1
|
Markus HS: Stroke genetics. Hum Mol Genet.
20:R124–R131. 2011.PubMed/NCBI View Article : Google Scholar
|
2
|
Abbas M, Malicke DT and Schramski JT:
Stroke anticoagulation. In: StatPearls. StatPearls Publishing,
Treasure Island, FL, 2024.
|
3
|
Campbell BCV and Khatri P: Stroke. Lancet.
396:129–142. 2020.PubMed/NCBI View Article : Google Scholar
|
4
|
Campbell BCV, De Silva DA, Macleod MR,
Coutts SB, Schwamm LH, Davis SM and Donnan GA: Ischaemic stroke.
Nat Rev Dis Primers. 5(70)2019.PubMed/NCBI View Article : Google Scholar
|
5
|
Xu C, Wang W, Wang B, Zhang T, Cui X, Pu Y
and Li N: Analytical methods and biological activities of Panax
notoginseng saponins: Recent trends. J Ethnopharmacol.
236:443–465. 2019.PubMed/NCBI View Article : Google Scholar
|
6
|
Liang Z, Liu K, Li R, Ma B, Zheng W, Yang
S, Zhang G, Zhao Y, Chen J and Zhao M: An instant beverage rich in
nutrients and secondary metabolites manufactured from stems and
leaves of Panax notoginseng. Front Nutr.
9(1058639)2022.PubMed/NCBI View Article : Google Scholar
|
7
|
Chen XM, Chen HS, Xu MJ and Shen JG:
Targeting reactive nitrogen species: a promising therapeutic
strategy for cerebral ischemia-reperfusion injury. Acta
pharmacologica Sin. 34:67–77. 2013.PubMed/NCBI View Article : Google Scholar
|
8
|
Thorén M, Dixit A, Escudero-Martínez I,
Gdovinová Z, Klecka L, Rand VM, Toni D, Vilionskis A, Wahlgren N
and Ahmed N: Effect of recanalization on cerebral edema in ischemic
stroke treated with thrombolysis and/or endovascular therapy.
Stroke. 51:216–223. 2020.PubMed/NCBI View Article : Google Scholar
|
9
|
Takahashi H, Yamamoto T and Tsuboi A:
Molecular mechanisms underlying activity-dependent ischemic
tolerance in the brain. Neurosci Res. 186:3–9. 2023.PubMed/NCBI View Article : Google Scholar
|
10
|
Zheng MM, Zhang F and Zhang Q: Research
progress in biological activity of ginsenoside Rb3. Central South
Pharm. 9:1249–1252. 2017.(In Chinese).
|
11
|
Liu X, Jiang Y, Yu X, Fu W, Zhang H and
Sui D: Ginsenoside-Rb3 protects the myocardium from
ischemia-reperfusion injury via the inhibition of apoptosis in
rats. Exp Ther Med. 8:1751–1756. 2014.PubMed/NCBI View Article : Google Scholar
|
12
|
Kim DH, Kim DW, Jung BH, Lee JH, Lee H,
Hwang GS, Kang KS and Lee JW: Ginsenoside Rb2 suppresses the
glutamate-mediated oxidative stress and neuronal cell death in HT22
cells. J Ginseng Res. 43:326–334. 2019.PubMed/NCBI View Article : Google Scholar
|
13
|
Qian T, Cai Z, Wong RNS, Mak NK and Jiang
ZH: In vivo rat metabolism and pharmacokinetic studies of
ginsenoside Rg3. J Chromatogr B Analyt Technol Biomed Life Sci.
816:223–232. 2005.PubMed/NCBI View Article : Google Scholar
|
14
|
Qian T, Cai Z, Wong RNS and Jiang ZH:
Liquid chromatography/mass spectrometric analysis of rat samples
for in vivo metabolism and pharmacokinetic studies of ginsenoside
Rh2. Rapid Commun Mass Spectrom. 19:3549–3554. 2005.PubMed/NCBI View Article : Google Scholar
|
15
|
Zhou S, Gao X, Chen C, Zhang J, Zhang Y,
Zhang L and Yan X: Porcine cardiac blood-Salvia miltiorrhiza root
alleviates cerebral ischemia reperfusion injury by inhibiting
oxidative stress induced apoptosis through PI3K/AKT/Bcl-2/Bax
signaling pathway. J Ethnopharmacol. 316(116698)2023.PubMed/NCBI View Article : Google Scholar
|
16
|
Yuan Y, Tian Y, Jiang H, Cai LY, Song J,
Peng R and Zhang XM: Mechanism of PGC-1α-mediated mitochondrial
biogenesis in cerebral ischemia-reperfusion injury. Front Mol
Neurosci. 16(1224964)2023.PubMed/NCBI View Article : Google Scholar
|
17
|
Schrimpe-Rutledge AC, Codreanu SG, Sherrod
SD and McLean JA: Untargeted metabolomics strategies-challenges and
emerging directions. J Am Soc Mass Spectrom. 27:1897–1905.
2016.PubMed/NCBI View Article : Google Scholar
|
18
|
Wishart DS: Metabolomics for investigating
physiological and pathophysiological processes. Physiol Rev.
99:1819–1875. 2019.PubMed/NCBI View Article : Google Scholar
|
19
|
Smith CA, Want EJ, O'Maille G, Abagyan R
and Siuzdak G: XCMS: Processing mass spectrometry data for
metabolite profiling using nonlinear peak alignment, matching, and
identification. Anal Chem. 78:779–787. 2006.PubMed/NCBI View Article : Google Scholar
|
20
|
Navarro-Reig M, Jaumot J, García-Reiriz A
and Tauler R: Evaluation of changes induced in rice metabolome by
Cd and Cu exposure using LC-MS with XCMS and MCR-ALS data analysis
strategies. Anal Bioanal Chem. 407:8835–8847. 2015.PubMed/NCBI View Article : Google Scholar
|
21
|
Cheng J, Li G, Yang L, Chen P and Duan X:
Alcohol extract of Rubia yunnanensis: Metabolic alterations and
preventive effects against OGD/R-induced oxidative damage in HT22
cells. Biomed Rep. 20(75)2024.PubMed/NCBI View Article : Google Scholar
|
22
|
Wishart DS, Tzur D, Knox C, Eisner R, Guo
AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, et al: HMDB:
The human metabolome database. Nucleic Acids Res. 35 (Database
Issue):D521–D526. 2007.PubMed/NCBI View Article : Google Scholar
|
23
|
Horai H, Arita M, Kanaya S, Nihei Y, Ikeda
T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, et al: MassBank:
A public repository for sharing mass spectral data for life
sciences. J Mass Spectrom. 45:703–714. 2010.PubMed/NCBI View Article : Google Scholar
|
24
|
Sud M, Fahy E, Cotter D, Brown A, Dennis
EA, Glass CK, Merrill AH Jr, Murphy RC, Raetz CR, Russell DW and
Subramaniam S: LMSD: LIPID MAPS structure database. Nucleic Acids
Res. 35 (Database Issue):D527–D532. 2007.PubMed/NCBI View Article : Google Scholar
|
25
|
Abdelrazig S, Safo L, Rance GA, Fay MW,
Theodosiou E, Topham PD, Kim DH and Fernández-Castané A: Metabolic
characterisation of Magnetospirillum gryphiswaldense MSR-1 using
LC-MS-based metabolite profiling. RSC Adv. 10:32548–32560.
2020.PubMed/NCBI View Article : Google Scholar
|
26
|
Kanehisa M and Goto S: KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30.
2000.PubMed/NCBI View Article : Google Scholar
|
27
|
Xia J and Wishart DS: Web-based inference
of biological patterns, functions and pathways from metabolomic
data using MetaboAnalyst. Nat Protoc. 6:743–760. 2011.PubMed/NCBI View Article : Google Scholar
|
28
|
Barman J, Kumar R, Saha G, Tiwari K and
Dubey VK: Apoptosis: Mediator molecules, interplay with other cell
death processes and therapeutic potentials. Curr Pharm Biotechnol.
19:644–663. 2018.PubMed/NCBI View Article : Google Scholar
|
29
|
Flores-Romero H, Ros U and Garcia-Saez AJ:
Pore formation in regulated cell death. EMBO J.
39(e105753)2020.PubMed/NCBI View Article : Google Scholar
|
30
|
Yuan J, Zeng L, Sun Y, Wang N, Sun Q,
Cheng Z and Wang Y: SH2B1 protects against OGD/R-induced apoptosis
in PC12 cells via activation of the JAK2/STAT3 signaling pathway.
Mol Med Rep. 18:2613–2620. 2018.PubMed/NCBI View Article : Google Scholar
|
31
|
Peña-Blanco A and García-Sáez AJ: Bax, Bak
and beyond-mitochondrial performance in apoptosis. FEBS J.
285:416–431. 2018.PubMed/NCBI View Article : Google Scholar
|
32
|
Brady HJ and Gil-Gómez G: Bax. The
pro-apoptotic Bcl-2 family member, Bax. Int J Biochem Cell Biol.
30:647–650. 1998.PubMed/NCBI View Article : Google Scholar
|
33
|
Edlich F: BCL-2 proteins and apoptosis:
Recent insights and unknowns. Biochem Biophys Res Commun.
500:26–34. 2018.PubMed/NCBI View Article : Google Scholar
|
34
|
Trubiani O, Guarnieri S, Paganelli R and
Di Primio R: Involvement of caspace-3 in the cleavage of terminal
transferase. Int J Immunopathol Pharmacol. 15:201–208.
2002.PubMed/NCBI View Article : Google Scholar
|
35
|
Dal-Cim T, Ludka FK, Martins WC, Reginato
C, Parada E, Egea J, López MG and Tasca CI: Guanosine controls
inflammatory pathways to afford neuroprotection of hippocampal
slices under oxygen and glucose deprivation conditions. J
Neurochem. 126:437–450. 2013.PubMed/NCBI View Article : Google Scholar
|
36
|
Rathbone M, Pilutti L, Caciagli F and
Jiang S: Neurotrophic effects of extracellular guanosine.
Nucleosides Nucleotides Nucleic Acids. 27:666–672. 2008.PubMed/NCBI View Article : Google Scholar
|
37
|
Oliveira KA, Dal-Cim TA, Lopes FG, Nedel
CB and Tasca CI: Guanosine promotes cytotoxicity via adenosine
receptors and induces apoptosis in temozolomide-treated A172 glioma
cells. Purinergic Signal. 13:305–318. 2017.PubMed/NCBI View Article : Google Scholar
|
38
|
Schneider EH, Hofmeister O, Kälble S and
Seifert R: Apoptotic and anti-proliferative effect of guanosine and
guanosine derivatives in HuT-78 T lymphoma cells. Naunyn
Schmiedebergs Arch Pharmacol. 393:1251–1267. 2020.PubMed/NCBI View Article : Google Scholar
|
39
|
Shwe T, Pratchayasakul W, Chattipakorn N
and Chattipakorn SC: Role of D-galactose-induced brain aging and
its potential used for therapeutic interventions. Exp Gerontol.
101:13–36. 2018.PubMed/NCBI View Article : Google Scholar
|
40
|
Xue A, Zhao D, Zhao C, Li X, Yang M, Zhao
H, Zhao C, Lei X, Wu J and Zhang N: Study on the neuroprotective
effect of Zhimu-Huangbo extract on mitochondrial dysfunction in
HT22 cells induced by D-galactose by promoting mitochondrial
autophagy. J Ethnopharmacol. 318(117012)2024.PubMed/NCBI View Article : Google Scholar
|
41
|
Kwon HJ, Hahn KR, Nam SM, Yoon YS, Moon
SM, Hwang IK and Kim DW: Purpurin ameliorates D-galactose-induced
aging phenotypes in mouse hippocampus by reducing inflammatory
responses. Neurochem Int. 167(105552)2023.PubMed/NCBI View Article : Google Scholar
|
42
|
Jabir NR, Firoz CK, Zughaibi TA, Alsaadi
MA, Abuzenadah AM, Al-Asmari AI, Alsaieedi A, Ahmed BA, Ramu AK and
Tabrez S: A literature perspective on the pharmacological
applications of yohimbine. Ann Med. 54:2861–2875. 2022.PubMed/NCBI View Article : Google Scholar
|
43
|
Bremer AM, Yamada K and West CR: Ischemic
cerebral edema in primates: effects of acetazolamide, phenytoin,
sorbitol, dexamethasone, and methylprednisolone on brain water and
electrolytes. Neurosurgery. 6:149–154. 1980.PubMed/NCBI View Article : Google Scholar
|
44
|
Mailloux A, Deslandes B, Vaubourdolle M
and Baudin B: Captopril and enalaprilat decrease antioxidant
defences in human endothelial cells and are unable to protect
against apoptosis. Cell Biol Int. 27:825–830. 2003.PubMed/NCBI View Article : Google Scholar
|
45
|
Gomez HJ, Cirillo VJ and Irvin JD:
Enalapril: A review of human pharmacology. Drugs. 30 (Suppl
1):S13–S24. 1985.PubMed/NCBI View Article : Google Scholar
|
46
|
Niu JJ, Bai Lf and Hou CN: Comparison of
therapeutic effects of captopril, enalapril and sodium
nitroprusside on hypertension, 2018.
|
47
|
Turovsky EA, Varlamova EG, Gudkov SV and
Plotnikov EY: The protective mechanism of deuterated linoleic acid
involves the activation of the Ca2+ signaling system of
astrocytes in ischemia in vitro. Int J Mol Sci.
22(13216)2021.PubMed/NCBI View Article : Google Scholar
|
48
|
Kenzelmann Broz D and Attardi LD: TRP53
activates a global autophagy program to promote tumor suppression.
Autophagy. 9:1440–1442. 2013.PubMed/NCBI View Article : Google Scholar
|
49
|
Jacobs WB, Govoni G, Ho D, Atwal JK,
Barnabe-Heider F, Keyes WM, Mills AA, Miller FD and Kaplan DR: p63
is an essential proapoptotic protein during neural development.
Neuron. 48:743–756. 2005.PubMed/NCBI View Article : Google Scholar
|
50
|
Wei R, Zhang L, Hu W, Wu J and Zhang W:
Long non-coding RNA AK038897 aggravates cerebral
ischemia/reperfusion injury via acting as a ceRNA for miR-26a-5p to
target DAPK1. Exp Neurol. 314:100–110. 2019.PubMed/NCBI View Article : Google Scholar
|
51
|
Markiewicz A, Sigorski D, Markiewicz M,
Owczarczyk-Saczonek A and Placek W: Caspase-14-from biomolecular
basics to clinical approach. A review of available data. Int J Mol
Sci. 22(5575)2021.PubMed/NCBI View Article : Google Scholar
|
52
|
Hoefsmit EP, van Royen PT, Rao D,
Stunnenberg JA, Dimitriadis P, Lieftink C, Morris B, Rozeman EA,
Reijers ILM, Lacroix R, et al: Inhibitor of apoptosis proteins
antagonist induces T-cell Proliferation after cross-presentation by
dendritic cells. Cancer Immunol Res. 11:450–465. 2023.PubMed/NCBI View Article : Google Scholar
|
53
|
Sasnauskiene A, Kadziauskas J, Vezelyte N,
Jonusiene V and Kirveliene V: Apoptosis, autophagy and cell cycle
arrest following photodamage to mitochondrial interior. Apoptosis.
14:276–286. 2009.PubMed/NCBI View Article : Google Scholar
|
54
|
Wensveen FM, Unger PPA, Kragten NAM, Derks
IA, ten Brinke A, Arens R, van Lier RA, Eldering E and van
Gisbergen KP: CD70-driven costimulation induces survival or
Fas-mediated apoptosis of T cells depending on antigenic load. J
Immunol. 188:4256–4267. 2012.PubMed/NCBI View Article : Google Scholar
|