Exploring the potential regulation of DUOX in thyroid hormone‑autophagy signaling via IGF‑1 in the skeletal muscle (Review)
- Authors:
- Andreas Adiwinata Then
- Hanna Goenawan
- Ronny Lesmana
- Andreas Christoper
- Nova Sylviana
- Julia Windi Gunadi
-
Affiliations: Master's Program in Basic Biomedical Sciences, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java 40161, Indonesia, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor‑Sumedang, West Java 45363, Indonesia, Doctoral Program in Medical Science, PMDSU Program Batch VI, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java 40161, Indonesia, Department of Physiology, Faculty of Medicine, Maranatha Christian University, Bandung, West Java 40164, Indonesia - Published online on: December 24, 2024 https://doi.org/10.3892/br.2024.1917
- Article Number: 39
-
Copyright: © Then et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 4.0].
This article is mentioned in:
Abstract
Liang JL, Xie JF, Wang CY and Chen N: Regulatory roles of microRNAs in sarcopenia and exercise intervention. Sheng Li Xue Bao. 72:667–676. 2020.PubMed/NCBI(In Chinese). | |
Evans WJ: Skeletal muscle loss: Cachexia, sarcopenia, and inactivity. Am J Clin Nutr. 91:1123S–1127S. 2010.PubMed/NCBI View Article : Google Scholar | |
Frontera WR and Ochala J: Skeletal muscle: A brief review of structure and function. Calcif Tissue Int. 96:183–195. 2015.PubMed/NCBI View Article : Google Scholar | |
Xia Q, Huang X, Huang J, Zheng Y, March ME, Li J and Wei Y: The role of autophagy in skeletal muscle diseases. Front Physiol. 12(638983)2021.PubMed/NCBI View Article : Google Scholar | |
Muscat GE, Mynett-johnson L, Dowhan D, Downes M and Griggs R: Activation of myoD gene transcription by 3,5,3'-triiodo-L-thyronine: A direct role for the thyroid hormone and retinoid X receptors. Nucleic Acids Res. 22:583–591. 1994.PubMed/NCBI View Article : Google Scholar | |
Brent GA: Mechanisms of thyroid hormone action. J Clin Invest. 122:3035–3043. 2012.PubMed/NCBI View Article : Google Scholar | |
Yu F, Göthe S, Wikström L, Forrest D, Vennström B and Larsson L: Effects of thyroid hormone receptor gene disruption on myosin isoform expression in mouse skeletal muscles. Am J Physiol Regul Integr Comp Physiol. 278:R1545–R1554. 2000.PubMed/NCBI View Article : Google Scholar | |
Grosvenor CE and Turner CW: Effect of growth hormone upon thyroid secretion rate in the rat. Proc Soc Exp Biol Med. 100:70–72. 1959.PubMed/NCBI View Article : Google Scholar | |
Saji M, Tsushima T, Isozaki O, Murakami H, Ohba Y, Sato K, Arai M, Mariko A and Shizume K: Interaction of insulin-like growth factor I with porcine thyroid cells cultured in monolayer. Endocrinology. 121:749–756. 1987.PubMed/NCBI View Article : Google Scholar | |
Malaguarnera R, Frasca F, Garozzo A, Gianì F, Pandini G, Vella V, Vigneri R and Belfiore A: Insulin receptor isoforms and insulin-like growth factor receptor in human follicular cell precursors from papillary thyroid cancer and normal thyroid. J Clin Endocrinol Metab. 96:766–774. 2011.PubMed/NCBI View Article : Google Scholar | |
Kang C, You NJ and Avery L: Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes Dev. 21:2161–2171. 2007.PubMed/NCBI View Article : Google Scholar | |
Carvalho DP and Dupuy C: Role of the NADPH oxidases DUOX and NOX4 in thyroid oxidative stress. Eur Thyroid J. 2:160–167. 2013.PubMed/NCBI View Article : Google Scholar | |
Donkó Á, Péterfi Z, Sum A, Leto T and Geiszt M: Dual oxidases. Philos Trans R Soc Lond B Biol Sci. 360:2301–2308. 2005.PubMed/NCBI View Article : Google Scholar | |
Dupuy C, Ohayon R, Valent A, Noël-Hudson MS, Dème D and Virion A: Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. Cloning of the porcine and human cdnas. J Biol Chem. 274:37265–37269. 1999.PubMed/NCBI View Article : Google Scholar | |
Geiszt M and Leto TL: The Nox family of NAD(P)H oxidases: Host defense and beyond. J Biol Chem. 279:51715–51718. 2004.PubMed/NCBI View Article : Google Scholar | |
Conner GE: Regulation of dual oxidase hydrogen peroxide synthesis results in an epithelial respiratory burst. Redox Biol. 41(101931)2021.PubMed/NCBI View Article : Google Scholar | |
Szanto I, Pusztaszeri M and Mavromati M: H2O2 metabolism in normal thyroid cells and in thyroid tumorigenesis: Focus on NADPH oxidases. Antioxidants (Basel). 8(126)2019.PubMed/NCBI View Article : Google Scholar | |
Korzeniowska A, Donkó ÁP, Morand S and Leto TL: Functional characterization of DUOX enzymes in reconstituted cell models. Methods Mol Biol. 1982:173–190. 2019.PubMed/NCBI View Article : Google Scholar | |
Grasberger H and Refetoff S: Identification of the maturation factor for dual oxidase. Evolution of an eukaryotic operon equivalent. J Biol Chem. 281:18269–18272. 2006.PubMed/NCBI View Article : Google Scholar | |
Hulur I, Hermanns P, Nestoris C, Heger S, Refetoff S, Pohlenz J and Grasberger H: A single copy of the recently identified dual oxidase maturation factor (DUOXA) 1 gene produces only mild transient hypothyroidism in a patient with a novel biallelic DUOXA2 mutation and monoallelic DUOXA1 deletion. J Clin Endocrinol Metab. 96:E841–E851. 2011.PubMed/NCBI View Article : Google Scholar | |
Xu C, Linderholm A, Grasberger H and Harper RW: Dual oxidase 2 bidirectional promoter polymorphisms confer differential immune responses in airway epithelia. Am J Respir Cell Mol Biol. 47:484–490. 2012.PubMed/NCBI View Article : Google Scholar | |
Christophe-Hobertus C and Christophe D: Delimitation and functional characterization of the bidirectional THOX-DUOXA promoter regions in thyrocytes. Mol Cell Endocrinol. 317:161–167. 2010.PubMed/NCBI View Article : Google Scholar | |
Luxen S, Belinsky SA and Knaus UG: Silencing of DUOX NADPH oxidases by promoter hypermethylation in lung cancer. Cancer Res. 68:1037–1045. 2008.PubMed/NCBI View Article : Google Scholar | |
Grasberger H, De Deken X, Miot F, Pohlenz J and Refetoff S: Missense mutations of dual oxidase 2 (DUOX2) implicated in congenital hypothyroidism have impaired trafficking in cells reconstituted with DUOX2 maturation factor. Mol Endocrinol. 21:1408–1421. 2007.PubMed/NCBI View Article : Google Scholar | |
Milenkovic M, De Deken X, Jin L, De Felice M, Di Lauro R, Dumont JE, Corvilain B and Miot F: Duox expression and related H2O2 measurement in mouse thyroid: Onset in embryonic development and regulation by TSH in adult. J Endocrinol. 192:615–626. 2007.PubMed/NCBI View Article : Google Scholar | |
Opitz R, Maquet E, Zoenen M, Dadhich R and Costagliola S: TSH receptor function is required for normal thyroid differentiation in zebrafish. Mol Endocrinol. 25:1579–1599. 2011.PubMed/NCBI View Article : Google Scholar | |
De Deken X, Wang D, Dumont JE and Miot F: Characterization of ThOX proteins as components of the thyroid H(2)O(2)-generating system. Exp Cell Res. 273:187–196. 2002.PubMed/NCBI View Article : Google Scholar | |
Raad H, Eskalli Z, Corvilain B, Miot F and De Deken X: Thyroid hydrogen peroxide production is enhanced by the Th2 cytokines, IL-4 and IL-13, through increased expression of the dual oxidase 2 and its maturation factor DUOXA2. Free Radic Biol Med. 56:216–225. 2013.PubMed/NCBI View Article : Google Scholar | |
El Hassani RA, Benfares N, Caillou B, Talbot M, Sabourin JC, Belotte V, Morand S, Gnidehou S, Agnandji D, Ohayon R, et al: Dual oxidase2 is expressed all along the digestive tract. Am J Physiol Gastrointest Liver Physiol. 288:G933–G942. 2005.PubMed/NCBI View Article : Google Scholar | |
Rigutto S, Hoste C, Grasberger H, Milenkovic M, Communi D, Dumont JE, Corvilain B, Miot F and De Deken X: Activation of dual oxidases Duox1 and Duox2: differential regulation mediated by camp-dependent protein kinase and protein kinase C-dependent phosphorylation. J Biol Chem. 284:6725–6734. 2009.PubMed/NCBI View Article : Google Scholar | |
Ameziane-El-Hassani R, Schlumberger M and Dupuy C: NADPH oxidases: New actors in thyroid cancer? Nat Rev Endocrinol. 12:485–494. 2016.PubMed/NCBI View Article : Google Scholar | |
Lambeth JD: Nox enzymes, ROS, and chronic disease: An example of antagonistic pleiotropy. Free Radic Biol Med. 43:332–347. 2007.PubMed/NCBI View Article : Google Scholar | |
Song Y, Ruf J, Lothaire P, Dequanter D, Andry G, Willemse E, Dumont JE, Van Sande J and De Deken X: Association of duoxes with thyroid peroxidase and its regulation in thyrocytes. J Clin Endocrinol Metab. 95:375–382. 2010.PubMed/NCBI View Article : Google Scholar | |
Ameziane-El-Hassani R, Morand S, Boucher JL, Frapart YM, Apostolou D, Agnandji D, Gnidehou S, Ohayon R, Noël-Hudson MS, Francon J, et al: Dual oxidase-2 has an intrinsic Ca2+-dependent H2O2-generating activity. J Biol Chem. 280:30046–30054. 2005.PubMed/NCBI View Article : Google Scholar | |
Caillou B, Dupuy C, Lacroix L, Nocera M, Talbot M, Ohayon R, Dème D, Bidart JM, Schlumberger M and Virion A: Expression of reduced nicotinamide adenine dinucleotide phosphate oxidase (ThoX, LNOX, Duox) genes and proteins in human thyroid tissues. J Clin Endocrinol Metab. 86:3351–3358. 2001.PubMed/NCBI View Article : Google Scholar | |
Hoste C, Dumont JE, Miot F and De Deken X: The type of DUOX-dependent ROS production is dictated by defined sequences in DUOXA. Exp Cell Res. 318:2353–2364. 2012.PubMed/NCBI View Article : Google Scholar | |
Zamproni I, Grasberger H, Cortinovis F, Vigone MC, Chiumello G, Mora S, Onigata K, Fugazzola L, Refetoff S, Persani L and Weber G: Biallelic inactivation of the dual oxidase maturation factor 2 (DUOXA2) gene as a novel cause of congenital hypothyroidism. J Clin Endocrinol Metab. 93:605–610. 2008.PubMed/NCBI View Article : Google Scholar | |
Morand S, Ueyama T, Tsujibe S, Saito N, Korzeniowska A and Leto TL: Duox maturation factors form cell surface complexes with Duox affecting the specificity of reactive oxygen species generation. FASEB J. 23:1205–1218. 2009.PubMed/NCBI View Article : Google Scholar | |
Pachucki J, Wang D, Christophe D and Miot F: Structural and functional characterization of the two human ThOX/Duox genes and their 5'-flanking regions. Mol Cell Endocrinol. 214:53–62. 2004.PubMed/NCBI View Article : Google Scholar | |
De Deken X, Wang D, Many MC, Costagliola S, Libert F, Vassart G, Dumont JE and Miot F: Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. J Biol Chem. 275:23227–23233. 2000.PubMed/NCBI View Article : Google Scholar | |
Yoshihara A, Hara T, Kawashima A, Akama T, Tanigawa K, Wu H, Sue M, Ishido Y, Hiroi N, Ishii N, et al: Regulation of dual oxidase expression and H2O2 production by thyroglobulin. Thyroid. 22:1054–1062. 2012.PubMed/NCBI View Article : Google Scholar | |
Cardoso LC, Martins DC, Figueiredo MD, Rosenthal D, Vaisman M, Violante AH and Carvalho DP: Ca(2+)/nicotinamide adenine dinucleotide phosphate-dependent H(2)O(2) generation is inhibited by iodide in human thyroids. J Clin Endocrinol Metab. 86:4339–4343. 2001.PubMed/NCBI View Article : Google Scholar | |
Wolff J and Chaikoff IL: Plasma inorganic iodide, a chemical regulator of normal thyroid function. Endocrinology. 42:468–471. 1948.PubMed/NCBI View Article : Google Scholar | |
Carvalho DP, Dupuy C, Gorin Y, Legue O, Pommier J, Haye B and Virion HA: The Ca2+- and reduced nicotinamide adenine dinucleotide phosphate-dependent hydrogen peroxide generating system is induced by thyrotropin in porcine thyroid cells. Endocrinology. 137:1007–1012. 1996.PubMed/NCBI View Article : Google Scholar | |
Corvilain B, Van Sande J and Dumont JE: Inhibition by iodide of iodide binding to proteins: The ‘Wolff-Chaikoff’ effect is caused by inhibition of H2O2 generation. Biochem Biophys Res Commun. 154:1287–1292. 1988.PubMed/NCBI View Article : Google Scholar | |
Pochin EE: Investigation of thyroid function and disease with radioactive iodine. Lancet. 2:84–91. 1950.PubMed/NCBI View Article : Google Scholar | |
Godlewska M, Góra M, Buckle AM, Porebski BT, Kemp EH, Sutton BJ, Czarnocka B and Banga JP: A redundant role of human thyroid peroxidase propeptide for cellular, enzymatic, and immunological activity. Thyroid. 24:371–382. 2014.PubMed/NCBI View Article : Google Scholar | |
Varela V, Rivolta CM, Esperante SA, Gruñeiro-Papendieck L, Chiesa A and Targovnik HM: Three mutations (p.Q36H, p.G418fsX482, and g.IVS19-2A>C) in the dual oxidase 2 gene responsible for congenital goiter and iodide organification defect. Clin Chem. 52:182–191. 2006.PubMed/NCBI View Article : Google Scholar | |
Di Candia S, Zamproni I, Cortinovis F, Passoni A, Vigone MC, Fugazzola L, Persani L and Weber G: Congenital hypothyroidism and partial iodide organification defects: Two mutations in DUOX2 gene. Horm Res. 65(38)2006. | |
Thomas J, Sairoz Jose A, Poojari VG, Shetty S, K SP, Prabhu R V K and Rao M: Role and clinical significance of monocarboxylate transporter 8 (MCT8) during pregnancy. Reprod Sci. 30:1758–1769. 2023.PubMed/NCBI View Article : Google Scholar | |
Grasberger H, De Deken X, Mayo OB, Raad H, Weiss M, Liao XH and Refetoff S: Mice deficient in dual oxidase maturation factors are severely hypothyroid. Mol Endocrinol. 26:481–492. 2012.PubMed/NCBI View Article : Google Scholar | |
Eskalli Z, Achouri Y, Hahn S, Many MC, Craps J, Refetoff S, Liao XH, Dumont JE, Van Sande J, Corvilain B, et al: Overexpression of interleukin-4 in the thyroid of transgenic mice upregulates the expression of Duox1 and the anion transporter pendrin. Thyroid. 26:1499–1512. 2016.PubMed/NCBI View Article : Google Scholar | |
Pappa T and Refetoff S: Resistance to thyroid hormone beta: A focused review. Front Endocrinol (Lausanne). 12(656551)2021.PubMed/NCBI View Article : Google Scholar | |
Giustina A and Wehrenberg WB: Influence of thyroid hormones on the regulation of growth hormone secretion. Eur J Endocrinol. 133:646–653. 1995.PubMed/NCBI View Article : Google Scholar | |
Kamegai J, Tamura H, Ishii S, Sugihara H and Wakabayashi I: Thyroid hormones regulate pituitary growth hormone secretagogue receptor gene expression. J Neuroendocrinol. 13:275–278. 2001.PubMed/NCBI View Article : Google Scholar | |
Al-Samerria S and Radovick S: The role of insulin-like growth factor-1 (IGF-1) in the control of neuroendocrine regulation of growth. Cells. 10(2664)2021.PubMed/NCBI View Article : Google Scholar | |
Yakar S and Adamo ML: Insulin-like growth factor-1 physiology: Lessons from mouse models. Endocrinol Metab Clin North Am. 41:231–247, v. 2012.PubMed/NCBI View Article : Google Scholar | |
Smith TJ: Insulin-like growth factor pathway and the thyroid. Front Endocrinol (Lausanne). 12(653627)2021.PubMed/NCBI View Article : Google Scholar | |
Chang YJ, Hwu CM, Yeh CC, Wang PS and Wang SW: Effects of subacute hypothyroidism on metabolism and growth-related molecules. Molecules. 19:11178–11195. 2014.PubMed/NCBI View Article : Google Scholar | |
Tseng FY, Chen YT, Chi YC, Chen PL and Yang WS: Serum levels of insulin-like growth factor 1 are negatively associated with log transformation of thyroid-stimulating hormone in Graves' disease patients with hyperthyroidism or subjects with euthyroidism: A prospective observational study. Medicine (Baltimore). 98(e14862)2019.PubMed/NCBI View Article : Google Scholar | |
Smith TJ and Janssen JAMJL: Insulin-like growth factor-i receptor and thyroid-associated ophthalmopathy. Endocr Rev. 40:236–267. 2019.PubMed/NCBI View Article : Google Scholar | |
Robson H, Siebler T, Shalet SM and Williams GR: Interactions between GH, IGF-I, glucocorticoids, and thyroid hormones during skeletal growth. Pediatr Res. 52:137–147. 2002.PubMed/NCBI View Article : Google Scholar | |
Sipos F, Székely H, Kis ID, Tulassay Z and Műzes G: Relation of the IGF/IGF1R system to autophagy in colitis and colorectal cancer. World J Gastroenterol. 23:8109–8119. 2017.PubMed/NCBI View Article : Google Scholar | |
Gómez-Virgilio L, Silva-Lucero MDC, Flores-Morelos DS, Gallardo-Nieto J, Lopez-Toledo G, Abarca-Fernandez AM, Zacapala-Gómez AE, Luna-Muñoz J, Montiel-Sosa F, Soto-Rojas LO, et al: Autophagy: A key regulator of homeostasis and disease: An overview of molecular mechanisms and modulators. Cells. 11(2262)2022.PubMed/NCBI View Article : Google Scholar | |
Levine B and Kroemer G: SnapShot: Macroautophagy. Cell. 132:162.e1–162.e3. 2008.PubMed/NCBI View Article : Google Scholar | |
Liu Q, Guan JZ, Sun Y, Le Z, Zhang P, Yu D and Liu Y: Insulin-like growth factor 1 receptor-mediated cell survival in hypoxia depends on the promotion of autophagy via suppression of the PI3K/Akt/mTOR signaling pathway. Mol Med Rep. 15:2136–2142. 2017.PubMed/NCBI View Article : Google Scholar | |
Kasprzak A: Autophagy and the insulin-like growth factor (IGF) system in colonic cells: Implications for colorectal neoplasia. Int J Mol Sci. 24(3665)2023.PubMed/NCBI View Article : Google Scholar | |
Wang Z, Li W, Guo Q, Wang Y, Ma L and Zhang X: Insulin-like growth factor-1 signaling in lung development and inflammatory lung diseases. Biomed Res Int. 2018(6057589)2018.PubMed/NCBI View Article : Google Scholar | |
Gonçalves DA, Silveira WA, Manfredi LH, Graça FA, Armani A, Bertaggia E, O Neill BT, Lautherbach N, Machado J, Nogara L, et al: Insulin/IGF1 signalling mediates the effects of β2-adrenergic agonist on muscle proteostasis and growth. J Cachexia Sarcopenia Muscle. 10:455–475. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhang B, Li H, Wang Y, Li Y, Zhou Z, Hou X, Zhang X and Liu T: Mechanism of autophagy mediated by IGF-1 signaling pathway in the neurotoxicity of lead in pubertal rats. Ecotoxicol Environ Saf. 251(114557)2023.PubMed/NCBI View Article : Google Scholar | |
Mercurio L, Albanesi C and Madonna S: Recent updates on the involvement of PI3K/AKT/mTOR molecular cascade in the pathogenesis of hyperproliferative skin disorders. Front Med (Lausanne). 8(665647)2021.PubMed/NCBI View Article : Google Scholar | |
Shams R, Ito Y and Miyatake H: Evaluation of the binding kinetics of RHEB with mTORC1 by in-cell and in vitro assays. Int J Mol Sci. 22(8766)2021.PubMed/NCBI View Article : Google Scholar | |
Germano CA, Clemente G, Storniolo A, Romeo MA, Ferretti E, Cirone M and Di Renzo L: mTORC1/ERK1/2 interplay regulates protein synthesis and survival in acute myeloid leukemia cell lines. Biology (Basel). 12(676)2023.PubMed/NCBI View Article : Google Scholar | |
Jia G, Cheng G, Gangahar DM and Agrawal DK: Insulin-like growth factor-1 and TNF-alpha regulate autophagy through c-jun N-terminal kinase and Akt pathways in human atherosclerotic vascular smooth cells. Immunol Cell Biol. 84:448–454. 2006.PubMed/NCBI View Article : Google Scholar | |
Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O'Kane CJ and Rubinsztein DC: Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet. 36:585–595. 2004.PubMed/NCBI View Article : Google Scholar | |
Renna M, Bento CF, Fleming A, Menzies FM, Siddiqi FH, Ravikumar B, Puri C, Garcia-Arencibia M, Sadiq O, Corrochano S, et al: IGF-1 receptor antagonism inhibits autophagy. Hum Mol Genet. 22:4528–4544. 2013.PubMed/NCBI View Article : Google Scholar | |
Yu Q, Zhao B, He Q, Zhang Y and Peng XB: microRNA-206 is required for osteoarthritis development through its effect on apoptosis and autophagy of articular chondrocytes via modulating the phosphoinositide 3-kinase/protein kinase B-mTOR pathway by targeting insulin-like growth factor-1. J Cell Biochem. 120:5287–5303. 2019.PubMed/NCBI View Article : Google Scholar | |
Guan X, Yan Q, Wang D, Du G and Zhou J: IGF-1 signaling regulates mitochondrial remodeling during myogenic differentiation. Nutrients. 14(1249)2022.PubMed/NCBI View Article : Google Scholar | |
Riis S, Murray JB and O'Connor R: IGF-1 signalling regulates mitochondria dynamics and turnover through a conserved GSK-3β-Nrf2-BNIP3 pathway. Cells. 9(147)2020.PubMed/NCBI View Article : Google Scholar | |
Lyons A, Coleman M, Riis S, Favre C, O'Flanagan CH, Zhdanov AV, Papkovsky DB, Hursting SD and O'Connor R: Insulin-like growth factor 1 signaling is essential for mitochondrial biogenesis and mitophagy in cancer cells. J Biol Chem. 292:16983–16998. 2017.PubMed/NCBI View Article : Google Scholar | |
Zecchini S, Giovarelli M, Perrotta C, Morisi F, Touvier T, Di Renzo I, Moscheni C, Bassi MT, Cervia D, Sandri M, et al: Autophagy controls neonatal myogenesis by regulating the GH-IGF1 system through a NFE2L2- and DDIT3-mediated mechanism. Autophagy. 15:58–77. 2019.PubMed/NCBI View Article : Google Scholar | |
Shan Y, Lu C, Wang J, Li M, Ye S, Wu S, Huang J, Bu S and Wang F: IGF-1 contributes to liver cancer development in diabetes patients by promoting autophagy. Ann Hepatol. 27(100697)2022.PubMed/NCBI View Article : Google Scholar | |
Dentice M, Marsili A, Ambrosio R, Guardiola O, Sibilio A, Paik JH, Minchiotti G, DePinho RA, Fenzi G, Larsen PR and Salvatore D: The FoxO3/type 2 deiodinase pathway is required for normal mouse myogenesis and muscle regeneration. J Clin Invest. 120:4021–4030. 2010.PubMed/NCBI View Article : Google Scholar | |
Sinha RA, Singh BK, Zhou J, Wu Y, Farah BL, Ohba K, Lesmana R, Gooding J, Bay BH and Yen PM: Thyroid hormone induction of mitochondrial activity is coupled to mitophagy via ROS-AMPK-ULK1 signaling. Autophagy. 11:1341–1357. 2015.PubMed/NCBI View Article : Google Scholar | |
Sinha RA, You SH, Zhou J, Siddique MM, Bay BH, Zhu X, Privalsky ML, Cheng SY, Stevens RD, Summers SA, et al: Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy. J Clin Invest. 122:2428–2438. 2012.PubMed/NCBI View Article : Google Scholar | |
Lesmana R, Sinha RA, Singh BK, Zhou J, Ohba K, Wu Y, Yau WW, Bay BH and Yen PM: Thyroid hormone stimulation of autophagy is essential for mitochondrial biogenesis and activity in skeletal muscle. Endocrinology. 157:23–38. 2016.PubMed/NCBI View Article : Google Scholar | |
Kurashige T, Nakajima Y, Shimamura M, Yamada M and Nagayama Y: Hormonal regulation of autophagy in thyroid PCCL3 cells and the thyroids of male mice. J Endocr Soc. 4(bvaa054)2020.PubMed/NCBI View Article : Google Scholar | |
Schiaffino S, Rossi AC, Smerdu V, Leinwand LA and Reggiani C: Developmental myosins: Expression patterns and functional significance. Skelet Muscle. 5(22)2015.PubMed/NCBI View Article : Google Scholar | |
Gambke B, Lyons GE, Haselgrove J, Kelly AM and Rubinstein NA: Thyroidal and neural control of myosin transitions during development of rat fast and slow muscles. FEBS Lett. 156:335–339. 1983.PubMed/NCBI View Article : Google Scholar | |
Butler-Browne GS, Herlicoviez D and Whalen RG: Effects of hypothyroidism on myosin isozyme transitions in developing rat muscle. FEBS Lett. 166:71–75. 1984.PubMed/NCBI View Article : Google Scholar | |
Di Maso NA, Caiozzo VJ and Baldwin KM: Single-fiber myosin heavy chain polymorphism during postnatal development: Modulation by hypothyroidism. Am J Physiol Regul Integr Comp Physiol. 278:R1099–R1106. 2000.PubMed/NCBI View Article : Google Scholar | |
Baldwin KM and Haddad F: Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle. J Appl Physiol (1985). 90:345–357. 2001.PubMed/NCBI View Article : Google Scholar | |
Adams GR, Haddad F and Baldwin KM: The interaction of space flight and thyroid state on somatic and skeletal muscle growth and myosin heavy chain expression on neonatal rodents. J Gravit Physiol. 7:P15–P18. 2000.PubMed/NCBI | |
Mahdavi V, Izumo S and Nadal-Ginard B: Developmental and hormonal regulation of sarcomeric myosin heavy chain gene family. Circ Res. 60:804–814. 1987.PubMed/NCBI View Article : Google Scholar | |
Simonides WS and Van Hardeveld C: Thyroid hormone as a determinant of metabolic and contractile phenotype of skeletal muscle. Thyroid. 18:205–216. 2008.PubMed/NCBI View Article : Google Scholar | |
Larsson L, Li X, Teresi A and Salviati G: Effects of thyroid hormone on fast- and slow-twitch skeletal muscles in young and old rats. J Physiol. 481:149–161. 1994.PubMed/NCBI View Article : Google Scholar | |
Zhang D, Wang X, Li Y, Zhao L, Lu M, Yao X, Xia H, Wang YC, Liu MF, Jiang J, et al: Thyroid hormone regulates muscle fiber type conversion via miR-133a1. J Cell Biol. 207:753–766. 2014.PubMed/NCBI View Article : Google Scholar | |
Liu N, Bezprozvannaya S, Shelton JM, Frisard MI, Hulver MW, McMillan RP, Wu Y, Voelker KA, Grange RW, Richardson JA, et al: Mice lacking microRNA 133a develop dynamin 2-dependent centronuclear myopathy. J Clin Invest. 121:3258–3268. 2011.PubMed/NCBI View Article : Google Scholar | |
Downes M, Griggs R, Atkins A, Olson EN and Muscat GE: Identification of a thyroid hormone response element in the mouse myogenin gene: Characterization of the thyroid hormone and retinoid X receptor heterodimeric binding site. Cell Growth Differ. 4:901–910. 1993.PubMed/NCBI | |
Ito K and Suda T: Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol. 15:243–256. 2014.PubMed/NCBI View Article : Google Scholar | |
Scott RC, Schuldiner O and Neufeld TP: Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell. 7:167–178. 2004.PubMed/NCBI View Article : Google Scholar | |
Mizushima N: The pleiotropic role of autophagy: From protein metabolism to bactericide. Cell Death Differ. 12 (Suppl 2):S1535–S1541. 2005.PubMed/NCBI View Article : Google Scholar | |
Jung HS, Chung KW, Won Kim J, Kim J, Komatsu M, Tanaka K, Nguyen YH, Kang TM, Yoon KH, Kim JW, et al: Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab. 8:318–224. 2008.PubMed/NCBI View Article : Google Scholar | |
Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, et al: Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 169:425–434. 2005.PubMed/NCBI View Article : Google Scholar | |
Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S and Sandri M: Autophagy is required to maintain muscle mass. Cell Metab. 10:507–515. 2009.PubMed/NCBI View Article : Google Scholar | |
Paolini A, Omairi S, Mitchell R, Vaughan D, Matsakas A, Vaiyapuri S, Ricketts T, Rubinsztein DC and Patel K: Attenuation of autophagy impacts on muscle fibre development, starvation induced stress and fibre regeneration following acute injury. Sci Rep. 8(9062)2018.PubMed/NCBI View Article : Google Scholar | |
Carnio S, LoVerso F, Baraibar MA, Longa E, Khan MM, Maffei M, Reischl M, Canepari M, Loefler S, Kern H, et al: Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep. 8:1509–1521. 2014.PubMed/NCBI View Article : Google Scholar | |
Vainshtein A, Grumati P, Sandri M and Bonaldo P: Skeletal muscle, autophagy, and physical activity: The ménage à trois of metabolic regulation in health and disease. J Mol Med (Berl). 92:127–137. 2014.PubMed/NCBI View Article : Google Scholar | |
Carmignac V, Svensson M, Körner Z, Elowsson L, Matsumura C, Gawlik KI, Allamand V and Durbeej M: Autophagy is increased in laminin α2 chain-deficient muscle and its inhibition improves muscle morphology in a mouse model of MDC1A. Hum Mol Genet. 20:4891–4902. 2011.PubMed/NCBI View Article : Google Scholar | |
Grumati P, Coletto L, Sabatelli P, Cescon M, Angelin A, Bertaggia E, Blaauw B, Urciuolo A, Tiepolo T, Merlini L, et al: Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration. Nat Med. 16:1313–1320. 2010.PubMed/NCBI View Article : Google Scholar | |
Rayagiri SS, Ranaldi D, Raven A, Mohamad Azhar NIF, Lefebvre O, Zammit PS and Borycki AG: Basal lamina remodeling at the skeletal muscle stem cell niche mediates stem cell self-renewal. Nat Commun. 9(1075)2018.PubMed/NCBI View Article : Google Scholar | |
Tang AH and Rando TA: Induction of autophagy supports the bioenergetic demands of quiescent muscle stem cell activation. EMBO J. 33:2782–2797. 2014.PubMed/NCBI View Article : Google Scholar | |
White JP, Billin AN, Campbell ME, Russell AJ, Huffman KM and Kraus WE: The AMPK/p27Kip1 axis regulates autophagy/apoptosis decisions in aged skeletal muscle stem cells. Stem Cell Reports. 11:425–439. 2018.PubMed/NCBI View Article : Google Scholar | |
Fukada SI: The roles of muscle stem cells in muscle injury, atrophy and hypertrophy. J Biochem. 163:353–358. 2018.PubMed/NCBI View Article : Google Scholar | |
Mccarthy JJ, Mula J, Miyazaki M, Erfani R, Garrison K, Farooqui AB, Srikuea R, Lawson BA, Grimes B, Keller C, et al: Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development. 138:3657–3666. 2011.PubMed/NCBI View Article : Google Scholar | |
Sousa-Victor P, Gutarra S, García-Prat L, Rodriguez-Ubreva J, Ortet L, Ruiz-Bonilla V, Jardí M, Ballestar E, González S, Serrano AL, et al: Geriatric muscle stem cells switch reversible quiescence into senescence. Nature. 506:316–321. 2014.PubMed/NCBI View Article : Google Scholar | |
Cosgrove BD, Gilbert PM, Porpiglia E, Mourkioti F, Lee SP, Corbel SY, Llewellyn ME, Delp SL and Blau HM: Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med. 20:255–264. 2014.PubMed/NCBI View Article : Google Scholar | |
García-Prat L, Martínez-Vicente M, Perdiguero E, Ortet L, Rodríguez-Ubreva J, Rebollo E, Ruiz-Bonilla V, Gutarra S, Ballestar E, Serrano AL, et al: Autophagy maintains stemness by preventing senescence. Nature. 529:37–42. 2016.PubMed/NCBI View Article : Google Scholar | |
Call JA, Wilson RJ, Laker RC, Zhang M, Kundu M and Yan Z: Ulk1-mediated autophagy plays an essential role in mitochondrial remodeling and functional regeneration of skeletal muscle. Am J Physiol Cell Physiol. 312:C724–C732. 2017.PubMed/NCBI View Article : Google Scholar | |
Fortini P, Ferretti C, Iorio E, Cagnin M, Garribba L, Pietraforte D, Falchi M, Pascucci B, Baccarini S, Morani F, et al: The fine tuning of metabolism, autophagy and differentiation during in vitro myogenesis. Cell Death Dis. 7(e2168)2016.PubMed/NCBI View Article : Google Scholar | |
Sin J, Andres AM, Taylor DJR, Weston T, Hiraumi Y, Stotland A, Kim BJ, Huang C, Doran KS and Gottlieb RA: Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts. Autophagy. 12:369–80. 2016.PubMed/NCBI View Article : Google Scholar | |
Chargé SBP and Rudnicki MA: Cellular and molecular regulation of muscle regeneration. Physiol Rev. 84:209–238. 2004.PubMed/NCBI View Article : Google Scholar | |
Horie T, Kawamata T, Matsunami M and Ohsumi Y: Recycling of iron via autophagy is critical for the transition from glycolytic to respiratory growth. J Biol Chem. 292:8533–8543. 2017.PubMed/NCBI View Article : Google Scholar | |
Duguez S, Féasson L, Denis C and Freyssenet D: Mitochondrial biogenesis during skeletal muscle regeneration. Am J Physiol Endocrinol Metab. 282:E802–E809. 2002.PubMed/NCBI View Article : Google Scholar | |
McMillan EM and Quadrilatero J: Autophagy is required and protects against apoptosis during myoblast differentiation. Biochem J. 462:267–277. 2014.PubMed/NCBI View Article : Google Scholar | |
Hoshino A, Matoba S, Iwai-Kanai E, Nakamura H, Kimata M, Nakaoka M, Katamura M, Okawa Y, Ariyoshi M, Mita Y, et al: p53-TIGAR axis attenuates mitophagy to exacerbate cardiac damage after ischemia. J Mol Cell Cardiol. 52:175–184. 2012.PubMed/NCBI View Article : Google Scholar | |
Le Moal E, Pialoux V, Juban G, Groussard C, Zouhal H, Chazaud B and Mounier R: Redox control of skeletal muscle regeneration. Antioxid Redox Signal. 27:276–310. 2017.PubMed/NCBI View Article : Google Scholar | |
Yin W, Yang L, Kong D, Nie Y, Liang Y and Teng CB: Guanine-rich RNA binding protein GRSF1 inhibits myoblast differentiation through repressing mitochondrial ROS production. Exp Cell Res. 381:139–149. 2019.PubMed/NCBI View Article : Google Scholar | |
Ornatowski W, Lu Q, Yegambaram M, Garcia AE, Zemskov EA, Maltepe E, Fineman JR, Wang T and Black SM: Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol. 36(101679)2020.PubMed/NCBI View Article : Google Scholar | |
Dickinson JD, Sweeter JM, Warren KJ, Ahmad IM, De Deken X, Zimmerman MC and Brody SL: Autophagy regulates DUOX1 localization and superoxide production in airway epithelial cells during chronic IL-13 stimulation. Redox Biol. 14:272–284. 2018.PubMed/NCBI View Article : Google Scholar | |
Lee KA, Kim B, Bhin J, Kim DH, You H, Kim EK, Kim SH, Ryu JH, Hwang D and Lee WJ: Bacterial uracil modulates Drosophila DUOX-dependent gut immunity via Hedgehog-induced signaling endosomes. Cell Host Microbe. 17:191–204. 2015.PubMed/NCBI View Article : Google Scholar | |
Lee KA, Cho KC, Kim B, Jang IH, Nam K, Kwon YE, Kim M, Hyeon DY, Hwang D, Seol JH and Lee WJ: Inflammation-modulated metabolic reprogramming is required for DUOX-dependent gut immunity in Drosophila. Cell Host Microbe. 23:338–352.e5. 2018.PubMed/NCBI View Article : Google Scholar | |
Tian Y, Kuo CF, Sir D, Wang L, Govindarajan S, Petrovic LM and Ou JHJ: Autophagy inhibits oxidative stress and tumor suppressors to exert its dual effect on hepatocarcinogenesis. Cell Death Differ. 22:1025–1034. 2015.PubMed/NCBI View Article : Google Scholar | |
Peng YF, Shi YH, Shen YH, Ding Bin Z, Ke AW, Zhou J, Qiu SJ and Fan J: Promoting colonization in metastatic HCC cells by modulation of autophagy. PLoS One. 8(e74407)2013.PubMed/NCBI View Article : Google Scholar | |
Sciarretta S, Zhai P, Shao D, Zablocki D, Nagarajan N, Terada LS, Volpe M and Sadoshima J: Activation of NADPH oxidase 4 in the endoplasmic reticulum promotes cardiomyocyte autophagy and survival during energy stress through the protein kinase RNA-activated-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α/activating transcription factor 4 pathway. Circ Res. 113:1253–1264. 2013.PubMed/NCBI View Article : Google Scholar | |
Chen Y, Azad MB and Gibson SB: Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ. 16:1040–1052. 2009.PubMed/NCBI View Article : Google Scholar | |
Lee SJ, Ryter SW, Xu JF, Nakahira K, Kim HP, Choi AMK and Kim YS: Carbon monoxide activates autophagy via mitochondrial reactive oxygen species formation. Am J Respir Cell Mol Biol. 45:867–873. 2011.PubMed/NCBI View Article : Google Scholar | |
Cho IH, Choi YJ, Gong JH, Shin D, Kang MK and Kang YH: Astragalin inhibits autophagy-associated airway epithelial fibrosis. Respir Res. 16(51)2015.PubMed/NCBI View Article : Google Scholar | |
Filomeni G, De Zio D and Cecconi F: Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death Differ. 22:377–388. 2015.PubMed/NCBI View Article : Google Scholar | |
Scherz-Shouval R and Elazar Z: Regulation of autophagy by ROS: Physiology and pathology. Trends Biochem Sci. 36:30–38. 2011.PubMed/NCBI View Article : Google Scholar | |
Scherz-Shouval R and Elazar Z: ROS, mitochondria and the regulation of autophagy. Trends Cell Biol. 17:422–427. 2007.PubMed/NCBI View Article : Google Scholar | |
Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L and Elazar Z: Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 26:1749–1760. 2007.PubMed/NCBI View Article : Google Scholar | |
Recuero M, Munive VA, Sastre I, Aldudo J, Valdivieso F and Bullido MJ: A free radical-generating system regulates AβPP metabolism/processing: involvement of the ubiquitin/proteasome and autophagy/lysosome pathways. J Alzheimers Dis. 34:637–647. 2013.PubMed/NCBI View Article : Google Scholar | |
De Deken X and Miot F: DUOX defects and their roles in congenital hypothyroidism. Methods Mol Biol. 1982:667–693. 2019.PubMed/NCBI View Article : Google Scholar |