1
|
Alderazi YJ and Grotta JC: Acute
antithrombotic treatment of ischemic stroke. Curr Vasc Pharmacol.
12:353–364. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Madonna R and Rokosh G: Insights into gene
therapy for critical limb ischemia: the devil is in the details.
Vascul Pharmacol. 57:10–14. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Navarro-Yepes J, Zavala-Flores L, Anandhan
A, et al: Antioxidant gene therapy against neuronal cell death.
Pharmacol Ther. 142:206–230. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Aoki M and Morishita R: Therapeutic
angiogenesis for ischemic diseases. Nihon Rinsho. 64:762–768.
2006.[(In Japanese)]. PubMed/NCBI
|
5
|
Su H, Joho S, Huang Y, et al:
Adeno-associated viral vector delivers cardiac-specific and
hypoxia-inducible VEGF expression in ischemic mouse hearts. Proc
Natl Acad Sci USA. 101:16280–16285. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Simonato M, Bennett J, Boulis NM, et al:
Progress in gene therapy for neurological disorders. Nat Rev
Neurol. 9:277–291. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Spector A, Yan GZ, Huang RR, McDermott MJ,
Gascoyne PR and Pigiet V: The effect of H2O2
upon thioredoxin-enriched lens epithelial cells. J Biol Chem.
263:4984–4990. 1988.PubMed/NCBI
|
8
|
Anbanandam A, Albarado DC, Tirziu DC,
Simons M and Veeraraghavan S: Molecular basis for proline- and
arginine-rich peptide inhibition of proteasome. J Mol Biol.
384:219–227. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Borghouts C, Kunz C, Delis N and Groner B:
Monomeric recombinant peptide aptamers are required for efficient
intracellular uptake and target inhibition. Mol Cancer Res.
6:267–281. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Muinck ED, Nagy N, Tirziu D, et al:
Protection against myocardial ischemia-reperfusion injury by the
angiogenic Masterswitch protein PR 39 gene therapy: the roles of
HIF1alpha stabilization and FGFR1 signaling. Antioxid Redox Signal.
9:437–445. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gao Y, Lecker S, Post MJ, et al:
Inhibition of ubiquitin-proteasome pathway-mediated I kappa B alpha
degradation by a naturally occurring antibacterial peptide. J Clin
Invest. 106:439–448. 2000. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Gerber HP, Condorelli F, Park J and
Ferrara N: Differential transcriptional regulation of the two
vascular endothelial growth factor receptor genes. Flt-1, but not
Flk-1/KDR, is up-regulated by hypoxia. J Biol Chem.
272:23659–23667. 1997. View Article : Google Scholar : PubMed/NCBI
|
13
|
Sun L, Hao Y, Nie X, Zhang X, Yang G and
Wang Q: Construction of PR39 recombinant AAV under control of the
HRE promoter and the effect of recombinant AAV on gene therapy of
ischemic heart disease. Exp Ther Med. 4:811–814. 2012.PubMed/NCBI
|
14
|
Zorko M and Langel U: Cell-penetrating
peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv
Rev. 57:529–545. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Deshayes S, Morris MC, Divita G and Heitz
F: Cell-penetrating peptides: tools for intracellular delivery of
therapeutics. Cell Mol Life Sci. 62:1839–1849. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ruan XY, Bi JZ, Liu QY, et al:
Construction and identification of recombinant plasmids expressing
hTRX-PR39. Shandong Daxue Xuebao: Yixue Ban. 47:30–34. 2009.[(In
Chinese)].
|
17
|
Liu QY, Ruan XY, Liu XG, et al: Cloning
and expression of a cDNA sequence for human thioredoxin. Xian
Jiaotong Daxue Xuebao. 15:183–188. 2003.[(In Chinese)].
|
18
|
Powis G and Montfort WR: Proprties and
biological activities of thioredoxins. Annu Rev Pharmacol Toxicol.
41:261–295. 2001. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yegorova S, Yegorov O and Lou MF:
Thioredoxin induced antioxidant gene expressions in human lens
epithelial cells. Exp Eye Res. 83:783–792. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kobayashi-Miura M, Nakamura H, Yodoi J and
Shiota K: Thioredoxin, an anti-oxidant protein, protects mouse
embryos from oxidative stress-induced developmental anomalies. Free
Radic Res. 36:949–956. 2002. View Article : Google Scholar : PubMed/NCBI
|
21
|
Das SK, Sharma NK, Hasstedt SJ, et al: An
integrative genomics approach identifies activation of
thioredoxin/thioredoxin reductase-1-mediated oxidative stress
defense pathway and inhibition of angiogenesis in obese non
diabetic human subjects. J Clin Endocrinol Metab. 96:E1308–E1313.
2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Umekawa T, Sugiyama T, Kihira T, et al:
Overexpression of thioredoxin-1 reduces oxidative stress in the
placenta of transgenic mice and promotes fetal growth via glucose
metabolism. Endocrinology. 149:3980–3988. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Post MJ, Sato K, Murakami M, et al:
Adenoviral PR39 improves blood flow and myocardial function in a
pig model of chronic myocardial ischemia by enhancing collateral
formation. Am J Physiol Regul Integr Comp Physiol. 290:R494–R500.
2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Li J, Post M, Volk R, et al: PR39, a
peptide regulator of angiogenesis. Nat Med. 6:49–55. 2000.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Sun L, Hao Y, Nie X, et al: Recombinant
AAV-PR39-mediated hypoxia-inducible factor 1 alpha gene expression
attenuates myocardial infarction. Int J Mol Med. 33:171–177.
2014.PubMed/NCBI
|
26
|
Simons M: Integrative signaling in
angiogenesis. Mol Cell Biochem. 264:99–102. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wen YA, Yu XL, Xia QF, Cen D, Liu JB and
Tu ZG: Macrophage-specific overexpression of antimicrobial peptide
PR-39 inhibits intracellular growth of Salmonella enterica serovar
Typhimurium in macrophage cells. Int J Antimicrob Agents.
34:315–321. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Rodríguez-Martínez S, Cancino-Diaz JC,
Vargas-Zuñiga LM and Cancino-Diaz ME: LL-37 regulates the
overexpression of vascular endothelial growth factor (VEGF) and
c-IAP-2 in human keratinocytes. Int J Dermatol. 47:457–462. 2008.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Ramanathan B, Wu H, Ross CR and Blecha F:
PR-39, a porcine antimicrobial peptide, inhibits apoptosis:
Involvement of caspase-3. Dev Comp Immunol. 28:163–169. 2004.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Shen F, Kuo R, Milon-Camus M, et al:
Intravenous delivery of adeno-associated viral vector serotype 9
mediates effective gene expression in ischemic stroke lesion and
brain angiogenic foci. Stroke. 44:252–254. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Shan H, Ji D, Barnard AR, Lipinski DM, You
Q, Lee EJ, Kamalden TA, et al: AAV-mediated gene transfer of human
x-linked inhibitor of apoptosis protects against oxidative cell
death in human RPE cells. Invest Ophthalmol Vis Sci. 52:9591–9597.
2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wang L, Blouin V, Brument N, Bello-Roufai
M and Francois A: Production and purification of recombinant
adeno-associated vectors. Methods Mol Biol. 807:361–404. 2011.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Bockstael O, Foust KD, Kaspar B and
Tenenbaum L: Recombinant AAV delivery to the central nervous
system. Methods Mol Biol. 807:159–177. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ruan XY, Yuan ZG, Du YF, Yang GX and Wang
QY: Recombinant adeno-associated virus delivered human
thioredoxin-PR39 prevents hypoxia-induced apoptosis of ECV304
cells. Neural Regen Res. 7:708–713. 2012.PubMed/NCBI
|