1
|
Veldhuizen J, Chavan R, Moghadas B, Park
JG, Kodibagkar VD, Migrino RQ and Nikkhah M: Cardiac ischemia
on-a-chip to investigate cellular and molecular response of
myocardial tissue under hypoxia. Biomaterials.
281(121336)2022.PubMed/NCBI View Article : Google Scholar
|
2
|
Ichiki T and Sunagawa K: Novel roles of
hypoxia response system in glucose metabolism and obesity. Trends
Cardiovasc Med. 24:197–201. 2014.PubMed/NCBI View Article : Google Scholar
|
3
|
Kishimoto I, Tokudome T, Hosoda H,
Miyazato M and Kangawa K: Ghrelin and cardiovascular diseases. J
Cardiol. 59:8–13. 2012.PubMed/NCBI View Article : Google Scholar
|
4
|
Wilkins MR, Ghofrani HA, Weissmann N,
Aldashev A and Zhao L: Pathophysiology and treatment of
high-altitude pulmonary vascular disease. Circulation. 131:582–590.
2015.PubMed/NCBI View Article : Google Scholar
|
5
|
Guo J, Zhu K, Li Z and Xiao C: Adiponectin
protects hypoxia/reoxygenation-induced cardiomyocyte injury by
suppressing autophagy. J Immunol Res. 2022(8433464)2022.PubMed/NCBI View Article : Google Scholar
|
6
|
Liu B, Wei H, Lan M, Jia N, Liu J and
Zhang M: MicroRNA-21 mediates the protective effects of salidroside
against hypoxia/reoxygenation-induced myocardial oxidative stress
and inflammatory response. Exp Ther Med. 19:1655–1664.
2020.PubMed/NCBI View Article : Google Scholar
|
7
|
Rabinovich-Nikitin I, Blant A, Dhingra R,
Kirshenbaum LA and Czubryt MP: NF-κB p65 attenuates cardiomyocyte
PGC-1α expression in hypoxia. Cells. 11(2193)2022.PubMed/NCBI View Article : Google Scholar
|
8
|
Chen Y, Tang M, Yuan S, Fu S, Li Y, Li Y,
Wang Q, Cao Y, Liu L and Zhang Q: Rhodiola rosea: A
therapeutic candidate on cardiovascular diseases. Oxid Med Cell
Longev. 2022(1348795)2022.PubMed/NCBI View Article : Google Scholar
|
9
|
Li Y, Zhao Y, Li X, Liu T, Jiang X and Han
F: Characterization of global metabolic profile of Rhodiola
crenulata after oral administration in rat plasma, urine, bile and
feces based on UHPLC-FT-ICR MS. J Pharm Biomed Anal. 149:318–328.
2018.PubMed/NCBI View Article : Google Scholar
|
10
|
Xie N, Fan F, Jiang S, Hou Y, Zhang Y,
Cairang N, Wang X and Meng X: Rhodiola crenulate alleviates
hypobaric hypoxia-induced brain injury via adjusting
NF-κB/NLRP3-mediated inflammation. Phytomedicine.
103(154240)2022.PubMed/NCBI View Article : Google Scholar
|
11
|
Bai XL, Deng XL, Wu GJ, Li WJ and Jin S:
Rhodiola and salidroside in the treatment of metabolic disorders.
Mini Rev Med Chem. 19:1611–1626. 2019.PubMed/NCBI View Article : Google Scholar
|
12
|
Chen L, Liu P, Feng X and Ma C:
Salidroside suppressing LPS-induced myocardial injury by inhibiting
ROS-mediated PI3K/Akt/mTOR pathway in vitro and in vivo. J Cell Mol
Med. 21:3178–3189. 2017.PubMed/NCBI View Article : Google Scholar
|
13
|
Tian X, Huang Y, Zhang X, Fang R, Feng Y,
Zhang W, Li L and Li T: Salidroside attenuates myocardial
ischemia/reperfusion injury via AMPK-induced suppression of
endoplasmic reticulum stress and mitochondrial fission. Toxicol
Appl Pharmacol. 448(116093)2022.PubMed/NCBI View Article : Google Scholar
|
14
|
Yan W, Li K, Buhe A, Li T, Tian P and Hong
J: Salidroside inhibits the proliferation and migration of gastric
carcinoma cells and tumor growth via the activation of
ERS-dependent autophagy and apoptosis. RSC Adv. 9:25655–25666.
2019.PubMed/NCBI View Article : Google Scholar
|
15
|
Chen X, Kou Y, Lu Y and Pu Y: Salidroside
ameliorated hypoxia-induced tumorigenesis of BxPC-3 cells via
downregulating hypoxia-inducible factor (HIF)-1α and LOXL2. J Cell
Biochem. 121:165–173. 2020.PubMed/NCBI View Article : Google Scholar
|
16
|
Tang Y, Hou Y, Zeng Y, Hu Y, Zhang Y, Wang
X and Meng X: Salidroside attenuates CoCl2-simulated
hypoxia injury in PC12 cells partly by mitochondrial protection.
Eur J Pharmacol. 912(174617)2021.PubMed/NCBI View Article : Google Scholar
|
17
|
Hou Y, Zhang Y, Jiang S, Xie N, Zhang Y,
Meng X and Wang X: Salidroside intensifies mitochondrial function
of CoCl2-damaged HT22 cells by stimulating PI3K-AKT-MAPK
signaling pathway. Phytomedicine. 109(154568)2023.PubMed/NCBI View Article : Google Scholar
|
18
|
Wang YF, Chang YY, Zhang XM, Gao MT, Zhang
QL, Li X, Zhang L and Yao WF: Salidroside protects against
osteoporosis in ovariectomized rats by inhibiting oxidative stress
and promoting osteogenesis via Nrf2 activation. Phytomedicine.
99(154020)2022.PubMed/NCBI View Article : Google Scholar
|
19
|
Xing Y, Peng HY, Li X, Zhang MX, Gao LL
and Yang XE: Extraction and isolation of the salidroside-type
metabolite from zinc (Zn) and cadmium (Cd) hyperaccumulator Sedum
alfredii Hance. J Zhejiang Univ Sci B. 13:839–845. 2012.PubMed/NCBI View Article : Google Scholar
|
20
|
Xu MC, Shi HM, Gao XF and Wang H:
Salidroside attenuates myocardial ischemia-reperfusion injury via
PI3K/Akt signaling pathway. J Asian Nat Prod Res. 15:244–252.
2013.PubMed/NCBI View Article : Google Scholar
|
21
|
Zhu Y, Shi YP, Wu D, Ji YJ, Wang X, Chen
HL, Wu SS, Huang DJ and Jiang W: Salidroside protects against
hydrogen peroxide-induced injury in cardiac H9c2 cells via PI3K-Akt
dependent pathway. DNA Cell Biol. 30:809–819. 2011.PubMed/NCBI View Article : Google Scholar
|
22
|
Godet I, Shin YJ, Ju JA, Ye IC, Wang G and
Gilkes DM: Fate-mapping post-hypoxic tumor cells reveals a
ROS-resistant phenotype that promotes metastasis. Nat Commun.
10(4862)2019.PubMed/NCBI View Article : Google Scholar
|
23
|
Infantino V, Santarsiero A, Convertini P,
Todisco S and Iacobazzi V: Cancer cell metabolism in hypoxia: Role
of HIF-1 as key regulator and therapeutic target. Int J Mol Sci.
22(5703)2021.PubMed/NCBI View Article : Google Scholar
|
24
|
Janbandhu V, Tallapragada V, Patrick R, Li
Y, Abeygunawardena D, Humphreys DT, Martin EMMA, Ward AO, Contreras
O, Farbehi N, et al: Hif-1a suppresses ROS-induced proliferation of
cardiac fibroblasts following myocardial infarction. Cell Stem
Cell. 29:281–297.e12. 2022.PubMed/NCBI View Article : Google Scholar
|
25
|
Qin Y, Liu HJ, Li M, Zhai DH, Tang YH,
Yang L, Qiao KL, Yang JH, Zhong WL, Zhang Q, et al: Salidroside
improves the hypoxic tumor microenvironment and reverses the drug
resistance of platinum drugs via HIF-1α signaling pathway.
EBioMedicine. 38:25–36. 2018.PubMed/NCBI View Article : Google Scholar
|
26
|
Sun L, Wu C, Ming J, Guo E, Zhang W, Li L
and Hu G: EGLN1 induces tumorigenesis and radioresistance in
nasopharyngeal carcinoma by promoting ubiquitination of p53 in a
hydroxylase-dependent manner. J Cancer. 13:2061–2073.
2022.PubMed/NCBI View Article : Google Scholar
|
27
|
Tang J, Deng H, Wang Z, Zha H, Liao Q, Zhu
C, Chen X, Sun X, Jia S, Ouyang G, et al: EGLN1 prolyl
hydroxylation of hypoxia-induced transcription factor HIF1α is
repressed by SET7-catalyzed lysine methylation. J Biol Chem.
298(101961)2022.PubMed/NCBI View Article : Google Scholar
|
28
|
Zhou Y, Ouyang N, Liu L, Tian J, Huang X
and Lu T: An EGLN1 mutation may regulate hypoxic response in
cyanotic congenital heart disease through the PHD2/HIF-1A pathway.
Genes Dis. 6:35–42. 2019.PubMed/NCBI View Article : Google Scholar
|
29
|
Liu G, Zhao W, Zhang H, Wang T, Han Z and
Ji X: rs1769793 variant reduces EGLN1 expression in skeletal muscle
and hippocampus and contributes to high aerobic capacity in
hypoxia. Proc Natl Acad Sci USA. 117:29283–29285. 2020.PubMed/NCBI View Article : Google Scholar
|
30
|
Zhang G, Zhang D, Zhang X, Yu K and Jiang
A: Saprirearine protects H9c2 cardiomyocytes against
hypoxia/reoxygenation-induced apoptosis by activating Nrf2. Acta
Biochim Pol. 69:429–436. 2022.PubMed/NCBI View Article : Google Scholar
|
31
|
Su Y, Tian H, Wei L, Fu G and Sun T:
Integrin β3 inhibits hypoxia-induced apoptosis in cardiomyocytes.
Acta Biochim Biophys Sin (Shanghai). 50:658–665. 2018.PubMed/NCBI View Article : Google Scholar
|
32
|
Wang W, Li Q, Huang G, Lin BY, Lin D, Ma
Y, Zhang Z, Chen T and Zhou J: Tandem mass tag-based proteomic
analysis of potential biomarkers for hepatocellular carcinoma
differentiation. Onco Targets Ther. 14:1007–1020. 2021.PubMed/NCBI View Article : Google Scholar
|
33
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
34
|
Liang RP, Jia JJ, Li JH, He N, Zhou YF,
Jiang L, Bai T, Xie HY, Zhou L and Sun YL: Mitofusin-2 mediated
mitochondrial Ca2+ uptake 1/2 induced liver injury in
rat remote ischemic perconditioning liver transplantation and alpha
mouse liver-12 hypoxia cell line models. World J Gastroenterol.
23:6995–7008. 2017.PubMed/NCBI View Article : Google Scholar
|
35
|
Salyha N and Oliynyk I: Hypoxia modeling
techniques: A review. Heliyon. 9(e13238)2023.PubMed/NCBI View Article : Google Scholar
|
36
|
Zhou W, Yang W, Fan K, Hua W and Gou S: A
hypoxia-activated NO donor for the treatment of myocardial hypoxia
injury. Chem Sci. 13:3549–3555. 2022.PubMed/NCBI View Article : Google Scholar
|
37
|
Wen SY, Tamilselvi S, Shen CY, Day CH,
Chun LC, Cheng LY, Ou HC, Chen RJ, Viswanadha VP, Kuo WW and Huang
CY: Protective effect of HDL on NADPH oxidase-derived super oxide
anion mediates hypoxia-induced cardiomyocyte apoptosis. PLoS One.
12(e0179492)2017.PubMed/NCBI View Article : Google Scholar
|
38
|
Sun S, Tuo Q, Li D, Wang X, Li X, Zhang Y,
Zhao G and Lin F: Antioxidant effects of salidroside in the
cardiovascular system. Evid Based Complement Alternat Med.
2020(9568647)2020.PubMed/NCBI View Article : Google Scholar
|
39
|
Ni J, Li Y, Xu Y and Guo R: Salidroside
protects against cardiomyocyte apoptosis and ventricular remodeling
by AKT/HO-1 signaling pathways in a diabetic cardiomyopathy mouse
model. Phytomedicine. 82(153406)2021.PubMed/NCBI View Article : Google Scholar
|
40
|
Li M, Li K and Ren Y: Nesfatin-1 protects
H9c2 cardiomyocytes against cobalt chloride-induced hypoxic injury
by modulating the MAPK and Notch1 signaling pathways. J Biol Res
(Thessalon). 28(21)2021.PubMed/NCBI View Article : Google Scholar
|
41
|
Lee HR, Leslie F and Azarin SM: A facile
in vitro platform to study cancer cell dormancy under hypoxic
microenvironments using CoCl2. J Biol Eng.
12(12)2018.PubMed/NCBI View Article : Google Scholar
|
42
|
Xu Z, Zhang D, He X, Huang Y and Shao H:
Transport of calcium ions into mitochondria. Curr Genomics.
17:215–219. 2016.PubMed/NCBI View Article : Google Scholar
|
43
|
Zhang Y, Li L, Yue J, Cao L, Liu P, Dong
WF and Liu G: Yttrium-mediated red fluorescent carbon dots for
sensitive and selective detection of calcium ions. Luminescence.
36:1969–1976. 2021.PubMed/NCBI View Article : Google Scholar
|
44
|
Bao W, Liu M, Meng J, Liu S, Wang S, Jia
R, Wang Y, Ma G, Wei W and Tian Z: MOFs-based nanoagent enables
dual mitochondrial damage in synergistic antitumor therapy via
oxidative stress and calcium overload. Nat Commun.
12(6399)2021.PubMed/NCBI View Article : Google Scholar
|
45
|
Zheng P, Ding B, Jiang Z, Xu W, Li G, Ding
J and Chen X: Ultrasound-augmented mitochondrial calcium ion
overload by calcium nanomodulator to induce immunogenic cell death.
Nano Lett. 21:2088–2093. 2021.PubMed/NCBI View Article : Google Scholar
|
46
|
Zhou Q, Xie M, Zhu J, Yi Q, Tan B, Li Y,
Ye L, Zhang X, Zhang Y, Tian J and Xu H: PINK1 contained in
huMSC-derived exosomes prevents cardiomyocyte mitochondrial calcium
overload in sepsis via recovery of mitochondrial Ca2+
efflux. Stem Cell Res Ther. 12(269)2021.PubMed/NCBI View Article : Google Scholar
|
47
|
Chen SF, Pan MX, Tang JC, Cheng J, Zhao D,
Zhang Y, Liao HB, Liu R, Zhuang Y, Zhang ZF, et al: Arginine is
neuroprotective through suppressing HIF-1α/LDHA-mediated
inflammatory response after cerebral ischemia/reperfusion injury.
Mol Brain. 13(63)2020.PubMed/NCBI View Article : Google Scholar
|
48
|
Kim JW, Tchernyshyov I, Semenza GL and
Dang CV: HIF-1-mediated expression of pyruvate dehydrogenase
kinase: A metabolic switch required for cellular adaptation to
hypoxia. Cell Metab. 3:177–185. 2006.PubMed/NCBI View Article : Google Scholar
|
49
|
Wu D, Wang S, Wang F, Zhang Q, Zhang Z and
Li X: Lactate dehydrogenase A (LDHA)-mediated lactate generation
promotes pulmonary vascular remodeling in pulmonary hypertension. J
Transl Med. 22(738)2024.PubMed/NCBI View Article : Google Scholar
|
50
|
Meng F, Zhang W and Wang Y: RASAL1
inhibits HepG2 cell growth via HIF-2α mediated gluconeogenesis.
Oncol Lett. 14:7344–7352. 2017.PubMed/NCBI View Article : Google Scholar
|
51
|
Wu X and Chen S: Advances in natural small
molecules on pretranslational regulation of gluconeogenesis. Drug
Dev Res. 84:613–628. 2023.PubMed/NCBI View Article : Google Scholar
|