1
|
Physalis-The Plant List. Version 1,
2010 [cited 2020 Feb 5]. Available from: http://www.theplantlist.org/browse/A/Solanaceae/Physalis/.
|
2
|
Mazova N, Popova V and Stoyanova A:
Phytochemical composition and biological activity of
Physalis spp.: A mini-review. Food Sci Appl Biotechnol.
3:56–70. 2020.
|
3
|
Zhang WN and Tong WY: Chemical
constituents and biological activities of plants from the genus
Physalis. Chem Biodivers. 13:48–65. 2016.PubMed/NCBI View Article : Google Scholar
|
4
|
Rengifo-Salgado E and Vargas-Arana G:
Physalis angulata L. (Bolsa Mullaca): A review of its
traditional uses, chemistry and pharmacology. Bol Latinoam Caribe
Plant Med Aromat. 12:431–445. 2013.
|
5
|
Cobaleda-Velasco M, Alanis-Bañuelos RE,
Almaraz-Abarca N, Rojas-López M, González-Valdez LS, Ávila-Reyes JA
and Rodrigo S: Phenolic profiles and antioxidant properties of
Physalis angulata L. as quality indicators. J Pharm
Pharmacogn Res. 5:114–128. 2017.
|
6
|
Rivera D, Ocampo Y and Franco LA:
Physalis angulata calyces modulate macrophage polarization
and alleviate chemically induced intestinal inflammation in mice.
Biomedicines. 8(24)2020.PubMed/NCBI View Article : Google Scholar
|
7
|
Iwansyah AC, Luthfiyanti R, Ardiansyah
RCE, Rahman N, Andriana Y and Hamid HA: Antidiabetic activity of
Physalis angulata L. fruit juice on streptozotocin-induced
diabetic rats. S Afr J Bot. 145:313–319. 2022.
|
8
|
Rivera DE, Ocampo YC, Castro JP, Caro D
and Franco LA: Antibacterial activity of Physalis angulata
L., Merremia umbellata L., and Cryptostegia grandiflora Roxb. Ex
R.Br. -medicinal plants of the Colombian Northern Coast. Orient
Pharm Exp Med. 15:95–102. 2015.
|
9
|
Rivera DE, Ocampo YC, Castro JP, Barrios
L, Diaz F and Franco LA: A screening of plants used in Colombian
traditional medicine revealed the anti-inflammatory potential of
Physalis angulata calyces. Saudi J Biol Sci. 26:1758–1766.
2019.PubMed/NCBI View Article : Google Scholar
|
10
|
Chouhan S and Guleria S: Anti-inflammatory
activity of medicinal plants: Present status and future
perspectives. In: Singh B (ed) Botanical Leads for Drug Discovery.
Springer Singapore, pp67-92, 2020.
|
11
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249.
2021.PubMed/NCBI View Article : Google Scholar
|
12
|
Nebbia M, Yassin NA and Spinelli A:
Colorectal cancer in inflammatory bowel disease. Clin Colon Rectal
Surg. 33:305–317. 2020.PubMed/NCBI View Article : Google Scholar
|
13
|
Makin G: Principles of chemotherapy.
Paediatr Child Heal. 28:183–188. 2018.
|
14
|
Safarzadeh E, Shotorbani SS and Baradaran
B: Herbal medicine as inducers of apoptosis in cancer treatment.
Adv Pharm Bull. 4 (Suppl 1):S421–S427. 2014.PubMed/NCBI View Article : Google Scholar
|
15
|
Franken NAP, Rodermond HM, Stap J, Haveman
J and van Bree C: Clonogenic assay of cells in vitro. Nat Protoc.
1:2315–2319. 2006.PubMed/NCBI View Article : Google Scholar
|
16
|
Yang X: Clonogenic assay to test cancer
therapies. Bio Protocol. 2:1–3. 2012.
|
17
|
HT-29 | ATCC. Atcc.org, 2020.
Available from: https://www.atcc.org/products/htb-38#detailed-product-information.
|
18
|
Weisser H, Göbel T, Melissa Krishnathas G,
Kreiß M, Angioni C, Sürün D, Thomas D, Schmid T, Häfner AK and
Kahnt AS: Knock-out of 5-lipoxygenase in overexpressing tumor
cells-consequences on gene expression and cellular function. Cancer
Gene Ther. 30:108–123. 2023.PubMed/NCBI View Article : Google Scholar
|
19
|
Neufert C, Becker C and Neurath MF: An
inducible mouse model of colon carcinogenesis for the analysis of
sporadic and inflammation-driven tumor progression. Nat Protoc.
2:1998–2004. 2007.PubMed/NCBI View Article : Google Scholar
|
20
|
Deng J, Zhao L, Yuan X, Li Y, Shi J, Zhang
H, Zhao Y, Han L, Wang H, Yan Y, et al: Pre-administration of
berberine exerts chemopreventive effects in AOM/DSS-induced
colitis-associated carcinogenesis mice via modulating inflammation
and intestinal microbiota. Nutrients. 14(726)2022.PubMed/NCBI View Article : Google Scholar
|
21
|
Obermeier F, Kojouharoff G, Hans W,
Schölmerich J, Gross V and Falk W: Interferon-gamma (IFN-gamma)-
and tumour necrosis factor (TNF)-induced nitric oxide as toxic
effector molecule in chronic dextran sulphate sodium (DSS)-induced
colitis in mice. Clin Exp Immunol. 116:238–245. 1999.PubMed/NCBI View Article : Google Scholar
|
22
|
Kimlin LC, Casagrande G and Virador VM: In
vitro three-dimensional (3D) models in cancer research: An update.
Mol Carcinog. 52:167–182. 2013.PubMed/NCBI View Article : Google Scholar
|
23
|
Atat O El, Farzaneh Z, Pourhamzeh M, Taki
F, Abi-Habib R, Vosough M and El-Sibai M: 3D modeling in cancer
studies. Hum Cell. 35:23–36. 2022.PubMed/NCBI View Article : Google Scholar
|
24
|
Zibaei Z, Babaei E, Rezaie Nezhad Zamani
A, Rahbarghazi R and Azeez HJ: Curcumin-enriched Gemini surfactant
nanoparticles exhibited tumoricidal effects on human 3D spheroid
HT-29 cells in vitro. Cancer Nanotechnol. 12(3)2021.
|
25
|
Ballesteros-Vivas D, Alvarez-Rivera G,
León C, Morantes SJ, Ibánez E, Parada-Alfonso F and Valdés A:
Anti-proliferative bioactivity against HT-29 colon cancer cells of
a withanolides-rich extract from golden berry (Physalis
peruviana L.) calyx investigated by foodomics. J Funct Foods.
63(103567)2019.
|
26
|
Ocampo YC, Caro DC, Rivera DE and Franco
LA: Safety of sucrose esters from Physalis peruviana L. in a
28-day repeated-dose study in mice. Biomed Pharmacother.
90:850–862. 2017.PubMed/NCBI View Article : Google Scholar
|
27
|
Zhang CR, Khan W, Bakht J and Nair MG: New
antiinflammatory sucrose esters in the natural sticky coating of
tomatillo (Physalis philadelphica), an important culinary
fruit. Food Chem. 196:726–732. 2016.PubMed/NCBI View Article : Google Scholar
|
28
|
Mora Vargas JA, Orduña Ortega J, Metzker
G, Larrahondo JE and Boscolo M: Natural sucrose esters:
Perspectives on the chemical and physiological use of an under
investigated chemical class of compounds. Phytochemistry.
177(112433)2020.PubMed/NCBI View Article : Google Scholar
|
29
|
Wang Y, Wang Z, Sun Y, Zhu M, Jiang Y, Bai
H, Yang B and Kuang H: Isovaleryl sucrose esters from Atractylodes
japonica and their cytotoxic activity. Molecules.
29(3069)2024.PubMed/NCBI View Article : Google Scholar
|
30
|
Teng Y, Lan P, White LV and Banwell MG:
The useful biological properties of sucrose esters: Opportunities
for the development of new functional foods. Crit Rev Food Sci
Nutr. 64:8018–8035. 2024.PubMed/NCBI View Article : Google Scholar
|
31
|
Hatta MNA, Mohamad Hanif EAM, Chin SF, Low
TY and Neoh HM: Parvimonas micra infection enhances proliferation,
wound healing, and inflammation of a colorectal cancer cell line.
Biosci Rep. 43(BSR20230609)2023.PubMed/NCBI View Article : Google Scholar
|
32
|
Silva Nunes JP and Martins Dias AA: ImageJ
macros for the user-friendly analysis of soft-agar and
wound-healing assays. Biotechniques. 62:175–179. 2017.PubMed/NCBI View Article : Google Scholar
|
33
|
Stark GR and Taylor WR: Analyzing the G2/M
checkpoint. In: Checkpoint Controls and Cancer; Methods in
Molecular Biology™. Vol. 280. Humana Press: Totowa, NJ,
USA, pp51-82, 2004.
|
34
|
Chinnasamy S, Zameer F and Muthuchelian K:
Molecular and biological mechanisms of apoptosis and its detection
techniques. J Oncol Sci. 6:49–64. 2020.
|
35
|
Thaker AI, Shaker A, Suprada Rao M and
Ciorba MA: Modeling colitis-associated cancer with azoxymethane
(AOM) and dextran sulfate sodium (DSS). J Vis Exp.
4100:2012.PubMed/NCBI View
Article : Google Scholar
|
36
|
De Robertis M and Signori E:
Azoxymethane/dextran sodium sulfate (AOM/DSS) model of colorectal
cancer. In: Čemažar M, Jesenko T and Lampreht Tratar U (eds) Mouse
Models of Cancer. Methods in Molecular Biology. Vol. 2773. Humana,
New York, NY, pp51-58, 2024.
|
37
|
Chen X, Ding Y, Yi Y, Chen Z, Fu J and
Chang Y: Review of animal models of colorectal cancer in different
carcinogenesis pathways. Dig Dis Sci. 69:1583–1592. 2024.PubMed/NCBI View Article : Google Scholar
|
38
|
Lin R, Piao M, Song Y and Liu C: Quercetin
suppresses AOM/DSS-induced colon carcinogenesis through its
anti-inflammation effects in mice. J Immunol.
2020(9242601)2020.PubMed/NCBI View Article : Google Scholar
|
39
|
Lee YP, Chiu CC, Lin TJ, Hung SW, Huang
WC, Chiu CF, Huang YT, Chen YH, Chen TH and Chuang HL: The
germ-free mice monocolonization with Bacteroides fragilis improves
azoxymethane/dextran sulfate sodium induced colitis-associated
colorectal cancer. Immunopharmacol Immunotoxicol. 41:207–213.
2019.PubMed/NCBI View Article : Google Scholar
|
40
|
De Robertis M, Massi E, Poeta M, Carotti
S, Morini S, Cecchetelli L, Signori E and Fazio VM: The AOM/DSS
murine model for the study of colon carcinogenesis: From pathways
to diagnosis and therapy studies. J Carcinog. 10(9)2011.PubMed/NCBI View Article : Google Scholar
|
41
|
Giner E, Recio MC, Ríos JL, Cerdá-Nicolás
JM and Giner RM: Chemopreventive effect of oleuropein in
colitis-associated colorectal cancer in c57bl/6 mice. Mol Nutr Food
Res. 60:242–255. 2016.PubMed/NCBI View Article : Google Scholar
|
42
|
Takahashi M, Mutoh M, Kawamori T, Sugimura
T and Wakabayashi K: Altered expression of beta-catenin, inducible
nitric oxide synthase and cyclooxygenase-2 in azoxymethane-induced
rat colon carcinogenesis. Carcinogenesis. 21:1319–1327.
2000.PubMed/NCBI
|
43
|
Tang A, Li N, Li X, Yang H, Wang W, Zhang
L, Li G, Xiong W, Ma J and Shen S: Dynamic activation of the key
pathways: Linking colitis to colorectal cancer in a mouse model.
Carcinogenesis. 33:1375–1383. 2012.PubMed/NCBI View Article : Google Scholar
|
44
|
Ranganathan AC, Adam AP and Aguirre-Ghiso
JA: Opposing roles of mitogenic and stress signaling pathways in
the induction of cancer dormancy. Cell Cycle. 5:1799–1807.
2006.PubMed/NCBI View Article : Google Scholar
|
45
|
Zhang L and Gu X: 4-hydroxysesamin
protects rat with right ventricular failure due to pulmonary
hypertension by inhibiting JNK/p38 MAPK signaling. Aging (Albany
NY). 16:8142–8154. 2024.PubMed/NCBI View Article : Google Scholar
|
46
|
KRAS gene-Genetics Home Reference-NIH,
2020 [cited 2020 Mar 9]. Available from: https://ghr.nlm.nih.gov/gene/KRAS.
|
47
|
Vivona AA, Shpitz B, Medline A, Bruce WR,
Hay K, Ward MA, Stern HS and Gallinger S: K-ras mutations in
aberrant crypt foci, adenomas and adenocarcinomas during
azoxymethane-induced colon carcinogenesis. Carcinogenesis.
14:1777–1781. 1993.PubMed/NCBI View Article : Google Scholar
|
48
|
Bragado P, Armesilla A, Silva A and Porras
A: Apoptosis by cisplatin requires p53 mediated p38alpha MAPK
activation through ROS generation. Apoptosis. 12:1733–1742.
2007.PubMed/NCBI View Article : Google Scholar
|
49
|
Cheung KL, Khor TO, Yu S and Kong ANT:
PEITC induces G1 cell cycle arrest on HT-29 cells through the
activation of p38 MAPK signaling pathway. AAPS J. 10:277–281.
2008.PubMed/NCBI View Article : Google Scholar
|
50
|
Gupta J and Nebreda AR: Roles of p38α
mitogen-activated protein kinase in mouse models of inflammatory
diseases and cancer. FEBS J. 282:1841–1857. 2015.PubMed/NCBI View Article : Google Scholar
|
51
|
Li W, Li C, Zheng H, Chen G and Hua B:
Therapeutic targets of Traditional Chinese Medicine for colorectal
cancer. J Tradit Chinese Med. 36:243–249. 2016.PubMed/NCBI View Article : Google Scholar
|
52
|
Hu R, Kim BR, Chen C, Hebbar V and Kong
ANT: The roles of JNK and apoptotic signaling pathways in
PEITC-mediated responses in human HT-29 colon adenocarcinoma cells.
Carcinogenesis. 24:1361–1367. 2003.PubMed/NCBI View Article : Google Scholar
|