biol Macromol. 136:586–596. 2019.PubMed/NCBI View Article : Google Scholar | |
Makabenta JMV, Nabawy A, Li CH, Schmidt-Malan S, Patel R and Rotello VM: Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol. 19:23–36. 2021.PubMed/NCBI View Article : Google Scholar | |
Yuan Z, Lin C, Dai L, He Y, Hu J, Xu K, Tao B, Liu P and Cai K: Near-infrared light-activatable dual-action nanoparticle combats the established biofilms of methicillin-resistant Staphylococcus aureus and its accompanying inflammation. Small. 17(e2007522)2021.PubMed/NCBI View Article : Google Scholar | |
Babayevska N, Przysiecka Ł, Iatsunskyi I, Nowaczyk G, Jarek M, Janiszewska E and Jurga S: ZnO size and shape effect on antibacterial activity and cytotoxicity profile. Sci Rep. 12(8148)2022.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Yang Y, Shi Y, Song H and Yu C: Antibiotic-free antibacterial strategies enabled by nanomaterials: Progress and perspectives. Adv Mater. 32(e1904106)2020.PubMed/NCBI View Article : Google Scholar | |
Maťátková O, Michailidu J, Miškovská A, Kolouchová I, Masák J and Čejková A: Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods. Biotechnol Adv. 58(107905)2022.PubMed/NCBI View Article : Google Scholar | |
Wang L, Hu C and Shao L: The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int J Nanomedicine. 12:1227–1249. 2017.PubMed/NCBI View Article : Google Scholar | |
Alzahrani KE, Niazy AA, Alswieleh AM, Wahab R, El-Toni AM and Alghamdi HS: Antibacterial activity of trimetal (CuZnFe) oxide nanoparticles. Int J Nanomedicine. 13:77–87. 2017.PubMed/NCBI View Article : Google Scholar | |
Roszczenko P, Szewczyk OK, Czarnomysy R, Bielawski K and Bielawska A: Biosynthesized gold, silver, palladium, platinum, copper, and other transition metal nanoparticles. Pharmaceutics. 14(2286)2022.PubMed/NCBI View Article : Google Scholar | |
Slavin YN, Asnis J, Häfeli UO and Bach H: Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J Nanobiotechnology. 15(65)2017.PubMed/NCBI View Article : Google Scholar | |
Huang X, Zheng X, Xu Z and Yi C: ZnO-based nanocarriers for drug delivery application: From passive to smart strategies. Int J Pharm. 534:190–194. 2017.PubMed/NCBI View Article : Google Scholar | |
Dadi R, Azouani R, Traore M, Mielcarek C and Kanaev A: Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strains. Mater Sci Eng C Mater Biol Appl. 104(109968)2019.PubMed/NCBI View Article : Google Scholar | |
Kalpana VN and Devi Rajeswari V: A Review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorg Chem Appl. 2018(3569758)2018.PubMed/NCBI View Article : Google Scholar | |
Lallo da Silva B, Caetano BL, Chiari-Andréo BG, Pietro RCLR and Chiavacci LA: Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification. Colloids Surf B Biointerfaces. 177:440–447. 2019.PubMed/NCBI View Article : Google Scholar | |
Bianchini Fulindi R, Domingues Rodrigues J, Lemos Barbosa TW, Goncalves Garcia AD, de Almeida La Porta F, Pratavieira S, Chiavacci LA, Pessoa Araújo Junior J, da Costa PI and Martinez LR: Zinc-based nanoparticles reduce bacterial biofilm formation. Microbiol Spectr. 11(e0483122)2023.PubMed/NCBI View Article : Google Scholar : (Epub ahead of print). | |
Kahandal A, Chaudhary S, Methe S, Nagwade P, Sivaram A and Tagad CK: Galactomannan polysaccharide as a biotemplate for the synthesis of zinc oxide nanoparticles with photocatalytic, antimicrobial and anticancer applications. Int J Biol Macromol. 253(126787)2023.PubMed/NCBI View Article : Google Scholar | |
Abdelraheem WM, Khairy RMM, Zaki AI and Zaki SH: Effect of ZnO nanoparticles on methicillin, vancomycin, linezolid resistance and biofilm formation in Staphylococcus aureus isolates. Ann Clin Microbiol Antimicrob. 20(54)2021.PubMed/NCBI View Article : Google Scholar | |
Irfan M, Munir H and Ismail H: Moringa oleifera gum based silver and zinc oxide nanoparticles: Green synthesis, characterization and their antibacterial potential against MRSA. Biomater Res. 25(17)2021.PubMed/NCBI View Article : Google Scholar | |
El-Masry RM, Talat D, Hassoubah SA, Zabermawi NM, Eleiwa NZ, Sherif RM, Abourehab MSA, Abdel-Sattar RM, Gamal M, Ibrahim MS and Elbestawy A: Evaluation of the antimicrobial activity of ZnO nanoparticles against enterotoxigenic Staphylococcus aureus. Life (Basel). 12(1662)2022.PubMed/NCBI View Article : Google Scholar | |
Bommakanti V, Banerjee M, Shah D, Manisha K, Sri K and Banerjee S: An overview of synthesis, characterization, applications and associated adverse effects of bioactive nanoparticles. Environ Res. 214(113919)2022.PubMed/NCBI View Article : Google Scholar | |
Massoudi I, Hamdi R, Ababutain I, Alhussain E and Kharma A: HSBM-produced zinc oxide nanoparticles: Physical properties and evaluation of their antimicrobial activity against human pathogens. Scientifica (Cairo). 2022(9989282)2022.PubMed/NCBI View Article : Google Scholar | |
Yusof NAA, Zain NM and Pauzi N: Synthesis of ZnO nanoparticles with chitosan as stabilizing agent and their antibacterial properties against Gram-positive and Gram-negative bacteria. Int J Biol Macromol. 124:1132–1136. 2019.PubMed/NCBI View Article : Google Scholar | |
Asif N, Amir M and Fatma T: Recent advances in the synthesis, characterization and biomedical applications of zinc oxide nanoparticles. Bioprocess Biosyst Eng. 46:1377–1398. 2023.PubMed/NCBI View Article : Google Scholar | |
Mendes AR, Granadeiro CM, Leite A, Pereira E, Teixeira P and Poças F: optimizing antimicrobial efficacy: Investigating the impact of zinc oxide nanoparticle shape and size. Nanomaterials (Basel). 14(638)2024.PubMed/NCBI View Article : Google Scholar | |
Stankic S, Suman S, Haque F and Vidic J: Pure and multi metal oxide nanoparticles: Synthesis, antibacterial and cytotoxic properties. J Nanobiotechnology. 14(73)2016.PubMed/NCBI View Article : Google Scholar | |
Bai X, Li L, Liu H, Tan L, Liu T and Meng X: Solvothermal synthesis of ZnO nanoparticles and anti-infection application in vivo. ACS Appl Mater Interfaces. 7:1308–1317. 2015.PubMed/NCBI View Article : Google Scholar | |
Navarro-López DE, Garcia-Varela R, Ceballos-Sanchez O, Sanchez-Martinez A, Sanchez-Ante G, Corona-Romero K, Buentello-Montoya DA, Elías-Zuñiga A and López-Mena ER: Effective antimicrobial activity of ZnO and Yb-doped ZnO nanoparticles against Staphylococcus aureus and Escherichia coli. Mater Sci Eng C Mater Biol Appl. 123(112004)2021.PubMed/NCBI View Article : Google Scholar | |
Manyasree D, Kiranmayi P and Kolli VR: Characterization and antibacterial activity of zno nanoparticles synthesized by co precipitation method. Int J Appl Pharm. 10(224)2018. | |
Mahamuni PP, Patil PM, Dhanavade MJ, Badiger MV, Shadija PG, Lokhande AC and Bohara RA: Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity. Biochem Biophys Rep. 17:71–80. 2018.PubMed/NCBI View Article : Google Scholar | |
Manzoor U, Siddique S, Ahmed R, Noreen Z, Bokhari H and Ahmad I: Antibacterial, structural and optical characterization of mechano-chemically prepared ZnO nanoparticles. PLoS One. 11(e0154704)2016.PubMed/NCBI View Article : Google Scholar | |
Paiva-Santos AC, Herdade AM, Guerra C, Peixoto D, Pereira-Silva M, Zeinali M, Mascarenhas-Melo F, Paranhos A and Veiga F: Plant-mediated green synthesis of metal-based nanoparticles for dermopharmaceutical and cosmetic applications. Int J Pharm. 597(120311)2021.PubMed/NCBI View Article : Google Scholar | |
Salem SS and Fouda A: Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biol Trace Elem Res. 199:344–370. 2021.PubMed/NCBI View Article : Google Scholar | |
Ting BYS, Fuloria NK, Subrimanyan V, Bajaj S, Chinni SV, Reddy LV, Sathasivam KV, Karupiah S, Malviya R, Meenakshi DU, et al: Biosynthesis and response of zinc oxide nanoparticles against periimplantitis triggering pathogens. Materials (Basel). 15(3170)2022.PubMed/NCBI View Article : Google Scholar | |
Doğaroğlu ZG, Uysal Y, çaylalı Z and Karakulak DS: Green nanotechnology advances: Green manufacturing of zinc nanoparticles, characterization, and foliar application on wheat and antibacterial characteristics using Mentha spicata (mint) and Ocimum basilicum (basil) leaf extracts. Environ Sci Pollut Res Int. 30:60820–60837. 2023.PubMed/NCBI View Article : Google Scholar | |
Sachin Jaishree, Singh N, Singh R, Shah K and Pramanik BK: Green synthesis of zinc oxide nanoparticles using lychee peel and its application in anti-bacterial properties and CR dye removal from wastewater. Chemosphere. 327(138497)2023.PubMed/NCBI View Article : Google Scholar | |
Mohammed YHI, Alghamdi S, Jabbar B, Marghani D, Beigh S, Abouzied AS, Khalifa NE, Khojali WMA, Huwaimel B, Alkhalifah DHM and Hozzein WN: Green synthesis of zinc oxide nanoparticles using Cymbopogon citratus extract and its antibacterial activity. ACS Omega. 8:32027–32042. 2023.PubMed/NCBI View Article : Google Scholar | |
Mushtaq W, Ishtiaq M, Maqbool M, Mazhar MW, Casini R, Abd-Elgawad AM and Elansary HO: Green synthesis of zinc oxide nanoparticles using Viscum album extracts: Unveiling bioactive compounds, antibacterial potential, and antioxidant activities. Plants (Basel). 12(2130)2023.PubMed/NCBI View Article : Google Scholar | |
Hasan M, Zafar A, Imran M, Iqbal KJ, Tariq T, Iqbal J, Shaheen A, Hussain R, Anjum SI and Shu X: Crest to trough cellular drifting of green-synthesized zinc oxide and silver nanoparticles. ACS Omega. 7:34770–34778. 2022.PubMed/NCBI View Article : Google Scholar | |
Irfan M, Munir H and Ismail H: Characterization and fabrication of zinc oxide nanoparticles by gum Acacia modesta through green chemistry and impregnation on surgical sutures to boost up the wound healing process. Int J Biol Macromol. 204:466–475. 2022.PubMed/NCBI View Article : Google Scholar | |
Alallam B, Doolaanea AA, Alfatama M and Lim V: Phytofabrication and characterisation of zinc oxide nanoparticles using pure curcumin. Pharmaceuticals (Basel). 16(269)2023.PubMed/NCBI View Article : Google Scholar | |
Malhotra A, Chauhan SR, Rahaman M, Tripathi R, Khanuja M and Chauhan A: Phyto-assisted synthesis of zinc oxide nanoparticles for developing antibiofilm surface coatings on central venous catheters. Front Chem. 11(1138333)2023.PubMed/NCBI View Article : Google Scholar | |
Khanna P, Kaur A and Goyal D: Algae-based metallic nanoparticles: Synthesis, characterization and applications. J Microbiol Methods. 163(105656)2019.PubMed/NCBI View Article : Google Scholar | |
Jamil Z, Naqvi STQ, Rasul S, Hussain SB, Fatima N, Qadir MI and Muhammad SA: Antibacterial activity and characterization of zinc oxide nanoparticles synthesized by microalgae. Pak J Pharm Sci. 33:2497–2504. 2020.PubMed/NCBI | |
Morowvat MH, Kazemi K, Jaberi MA, Amini A and Gholami A: Biosynthesis and antimicrobial evaluation of zinc oxide nanoparticles using Chlorella vulgaris biomass against multidrug-resistant pathogens. Materials (Basel). 16(842)2023.PubMed/NCBI View Article : Google Scholar | |
Alsaggaf MS, Diab AM, Elsaied BEF, Tayel AA and Moussa SH: Application of ZnO nanoparticles phycosynthesized with Ulva fasciata extract for preserving peeled shrimp quality. Nanomaterials (Basel). 11(385)2021.PubMed/NCBI View Article : Google Scholar | |
Lopez-Miranda JL, Molina GA, González-Reyna MA, España-Sánchez BL, Esparza R, Silva R and Estévez M: Antibacterial and anti-inflammatory properties of ZnO nanoparticles synthesized by a green method using Sargassum extracts. Int J Mol Sci. 24(1474)2023.PubMed/NCBI View Article : Google Scholar | |
Ebadi M, Zolfaghari MR, Aghaei SS, Zargar M and Noghabi KA: Desertifilum sp. EAZ03 cell extract as a novel natural source for the biosynthesis of zinc oxide nanoparticles and antibacterial, anticancer and antibiofilm characteristics of synthesized zinc oxide nanoparticles. J Appl Microbiol. 132:221–236. 2022.PubMed/NCBI View Article : Google Scholar | |
Ebadi M, Zolfaghari MR, Aghaei SS, Zargar M, Shafiei M, Zahiri HS and Noghabi KA: A bio-inspired strategy for the synthesis of zinc oxide nanoparticles (ZnO NPs) using the cell extract of cyanobacterium Nostoc sp. EA03: From biological function to toxicity evaluation. RSC Adv. 9:23508–23525. 2019.PubMed/NCBI View Article : Google Scholar | |
Barani M, Masoudi M, Mashreghi M, Makhdoumi A and Eshghi H: Cell-free extract assisted synthesis of ZnO nanoparticles using aquatic bacterial strains: Biological activities and toxicological evaluation. Int J Pharm. 606(120878)2021.PubMed/NCBI View Article : Google Scholar | |
Dikshit P, Kumar J, Das AK, Sadhu S, Sharma S, Singh S, Gupta PK and Kim BS: Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts. 11(902)2021. | |
Mohd Yusof H, Abdul Rahman NA, Mohamad R, Zaidan UH and Samsudin AA: Biosynthesis of zinc oxide nanoparticles by cell-biomass and supernatant of Lactobacillus plantarum TA4 and its antibacterial and biocompatibility properties. Sci Rep. 10(19996)2020.PubMed/NCBI View Article : Google Scholar | |
Rehman S, Jermy BR, Akhtar S, Borgio JF, Abdul AS, Ravinayagam V, Al Jindan R, Alsalem ZH, Buhameid A and Gani A: Isolation and characterization of a novel thermophile; Bacillus haynesii, applied for the green synthesis of ZnO nanoparticles. Artif Cells Nanomed Biotechnol. 47:2072–2082. 2019.PubMed/NCBI View Article : Google Scholar | |
Shaaban M and El-Mahdy AM: Biosynthesis of Ag, Se, and ZnO nanoparticles with antimicrobial activities against resistant pathogens using waste isolate Streptomyces enissocaesilis. IET Nanobiotechnol. 12:741–747. 2018.PubMed/NCBI View Article : Google Scholar | |
Taran M, Rad M and Alavi M: Biosynthesis of TiO2 and ZnO nanoparticles by Halomonas elongata IBRC-M 10214 in different conditions of medium. Bioimpacts. 8:81–89. 2018.PubMed/NCBI View Article : Google Scholar | |
Taran M and Amirkhani H: Strategies of poly(3-hydroxybutyrate) synthesis by Haloarcula sp. IRU1 utilizing glucose as carbon source: Optimization of culture conditions by Taguchi methodology. Int J Biol Macromol. 47:632–634. 2010.PubMed/NCBI View Article : Google Scholar | |
Kang MG, Khan F, Jo DM, Oh D, Tabassum N and Kim YM: Antibiofilm and antivirulence activities of gold and zinc oxide nanoparticles synthesized from kimchi-isolated Leuconostoc sp. Strain C2. Antibiotics (Basel). 11(1524)2022.PubMed/NCBI View Article : Google Scholar | |
Sharma JL, Dhayal V and Sharma RK: White-rot fungus mediated green synthesis of zinc oxide nanoparticles and their impregnation on cellulose to develop environmental friendly antimicrobial fibers. 3 Biotech. 11(269)2021.PubMed/NCBI View Article : Google Scholar | |
Mohamed AA, Abu-Elghait M, Ahmed NE and Salem SS: Eco-friendly mycogenic synthesis of ZnO and CuO nanoparticles for in vitro antibacterial, antibiofilm, and antifungal applications. Biol Trace Elem Res. 199:2788–2799. 2021.PubMed/NCBI View Article : Google Scholar | |
Sumanth B, Lakshmeesha TR, Ansari MA, Alzohairy MA, Udayashankar AC, Shobha B, Niranjana SR, Srinivas C and Almatroudi A: Mycogenic synthesis of extracellular zinc oxide nanoparticles from Xylaria acuta and its nanoantibiotic potential. Int J Nanomedicine. 15:8519–8536. 2020.PubMed/NCBI View Article : Google Scholar | |
Abdelkader DH, Negm WA, Elekhnawy E, Eliwa D, Aldosari BN and Almurshedi AS: Zinc oxide nanoparticles as potential delivery carrier: Green synthesis by Aspergillus niger Endophytic fungus, characterization, and in vitro/in vivo antibacterial activity. Pharmaceuticals (Basel). 15(1057)2022.PubMed/NCBI View Article : Google Scholar | |
Motazedi R, Rahaiee S and Zare M: Efficient biogenesis of ZnO nanoparticles using extracellular extract of Saccharomyces cerevisiae: Evaluation of photocatalytic, cytotoxic and other biological activities. Bioorg Chem. 101(103998)2020.PubMed/NCBI View Article : Google Scholar | |
Akbar N, Aslam Z, Siddiqui R, Shah MR and Khan NA: Zinc oxide nanoparticles conjugated with clinically-approved medicines as potential antibacterial molecules. AMB Express. 11(104)2021.PubMed/NCBI View Article : Google Scholar | |
Ghaffar N, Javad S, Farrukh MA, Shah AA, Gatasheh MK, Al-Munqedhi BMA and Chaudhry O: Metal nanoparticles assisted revival of Streptomycin against MDRS Staphylococcus aureus. PLoS One. 17(e0264588)2022.PubMed/NCBI View Article : Google Scholar | |
Nejabatdoust A, Zamani H and Salehzadeh A: Functionalization of ZnO nanoparticles by glutamic acid and conjugation with thiosemicarbazide alters expression of efflux pump genes in multiple drug-resistant Staphylococcus aureus strains. Microb Drug Resist. 25:966–974. 2019.PubMed/NCBI View Article : Google Scholar | |
Habib S, Rashid F, Tahir H, Liaqat I, Latif AA, Naseem S, Khalid A, Haider N, Hani U, Dawoud RA, et al: Antibacterial and cytotoxic effects of biosynthesized zinc oxide and titanium dioxide nanoparticles. Microorganisms. 11(1363)2023.PubMed/NCBI View Article : Google Scholar | |
Abdelghafar A, Yousef N and Askoura M: Zinc oxide nanoparticles reduce biofilm formation, synergize antibiotics action and attenuate Staphylococcus aureus virulence in host; an important message to clinicians. BMC Microbiol. 22(244)2022.PubMed/NCBI View Article : Google Scholar | |
Hemmati F, Salehi R, Ghotaslou R, Kafil HS, Hasani A, Gholizadeh P and Rezaee MA: The assessment of antibiofilm activity of chitosan-zinc oxide-gentamicin nanocomposite on Pseudomonas aeruginosa and Staphylococcus aureus. Int J Biol Macromol. 163:2248–2258. 2020.PubMed/NCBI View Article : Google Scholar | |
Saddik MS, Elsayed MMA, El-Mokhtar MA, Sedky H, Abdel-Aleem JA, Abu-Dief AM, Al-Hakkani MF, Hussein HL, Al-Shelkamy SA, Meligy FY, et al: Tailoring of novel azithromycin-loaded zinc oxide nanoparticles for wound healing. Pharmaceutics. 14(111)2022.PubMed/NCBI View Article : Google Scholar | |
Khan SA, Shahid S, Mahmood T and Lee CS: Contact lenses coated with hybrid multifunctional ternary nanocoatings (phytomolecule-coated ZnO nanoparticles:Gallic acid:Tobramycin) for the treatment of bacterial and fungal keratitis. Acta Biomater. 128:262–276. 2021.PubMed/NCBI View Article : Google Scholar | |
Rath G, Hussain T, Chauhan G, Garg T and Goyal AK: Development and characterization of cefazolin loaded zinc oxide nanoparticles composite gelatin nanofiber mats for postoperative surgical wounds. Mater Sci Eng C Mater Biol Appl. 58:242–253. 2016.PubMed/NCBI View Article : Google Scholar | |
Oves M, Rauf MA, Ansari MO, Aslam Parwaz Khan A, A Qari H, Alajmi MF, Sau S and Iyer AK: Graphene decorated zinc oxide and curcumin to disinfect the methicillin-resistant Staphylococcus aureus. Nanomaterials (Basel). 10(1004)2020.PubMed/NCBI View Article : Google Scholar | |
Zhai F, Luo Y, Zhang Y, Liao S, Cheng J, Meng X, Zeng Y, Wang X, Yang J, Yin J and Li L: Viscosity simulation of glass microfiber and an unusual air filter with high-efficiency antibacterial functionality enabled by ZnO/graphene-modified glass microfiber. ACS Omega. 7:14211–14221. 2022.PubMed/NCBI View Article : Google Scholar | |
Chai Q, Wu Q, Liu T, Tan L, Fu C, Ren X, Yang Y and Meng X: Enhanced antibacterial activity of silica nanorattles with ZnO combination nanoparticles against methicillin-resistant Staphylococcus aureus. Sci Bull (Beijing). 62:1207–1215. 2017.PubMed/NCBI View Article : Google Scholar | |
Vinotha V, Yazhiniprabha M, Jeyavani J and Vaseeharan B: Synthesis and characterization of cry protein coated zinc oxide nanocomposites and its assessment against bacterial biofilm and mosquito vectors. Int J Biol Macromol. 208:935–947. 2022.PubMed/NCBI View Article : Google Scholar | |
Azizi-Lalabadi M, Ehsani A, Divband B and Alizadeh-Sani M: Antimicrobial activity of titanium dioxide and zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic. Sci Rep. 9(17439)2019.PubMed/NCBI View Article : Google Scholar | |
Banerjee S, Vishakha K, Das S, Dutta M, Mukherjee D, Mondal J, Mondal S and Ganguli A: Antibacterial, anti-biofilm activity and mechanism of action of pancreatin doped zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus. Colloids Surf B Biointerfaces. 190(110921)2020.PubMed/NCBI View Article : Google Scholar | |
Canales DA, Piñones N, Saavedra M, Loyo C, Palza H, Peponi L, Leonés A, Baier RV, Boccaccini AR, Grünelwald A and Zapata PA: Fabrication and assessment of bifunctional electrospun poly(l-lactic acid) scaffolds with bioglass and zinc oxide nanoparticles for bone tissue engineering. Int J Biol Macromol. 228:78–88. 2023.PubMed/NCBI View Article : Google Scholar | |
Pitpisutkul V and Prachayawarakorn J: Hydroxypropyl methylcellulose/carboxymethyl starch/zinc oxide porous nanocomposite films for wound dressing application. Carbohydr Polym. 298(120082)2022.PubMed/NCBI View Article : Google Scholar | |
Majeed A, Javed F, Akhtar S, Saleem U, Anwar F, Ahmad B, Nadhman A, Shahnaz G, Hussain I, Hussain SZ and Sohail MF: Green synthesized selenium doped zinc oxide nano-antibiotic: Synthesis, characterization and evaluation of antimicrobial, nanotoxicity and teratogenicity potential. J Mater Chem B. 8:8444–8458. 2020.PubMed/NCBI View Article : Google Scholar | |
Zabihi E, Arab-Bafrani Z, Hoseini SM, Mousavi E, Babaei A, Khalili M, Hashemi MM and Javid N: Fabrication of nano-decorated ZnO-fibrillar chitosan exhibiting a superior performance as a promising replacement for conventional ZnO. Carbohydr Polym. 274(118639)2021.PubMed/NCBI View Article : Google Scholar | |
Karthikeyan C, Tharmalingam N, Varaprasad K, Mylonakis E and Yallapu MM: Biocidal and biocompatible hybrid nanomaterials from biomolecule chitosan, alginate and ZnO. Carbohydr Polym. 274(118646)2021.PubMed/NCBI View Article : Google Scholar | |
Kang J, Hu C, Dichiara A, Guan L, Yun H and Gu J: Facile preparation of cellulose nanocrystals/ZnO hybrids using acidified ZnCl2 as cellulose hydrolytic media and ZnO precursor. Int J Biol Macromol. 227:863–871. 2023.PubMed/NCBI View Article : Google Scholar | |
AbouAitah K, Piotrowska U, Wojnarowicz J, Swiderska-Sroda A, El-Desoky AHH and Lojkowski W: Enhanced activity and sustained release of protocatechuic acid, a natural antibacterial agent, from hybrid nanoformulations with zinc oxide nanoparticles. Int J Mol Sci. 22(5287)2021.PubMed/NCBI View Article : Google Scholar | |
Naserian F and Mesgar AS: Development of antibacterial and superabsorbent wound composite sponges containing carboxymethyl cellulose/gelatin/Cu-doped ZnO nanoparticles. Colloids Surf B Biointerfaces. 218(112729)2022.PubMed/NCBI View Article : Google Scholar | |
Nageswara Rao B, Tirupathi Rao P, Vasudha K, Esub Basha S, Prasanna DSL, Bhushana Rao T, Samatha K and Ramachandra RK: Physiochemical characterization of sodium doped zinc oxide nano powder for antimicrobial applications. Spectrochim Acta A Mol Biomol Spectrosc. 291(122297)2023.PubMed/NCBI View Article : Google Scholar | |
Fu F, Gu J, Zhang R, Xu X, Yu X, Liu L, Liu X, Zhou J and Yao J: Three-dimensional cellulose based silver-functionalized ZnO nanocomposite with controlled geometry: Synthesis, characterization and properties. J Colloid Interface Sci. 530:433–443. 2018.PubMed/NCBI View Article : Google Scholar | |
Hu M, Li C, Li X, Zhou M, Sun J, Sheng F, Shi S and Lu L: Zinc oxide/silver bimetallic nanoencapsulated in PVP/PCL nanofibres for improved antibacterial activity. Artif Cells Nanomed Biotechnol. 46:1248–1257. 2018.PubMed/NCBI View Article : Google Scholar | |
Mohammadi-Aloucheh R, Habibi-Yangjeh A, Bayrami A, Latifi-Navid S and Asadi A: Enhanced anti-bacterial activities of ZnO nanoparticles and ZnO/CuO nanocomposites synthesized using Vaccinium arctostaphylos L. fruit extract. Artif Cells Nanomed Biotechnol. 46 (Suppl 1):S1200–S1209. 2018.PubMed/NCBI View Article : Google Scholar | |
Bahari A, Roeinfard M, Ramzannezhad A, Khodabakhshi M and Mohseni M: Nanostructured Features and Antimicrobial Properties of Fe3O4/ZnO Nanocomposites. Natl Acad Sci Lett. 42:9–12. 2019. | |
AlSalhi MS, Devanesan S, Asemi N and Ahamed A: Concurrent fabrication of ZnO-ZnFe2O4 hybrid nanocomposite for enhancing photocatalytic degradation of organic pollutants and its bacterial inactivation. Chemosphere. 318(137928)2023.PubMed/NCBI View Article : Google Scholar | |
Lee M, Han SI, Kim C, Velumani S, Han A, Kassiba AH and Castaneda H: ZrO2/ZnO/TiO2 nanocomposite coatings on stainless steel for improved corrosion resistance, biocompatibility, and antimicrobial activity. ACS Appl Mater Interfaces. 14:13801–13811. 2022.PubMed/NCBI View Article : Google Scholar | |
Pulit-Prociak J, Staroń A, Staroń P, Chmielowiec-Korzeniowska A, Drabik A, Tymczyna L and Banach M: Preparation and of PVA-based compositions with embedded silver, copper and zinc oxide nanoparticles and assessment of their antibacterial properties. J Nanobiotechnology. 18(148)2020.PubMed/NCBI View Article : Google Scholar | |
Akhil K, Jayakumar J, Gayathri G and Khan SS: Effect of various capping agents on photocatalytic, antibacterial and antibiofilm activities of ZnO nanoparticles. J Photochem Photobiol B. 160:32–42. 2016.PubMed/NCBI View Article : Google Scholar | |
Choi KH, Nam KC, Lee SY, Cho G, Jung JS, Kim HJ and Park BJ: Antioxidant potential and antibacterial efficiency of caffeic acid-functionalized ZnO nanoparticles. Nanomaterials (Basel). 7(148)2017.PubMed/NCBI View Article : Google Scholar | |
Du M, Zhao W, Ma R, Xu H, Zhu Y, Shan C, Liu K, Zhuang J and Jiao Z: Visible-light-driven photocatalytic inactivation of S. aureus in aqueous environment by hydrophilic zinc oxide (ZnO) nanoparticles based on the interfacial electron transfer in S. aureus/ZnO composites. J Hazard Mater. 418(126013)2021.PubMed/NCBI View Article : Google Scholar | |
Charoensri K, Rodwihok C, Wongratanaphisan D, Ko JA, Chung JS and Park HJ: Investigation of functionalized surface charges of thermoplastic starch/zinc oxide nanocomposite films using polyaniline: The potential of improved antibacterial properties. Polymers (Basel). 13(425)2021.PubMed/NCBI View Article : Google Scholar | |
Lee J, Choi KH, Min J, Kim HJ, Jee JP and Park BJ: Functionalized ZnO nanoparticles with gallic acid for antioxidant and antibacterial activity against methicillin-resistant S. aureus. Nanomaterials (Basel). 7(365)2017.PubMed/NCBI View Article : Google Scholar | |
Chen J, Jing Q, Xu Y, Lin Y, Mai Y, Chen L, Wang G, Chen Z, Deng L, Chen J, et al: Functionalized zinc oxide microparticles for improving the antimicrobial effects of skin-care products and wound-care medicines. Biomater Adv. 135(212728)2022.PubMed/NCBI View Article : Google Scholar | |
Yuan K, Liu X, Shi J, Liu W, Liu K, Lu H, Wu D, Chen Z and Lu C: Antibacterial properties and mechanism of lysozyme-modified ZnO nanoparticles. Front Chem. 9(762255)2021.PubMed/NCBI View Article : Google Scholar | |
Popa ML, Preda MD, Neacșu IA, Grumezescu AM and Ginghină O: Traditional vs microfluidic synthesis of ZnO nanoparticles. Int J Mol Sci. 24(1875)2023.PubMed/NCBI View Article : Google Scholar | |
Ahmed S, Annu Chaudhry SA and Ikram S: A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry. J Photochem Photobiol B. 166:272–284. 2017.PubMed/NCBI View Article : Google Scholar | |
Kapp K, Orav A, Roasto M, Raal A, Püssa T, Vuorela H, Tammela P and Vuorela P: Composition and antibacterial effect of mint flavorings in candies and food supplements. Planta Med. 86:1089–1096. 2020.PubMed/NCBI View Article : Google Scholar | |
Deng Z, Bheemanaboina RRY, Luo Y and Zhou CH: Aloe emodin-conjugated sulfonyl hydrazones as novel type of antibacterial modulators against S. aureus 25923 through multifaceted synergistic effects. Bioorg Chem. 127(106035)2022.PubMed/NCBI View Article : Google Scholar | |
Hussain Y, Alam W, Ullah H, Dacrema M, Daglia M, Khan H and Arciola CR: Antimicrobial potential of curcumin: Therapeutic potential and challenges to clinical applications. Antibiotics (Basel). 11(322)2022.PubMed/NCBI View Article : Google Scholar | |
Singh P, Garg A, Pandit S, Mokkapati VRSS and Mijakovic I: Antimicrobial effects of biogenic nanoparticles. Nanomaterials (Basel). 8(1009)2018.PubMed/NCBI View Article : Google Scholar | |
El-Gendy AO, Nawaf KT, Ahmed E, Samir A, Hamblin MR, Hassan M and Mohamed T: Preparation of zinc oxide nanoparticles using laser-ablation technique: Retinal epithelial cell (ARPE-19) biocompatibility and antimicrobial activity when activated with femtosecond laser. J Photochem Photobiol B. 234(112540)2022.PubMed/NCBI View Article : Google Scholar | |
Sindelo A, Nene L and Nyokong T: Photodynamic antimicrobial chemotherapy with asymmetrical cationic or neutral metallophthalocyanines conjugated to amino-functionalized zinc oxide nanoparticles (spherical or pyramidal) against planktonic and biofilm microbial cultures. Photodiagnosis Photodyn Ther. 40(103160)2022.PubMed/NCBI View Article : Google Scholar | |
Ruan Q, Yuan L, Gao S, Ji X, Shao W, Ma J and Jiang D: Development of ZnO/selenium nanoparticles embedded chitosan-based anti-bacterial wound dressing for potential healing ability and nursing care after paediatric fracture surgery. Int Wound J. 20:1819–1831. 2023.PubMed/NCBI View Article : Google Scholar | |
Ismail A, Raya NR, Orabi A, Ali AM and Abo-Zeid Y: Investigating the antibacterial activity and safety of zinc oxide nanoparticles versus a commercial alcohol-based hand-sanitizer: Can zinc oxide nanoparticles be useful for hand sanitation? Antibiotics (Basel). 11(1606)2022.PubMed/NCBI View Article : Google Scholar | |
Venkatraman G, Mohan PS, Abdul-Rahman PS, Sonsudin F, Muttiah B, Hirad AH, Alarfaj AA and Wang S: Morinda citrifolia leaf assisted synthesis of ZnO decorated Ag bio-nanocomposites for in-vitro cytotoxicity, antimicrobial and anticancer applications. Bioprocess Biosyst Eng. 47:1213–1226. 2024.PubMed/NCBI View Article : Google Scholar | |
Pereira da Costa Araújo A, Lima VS, Emmanuela de Andrade Vieira J, Mesak C and Malafaia G: First report on the mutagenicity and cytotoxicity of Zno nanoparticles in reptiles. Chemosphere. 235:556–564. 2019.PubMed/NCBI View Article : Google Scholar | |
Yang D, Zhang M, Gan Y, Yang S, Wang J, Yu M, Wei J and Chen J: Involvement of oxidative stress in ZnO NPs-induced apoptosis and autophagy of mouse GC-1 spg cells. Ecotoxicol Environ Saf. 202(110960)2020.PubMed/NCBI View Article : Google Scholar | |
Al-Zahaby SA, Farag MR, Alagawany M, Taha HSA, Varoni MV, Crescenzo G and Mawed SA: Zinc oxide nanoparticles (ZnO-NPs) induce cytotoxicity in the zebrafish olfactory organs via activating oxidative stress and apoptosis at the ultrastructure and genetic levels. Animals (Basel). 13(2867)2023.PubMed/NCBI View Article : Google Scholar | |
Nazir S, Rabbani A, Mehmood K, Maqbool F, Shah GM, Khan MF and Sajid M: Antileishmanial activity and cytotoxicity of ZnO-based nano-formulations. Int J Nanomedicine. 14:7809–7822. 2019.PubMed/NCBI View Article : Google Scholar | |
Czyzowska A and Barbasz A: Cytotoxicity of zinc oxide nanoparticles to innate and adaptive human immune cells. J Appl Toxicol. 41:1425–1437. 2021.PubMed/NCBI View Article : Google Scholar | |
Niño-Martínez N, Salas Orozco MF, Martínez-Castañón GA, Torres Méndez F and Ruiz F: Molecular mechanisms of bacterial resistance to metal and metal oxide nanoparticles. Int J Mol Sci. 20(2808)2019.PubMed/NCBI View Article : Google Scholar | |
Alsmadi MM, Al-Nemrawi NK, Obaidat R, Abu Alkahsi AE, Korshed KM and Lahlouh IK: Insights into the mapping of green synthesis conditions for ZnO nanoparticles and their toxicokinetics. Nanomedicine (Lond). 17:1281–1303. 2022.PubMed/NCBI View Article : Google Scholar | |
Marinescu L, Ficai D, Oprea O, Marin A, Ficai A, Andronescu E and Holban AM: Optimized Synthesis approaches of metal nanoparticles with antimicrobial applications. J Nanomater. 2020:1–14. 2020. | |
Sajjad A, Bhatti SH, Ali Z, Jaffari GH, Khan NA, Rizvi ZF and Zia M: Photoinduced fabrication of zinc oxide nanoparticles: Transformation of morphological and biological response on light irradiance. ACS Omega. 6:11783–11793. 2021.PubMed/NCBI View Article : Google Scholar | |
Al-Mosawi RM, Jasim HA and Haddad A: Study of the antibacterial effects of the starch-based zinc oxide nanoparticles on methicillin resistance Staphylococcus aureus isolates from different clinical specimens of patients from Basrah, Iraq. AIMS Microbiol. 9:90–107. 2023.PubMed/NCBI View Article : Google Scholar | |
Kim I, Viswanathan K, Kasi G, Sadeghi K, Thanakkasaranee S and Seo J: Preparation and characterization of positively surface charged zinc oxide nanoparticles against bacterial pathogens. Microb Pathog. 149(104290)2020.PubMed/NCBI View Article : Google Scholar | |
Hozyen HF, Ibrahim ES, Khairy EA and El-Dek SI: Enhanced antibacterial activity of capped zinc oxide nanoparticles: A step towards the control of clinical bovine mastitis. Vet World. 12:1225–1232. 2019.PubMed/NCBI View Article : Google Scholar | |
Khan MF, Hameedullah M, Ansari AH, Ahmad E, Lohani MB, Khan RH, Alam MM, Khan W, Husain FM and Ahmad I: Flower-shaped ZnO nanoparticles synthesized by a novel approach at near-room temperatures with antibacterial and antifungal properties. Int J Nanomedicine. 9:853–864. 2014.PubMed/NCBI View Article : Google Scholar | |
Gharpure S, Jadhav T, Ghotekar C, Jagtap A, Vare Y and Ankamwar B: Non-antibacterial and antibacterial ZnO nanoparticles composed of different surfactants. J Nanosci Nanotechnol. 21:5945–5959. 2021.PubMed/NCBI View Article : Google Scholar | |
Wahab R, Mishra A, Yun SI, Kim YS and Shin HS: Antibacterial activity of ZnO nanoparticles prepared via non-hydrolytic solution route. Appl Microbiol Biotechnol. 87:1917–1925. 2010.PubMed/NCBI View Article : Google Scholar | |
Al-Askar AA, Hashem AH, Elhussieny NI and Saied E: Green biosynthesis of zinc oxide nanoparticles using Pluchea indica leaf extract: Antimicrobial and photocatalytic activities. Molecules. 28(4679)2023.PubMed/NCBI View Article : Google Scholar | |
Manojkumar U, Kaliannan D, Srinivasan V, Balasubramanian B, Kamyab H, Mussa ZH, Palaniyappan J, Mesbah M, Chelliapan S and Palaninaicker S: Green synthesis of zinc oxide nanoparticles using Brassica oleracea var. botrytis leaf extract: Photocatalytic, antimicrobial and larvicidal activity. Chemosphere. 323(138263)2023.PubMed/NCBI View Article : Google Scholar | |
Irfan M, Naz MY, Saleem M, Tanawush M, Głowacz A, Glowacz W, Rahman S, Mahnashi MH, Alqahtani YS, Alyami BA, et al: Statistical study of nonthermal plasma-assisted ZnO coating of cotton fabric through ultrasonic-assisted green synthesis for improved self-cleaning and antimicrobial properties. Materials (Basel). 14(6998)2021.PubMed/NCBI View Article : Google Scholar | |
Abdo AM, Fouda A, Eid AM, Fahmy NM, Elsayed AM, Khalil AMA, Alzahrani OM, Ahmed AF and Soliman AM: Green synthesis of zinc oxide nanoparticles (ZnO-NPs) by Pseudomonas aeruginosa and their activity against pathogenic microbes and common house mosquito, culex pipiens. Materials (Basel). 14(6983)2021.PubMed/NCBI View Article : Google Scholar |